


Abstract— This paper is related to design and

implementation of the application based on a PSTR model on a
virtual machine. We will load one hardware system with two
virtual machines to implement the PSTR model. We will
conduct a research about the configuration of a management
module, sharing of serial device simultaneously, and
communication between tasks on different virtual machines.
The management module can be located on the host operating
system or on another virtual machine. This paper will decide
the position of management module by comparing the
performances of management modules in two different
positions. Then, this paper will analyze the task execution
environment on a virtual machine related to I/O device sharing
and communication method between application tasks. After
analyzing, we design and implement the modified virtual port
suitable for the PSTR model. We will also make inter task
communication features on different virtual machines and
compare the performances of this communication features with
their experimental results.

Index Terms— virtual machine, task communication, device
virtualization

I. INTRODUCTION

HIS paper will implement the application on a
virtualization of embedded system[1]. This application is

based on PSTR task model and uses serial ports. The PSTR
model on this application consists of the primary and shadow
processes. We will make a virtual hardware system, and
implement the PSTR model process on this virtual hardware
system. Application tasks use their serial ports for hardware
input, and tasks, on different virtual machines, communicate
with each other. We must solve the problems which occur
when we migrate the features of real system into
virtualization system. We also have to solve the problems
which result from concurrent execution. We need to make
several additional software modules for virtualizing
hardware features. First one is the management module
which requires to supervise the overall system. Second, as a
system requirement, we must make possible of the
simultaneous use of serial ports for the PSTR
implementation[2]. Also, those serial ports on the
virtualization system have to satisfy the performance
requirements of the hardware serial ports. Lastly, a
communication method between the primary and the shadow

Jinho Yoo is with Baekseok University, South Korea (phone:

+82-41-550-0493; e-mail: yoojh@bu.ac.kr).

virtual machine has to be provided. This paper will
implement and modify system software components to solve
these problems which will be supported by experiments
further discussed.

II. RELATED RESEARCH AND BACKGROUND

A. Related Works

The virtualization technique has been applied to many
hardware system to improve its availability. There are a lot to
consider over the implementation of the virtualization
because the hardware system has many different components.
So, there are many researches on virtualization and we are
interested in the implementation of devices and their
performances among these researches. There are researches
on the performance delay of the device I/O which shows that
software systems can perform as well as hardware systems[3].
There are studies that show how I/O device affects the
performance of the whole system and the implementation of
timeliness[4].

B. Research Background

As presented in Fig.1, the PSTR model, in accomplishing a
task, shadows the actions of the primary. The shadow exists
so that when an error occurs in the primary, the shadow takes
over the job while the primary recovers. The primary and the
shadow need to communicate in order to synchronize their
data for checkpoint.

Fig. 1. PSTR Model

The Design and Implementation of
Fault Tolerant PSTR on the Embedded

Virtualization System

Jinho Yoo

T

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

The clock in Fig.1 shows the real time clock for the real

time requirement. The asterisk denotes the ODS(Object Data
Store) which represents the global variables.

The primary saves the client request and notifies the
shadow of the client request ID. Then P2 is executed, which
is followed by an acceptance test. The shadow executes the
same processes. In order to check the validity of the primary,
the shadow synchronizes with the primary.

To support the implementation of the PSTR model, we will
propose the virtual serial ports required for hardware input,
and the direct communication paths between application
tasks. This paper will also implement a virtual channel that
has no transmission delay between application tasks on
different virtual machines.

III. SYSTEM IMPLEMENTATION

The application program of the PSTR model has been
implemented on general hardware system, and in this
research, this implementation will be done on virtual machine,
which supports full virtualization. Also, this research will
find the most efficient ways for virtual machines to meet
hardware system's performance criteria and implement the
PSTR model on virtual machines.

The tasks are executed on hardware, and they use the
socket feature to communicate with each other. Also, the
hardware system provides general basic I/O, such as serial
port. In this research, the tasks will be executed on virtual
machines, and perform direct channel communication,
without using socket interfaces. Also, this has to be able to
control the overall hardware component which is
implemented by software techniques. Thus management
module is needed to control the overall virtualization system.
In addition, this management module will manage to
implement PSTR model on virtual machines that are capable
of such features.

The hardware target system for this research's
implementation and its corresponding performance
evaluation is consisted of a processor that is AMD 64bits, 2.0
GHz, and a 8G RAM. The Operating System is a real-time
patched Linux Kernel 3.4.0.

A. Management Module

 There are two ways to implement a management module.
The first way is to make management module a process on a
host operating system. This way is the most efficient way in
terms of communication performance. However, if the host
operating system is changed, the management module has to
be made again in a different host API environment. The
second way is to make a virtual machine for the management
module.
 This is very portable because it only needs the virtual
machine to be executed on a host operating system. However,
this way will take more time than the first way because of the
overhead of virtual machine[5].
 This research will choose between a good communication
performance and portability. This system prioritizes speed
over other features, so, we will experiment to find out and
confirm which way is faster in a real system.

Fig. 2. Management Module on Host OS

B. Communication Performance

This research will compare the performance of the
management module implemented as a host process, and the
management module implemented as a virtual machine in Fig
3. The horizontal line represents byte scale transmitted and
the vertical axis represents the duration of transmission.
Implementing the management module on a virtual machine
is denoted by a dotted line, and implementing management
module as a host process is denoted by a solid line.
Implementing management module as a host process is faster
in most case. Implementing it on a virtual machine is slower
because the transmitted packet has to pass through the
operating system layer on the virtual machine. We chose to
make the management module a host process in terms of
communication speed that is shown in Fig.3.

Fig. 3. Communication performance

C. Sharing Serial Port

There are primary virtual machine and shadow virtual
machine on a host system as shown in Fig.4. Two virtual
machines share the serial port of host system as shown in
Fig.4. If the data is entered to the serial port of the host
system, Distribution Module Process copies and distributes
the entered data into the I/O redirection stubs of the primary
and the shadow virtual machine. Then, the primary and the
shadow virtual machine each will have the duplicated data.
Distribution Module Process receives the entered data from
host serial port and puts it into the input buffer. I/O
Redirection Stub will get it from the input buffer. For output,
I/O Redirection Stub puts the output data into the output

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

buffer of the Distribution Module. The primary task reads the
data from virtual serial port and writes the output data into
virtual serial port. Management Module and Distribution
Module are responsible for delaying and queuing of input
and output related to host serial port. They maintain
time-stamped data for resolving timing problems.

Fig. 4. Serial Port Sharing

D. Performance of Virtual Serial Port

Virtual serial port is the data structure managed by a
software program module and has to satisfy performance
standard of the serial port of hardware. Therefore, virtual
serial port has to meet 115k bit per second. Sharing the
hardware serial port may affect the performance of virtual
serial port. So, this research conducted a test to know whether
the performance meets the hardware performance criteria.
The results is shown as Fig.5.

Fig. 5. Input Delay of Sharing Device

The horizontal axis of Fig.5 is the value of incremental real
time clock. The vertical value represents the delay value to
the clock. The time delay in Fig.5 is shown from 2 us to 5 ms.
The I/O maximum speed of serial port is 115 kbps, that is, the
I/O delay of transmission is approximately 70 us. This
research added the performance control feature to make
serial I/O constant speed.

E. Direct Communication Path between Tasks

 This research designs and implements a virtual
communication channel to support direct communication

between application tasks on different virtual machines
shown as Fig.6. This virtual network device is only used for
communication between applications. This virtual network
device exists only for software execution environment, not
for real hardware environment[6]. This virtual network
device has the address made from UUID(Universal Unique
IDentifier) and task ID. In the process of transmitting the
packets, this virtual network device supports timestamp
function to record the time the packet was made.

Fig. 6. Communications between Tasks

This virtual network device calculates the waiting time
taken to get to the destination of packet. The phases are
divided into Generation Phase(Gi), Queue Phase(Qi) for
queuing, Process Phase(Pi), Transmission Phase(Ti) for
managing the time delay. Application tasks ask for simple
deadline check mechanisms, which are "hard" and "soft". In
case of "hard," the virtual network device decides whether
the required time is greater than the calculated waiting time.
If their packet is not able to be arrived at the destination, the
virtual network device rejects the transmission from
application task[5]. However, in case of "soft," the virtual
network device just notifies the status to the application task.





N

i
iiiidelay TMINPQGMIN

N
MIN

0

))()((
1

It calculates average delay time as the below.





N

i
iiiidelay TPQG

N
AVG

0

)(
1

It compares RTT and AVG as following on the packet
generation phase.

if ((RTT(packet)<AVG(delayDB))
 Packet is allocated from pre-allocated queue pool
 (MIN(Gi))
else
 Packet is allocated from memory

On the packet transmission phase, it compares as

following

if ((RTT(packet)<AVG(delayDB))
 Packet is placed in front of queue,
 Notify packet arrived using SIGIO
 (MIN(Ti))

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

else
 Packet is placed in queue

RTT: Requested Transmission Time,
AVG(delayDB): average time of delay in delayDB.

 If the parameter for time requirement is soft, the

transmission is executed after the time requirement is
compared to the average minimum delay time.

In this paper, we compared the transmission speed of
socket communication, and three different lengths of
messages on the virtual network device: 32, 64, 1024 bytes.
The result is shown in Fig.7.

Fig. 7. Comparison of communication time

The socket communication shows the constant
communication time if packet size is smaller than the
constant size. This communication packet size is 1024 bytes
per transmission, that is, this application just requires 1024
bytes size for transmission. The communication of the virtual
network device of 1024 packet-size transmission is better
than that of socket. Fig.7 shows that the proposed virtual
network device is better than socket.

IV. EXPERIMENT AND DEMONSTRATION

Experiment is divided into simulation and real experiment.
We installed the virtualbox embedded with PSTR model for
fault tolerant implementation. We used Flightgear software
for the simulation and the quadcopter for the real experiment.

Demo scenario is as follows. Primary virtual machine
executes its application tasks as its mission on sending
heartbeat into shadow virtual machine periodically.

Fig. 8. Application Task on Primary Virtual Machine

Fig. 9. Application Task Fail on Primary Virtual Machine

Fig. 10. Switch to Application Task on Shadow Virtual Machine
Shadow is monitoring the status of the primary side

simultaneously. When errors occur on the primary, the
shadow takes I/O control from the primary and continues the
primary's mission instead. After that, the primary tries to
recover itself. If it is recovered, it takes the I/O control and
does its mission again. Fig.8 shows the snapshot of
Flightgear software that the primary does his mission. The
right side of snapshot shows the status of the virtual machine
system. Fig.9 shows the system failure of the primary and
once it fails, the helicopter declines. When the shadow
recognizes the failure of the primary, the primary execution is
switched into the shadow in Fig.10, and the shadow takes the
responsibility of control.

Fig. 11. Experiment Composition

In Fig. 11, there are a real experiment environment and
software stack of real system. There are two virtual machines
on a hardware system, and application tasks are on each of
the virtual machines. The application task is executed on the
eCos operating system, which is a guest operating system.
The serial port and wireless controller both are connected to
the flight control board using lines and these two lines control

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

the quadcopter. We can be informed that the primary is
switched to the shadow through monitoring feature.

V. CONCLUSION

This research implemented PSTR model for fault tolerant
on a virtual machine. We modified and adapted the virtual
machine(virtualbox) to implement the PSTR model as a
embedded virtualization. We mainly modified I/O
environment and made the private channel communication
for direct transmission between the application tasks on
different virtual machines.

We added the virtualization software module which
supports the duplication, the control of I/O data, and flow
controls. We implemented the virtual network device which
is good for small data transmission, and we evaluated the
performance of virtual network devices by comparing socket
communication. We used Flightgear for simulation to verify
the activities of the primary and the shadow, and tested this
research on the quadcopter as a real hardware environment.
In conclusion, this research succeeded in making the PSTR
model possible of being efficient fault tolerant on an
embedded virtualization environment by sharing serial ports,
making direct communication and management module.

REFERENCES
[1] Ning Li, Yuki Kinebuchi, Hitoshi Mitake, Hiromasa Shimada,

Tsung-Han Lin, and Tatsuo Nakajima, "A Light-Weighted
Virtualization Layer for Multicore Processor-Based Rich Functional
Embedded Systems", Proceedings of 15th IEEE International
Symposium on Object/Component/ Service-Oriented Real-Time
Distributed Computing, 2012, pp. 144-153.

[2] Zonghua Gu and Qingling Zhao, "A State-of- the-Art Survey on
Real-Time Issues in Embedded Systems Virtualization", Journal of
Software Engineering and Applications, May 2012, pp. 277-290.

[3] K. H. Kim, and C. Subbaraman, "The PSTR/SNS scheme for real-time
fault tolerance via active object replication and network surveillance",
Knowledge and Data Engineering, IEEE Transactions on, Vol.12, No.
2, Mar/April 2000, pp. 145, 159.

[4] Kim, K.H., Liu, J.J.Q., "Techniques for implementing support
middleware for the PSTR scheme for real-time object replication,"
Object-Oriented Real-Time Distributed Computing, 2004.
Proceedings. Seventh IEEE International Symposium on , vol., no.,
14-14 May 2004, pp.163,172.

[5] Jinho Yoo, Kyujong Han, Yong-Hyun Kim, Mirim Ahn, Doo-Hyun
Kim, “The Execution Environment Study of Primary Shadow TMO
Replication Model on a Virtual Machine”, Korean Institute of
Information Technology , vol. 11, No. 8, Aug. 31, 2013, pp.153-162.

[6] Nakauchi, K., Shoji, Y., Ito, M., Zhong Lei, Kitatsuji, Y., Yokota, H.,
"Bring your own network - Design and implementation of a virtualized
WiFi network," Consumer Communications and Networking
Conference (CCNC), 2014 IEEE 11th, vol., no., 10-13 Jan. 2014,
pp.483,488.

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

