
 

Abstract- Cloud computing model offers various types of 

services. These services are delivered by providing an access to a 

wide range of shared resources which are hosted in cloud data 

centers. Data centers consume large amounts of energy. One of the 

recent challenges in this model is to enhance the energy efficiency 

in these data centers. This paper tackles the problem of enhancing 

the energy consumption of cloud data centers by proposing three 

energy aware approaches. Each approach includes its innovative 

job classification model and its novel VM placement strategy. The 

job classification model classifies cloud users’ jobs before serving 

these jobs. The model identifies common patterns for the 

submitted jobs and predicts their types, and accordingly, the set of 

users’ jobs is classified into subsets. Each subset contains jobs that 

have similar requirements. The goal of job classification is to find 

a way to propose a useful strategy that helps improve energy 

efficiency. Based on the process of jobs’ classification, the best fit 

virtual machine is allocated to each job. Then, the VM placement 

strategy place the VM on a selected physical machine. The goal of 

the proposed placement strategy is to better utilize the involved 

physical machines which serve the users’ jobs. As different types 

of jobs do not intensively use the compute and/or non-compute 

resources in the hosted physical machine, virtual machines 

allocated to the jobs of different types are placed on the same 

physical machine where possible. The placement process is based 

on a Multiple Choice Knapsack Problem which is a generalization 

of the classical Knapsack Problem. The proposed approaches 

enhance the energy efficiency of the cloud data centers by 

minimizing the number of the involved physical machines which 

serve the jobs, and by optimally utilizing the involved physical 

machines. To evaluate the performance of the proposed 

approaches and compare which is better, the CloudSim simulator 

is used with a real workload trace to simulate the cloud computing 

environment. 

Index Terms— Cloud Computing, Job Submission, Job 

Classification, VM Placement, Energy Efficiency. 
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I. INTRODUCTION 

loud computing is the computing model that builds on top 

of several predecessor models, called cluster computing, 

distributed computing, autonomic computing, utility 

computing, and can be considered as a step forward from the 

grid computing model. Cloud computing leverages these 

existing models, together with the virtualization concept, to 

meet the cloud users’ requirements with new features. This 

model provides an access to a wide range of shared hardware 

resources existing in data centers around the world. These 

resources represent the hardware layer of the cloud computing 

model. Cloud users do not interact with the hardware layer 

directly. Instead, they benefit from such resources via a 

virtualization layer. Virtualization is creating a virtual version 

of a real thing. Virtualization is the key concept of cloud model 

that hides the details of physical hardware and provides 

virtualized resources for user layer. A single Physical Machine 

(PM), which is the real hardware, can host one Virtual Machine 

(VM) or more. A VM is a piece of software running on PM. It 

simulates the properties of a separated PM. VM Management is 

the process of coordinated provisioning of the virtualized 

resources. This feature includes mapping virtual resources to 

physical resources in addition to overall management 

capabilities. Recently, cloud computing has grown rapidly 

which applies that there is a need for establishing numerous 

data centers. This growth concurs with some challenges. One of 

the recent challenges in cloud computing is to enhance the 

energy efficiency of such data centers which contain thousands 

of compute nodes. Therefore, it is crucial to apply energy-

efficient approaches when serving users’ jobs in the resources 

of the cloud data centers. 

Many previous approaches have been suggested to solve the 

problem of VM placement. The basic and simplest VM 

placement method is Round Robin, where VMs are placed on 

PMs sequentially. However, there are more advanced 

approaches. The work in [1] relied on the linear and quadratic 

programming in proposing a VM placement algorithm to 

minimize the number of the involved PMs. The authors in [2] 

proposed a framework to maximize the utilization of the VMs 

resources. They defined a dynamic VM provisioning manager 

and a dynamic VM placement manager, to work together within 

the proposed framework. VM provisioning and VM placement 

are modeled as constraint satisfaction problems. In [3], the 

authors proposed a resource manager, called Entropy, working 

in homogeneous clusters. Entropy performed dynamic 

consolidation based on constraint programming. Many other 

studies presented the VM placement problem as a bin packing 
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problem. The thesis in [4] is an example of using bin packing 

approach in VM placement. It presented novel models and 

algorithms for distributed dynamic consolidation of VMs in 

cloud data centers. The applied a VM placement algorithm in 

the thesis was based on a variant of bin packing called best fit 

decreasing bin packing. In addition to the previous approaches, 

various optimization methods such as, Ant Colony 

Optimization (ACO), Particle Swarm Optimization (PSO), and 

Genetic Algorithms (GA) were used to solve the problems of 

VM placement, and VM consolidation, in the virtualized data 

centers. In [5], the authors defined an initial VM placement 

strategy with a multi-objective optimization algorithm based on 

(ACO). The proposed algorithm was able to achieve an optimal 

solution through efficient convergence by the constantly 

updated pheromone. The optimal solution was selected from a 

set of solutions using the exclusion method. In [6], the authors 

designed a distributed ACO-based algorithm for solving the 

VM consolidation problem. The algorithm iterated over a finite 

number of cycles. At each cycle, an item is selected for each ant 

to be packed in a bin. In [7], the authors proposed a multi-

objective ACO to solve the problem of VM placement. The 

formulated multi-objective VM placement problem represented 

permutation of VM assignments. The goal was to efficiently 

obtain a set of non-dominated solutions that reduce the total 

high power consumption resulting from resource wastage. The 

thesis in [8] used an ACO-based VM placement algorithm to 

solve the problem of considering only a single resource to 

evaluate the PM load, and VM resource demands, while 

ignoring the other resources. A consolidation algorithm based 

on ACO to achieve both scalability, and high data center 

utilization, was proposed also in this thesis. In [9], the authors 

proposed a VM consolidation scheme that focused on balanced 

resource utilization of servers across different computing 

resources. The work in [10] proposed a PSO based VM 

scheduling strategy for VM placement. The strategy focused on 

efficient VM placement, aiming to minimize the number of the 

PMs used. In [11], the authors proposed a model, based on PSO, 

to place the migrated VMs in the over-loaded PMs on other 

hosts, and to consolidate the under-loaded PMs in order to save 

power. An example of GA approach was presented in [12] by 

proposing a genetic algorithm for power-aware (GAPA) 

scheduling to find the optimal solution for the problem of VM 

allocation. In the proposed algorithm, a tree structure was used 

to encode chromosome of an individual job. The fitness 

function of GA is calculating the evaluation value of each 

chromosome. Using this model, each instance of the tree 

structure showed the VM to PM Allocation. 

This work tackles the problem of high energy consumption 

in cloud data centers by proposing three energy efficiency job 

submission approaches. Each has its new job classification 

model, and its VM placement strategy which employ the jobs’ 

subsets resulted from its corresponding classification model.   

The rest of this paper is organized as follows: Section 2 

describes the proposed job submission models in details. The 

performance analysis of the proposed approaches are presented 

in section 3. The conclusions are listed in section 4. 

II. JOB SUBMISSION APPROACHES 

This section presents three job submission approaches: CI-DI 

approach, 16-10 approach and 16-8 approach. Each approach 

has its innovative jobs classification model which aims to 

classify the jobs summited to the cloud into new subsets. Every 

resulted subset includes a specific type of jobs. Then, the 

approaches present novel strategies to place the VMs allocated 

to the submitted jobs on their best PMS. The strategies study 

and discuss the effects of combining the VMs allocated on the 

same PM to the resulted jobs from the energy efficiency 

perspective. 

A. System Model 

The proposed system relies on the cloud computing model, 

whereby cloud users request the services offered by the cloud 

providers. Thus, the two main system components are: Cloud 

user, and Cloud provider, as shown in Fig. 1. 

 
Fig. 1: System Model. 

The user(s) can send their job(s) to the cloud provider. The 

cloud provider has an essential node called Global Scheduler 

(GS). This node acts as an interface between users and the cloud 

infrastructure and works in three phases. In the first phase 

(classifying Phase), the GS classifies the jobs into subsets and 

analyzes the service requirements of the submitted jobs. In the 

second phase (SLA Phase), GS decides whether to accept or 

reject them based on the availability of resources. In the third 

phase (Mapping Phase), GS selects the data center that execute 

the jobs such that the energy consumption can be reduced. 

Data centers are located in different geographical regions. 

Each data center is responsible for periodically updating the GS 

by information about the available resources in order to achieve 

an energy-efficient scheduling. 

Jobs are submitted as one set to the provider, every job can 

be considered as a finer abstraction to be served by the VM. 

Provider receives and classifies the jobs before sending them to 

be serves in a selected data center. In the data center site, there 

is an essential node called Local Scheduler (LS) which allocates 

the best fit VM configuration to each job to meet the job 

requirement. Then, LS performs the VM placement strategy 

considering the jobs type in the placement process. VM 

placement is the process of mapping the VMs into their best fit 

PMs. The VM placement process in the three proposed 

approaches aims to enhance the PMs utilizations in the data 

center which is consequently improve the energy efficiency. 

The VM placement process is implemented by applying one 

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I 
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016



 

generalization on the well-known Knapsack Problem (KP). The 

generalization is called Multiple Choice Knapsack Problem 

(MCKP) [13]. It is chosen because it able to target two goals in 

one shot: It guarantees the minimum possible number of the 

involved knapsacks (in our case, every knapsack represents one 

PM) which minimize the consumed energy, and at the same 

time guarantees an acceptable utilization for the involved PMs, 

resulting in combining VMs which serve different types of jobs 

on the same PM whenever possible. 

B. CI-DI Approach 

In cloud computing model, VMs which serve different kind 

of jobs can share the same PM in the virtualized data centers. If 

the VMs which allocated to these jobs are placed on PMs 

unconditionally, then it is not obvious how these jobs influence 

each other in terms of performance, as they can be compute, 

data, or network intensive creating variable or static load on the 

data center resources. As stated in [4], the main reason of 

energy inefficiency in cloud data centers is the low utilization 

of the resources. So, enhancing the PMs utilization can improve 

the energy efficiency in cloud data centers. Enhancing the PMs 

utilization can be achieved by choosing the jobs that do not 

intensively use the same resource. A compute intensive jobs can 

be effectively combined with a storage and/or bandwidth 

intensive jobs as the former mostly relies on the compute 

resources, whereas the latter utilizes disk storage and/or 

network bandwidth. Therefore, and before the processes of 

VMs allocation and placements, it is important to investigate 

cloud workloads in order to identify common behaviors and 

patterns that can potentially lead to more efficient resource 

provisioning and consequently higher energy efficiency 

In this approach, called Compute-Intensive Data-Intensive 

(CI-DI) approach, the set of jobs are divided into four subsets: 

1) Compute Intensive (CI) jobs, which highly utilize 

compute resources. 

2) Data Intensive (DI) jobs, which highly utilize storage 

and/or bandwidth resources. 

3) Compute-Intensive Data-Intensive (CIDI) jobs, which 

utilize compute resources together with storage and/or 

bandwidth resources all in a high manner. 

4) Normal jobs, they are the set of jobs that do not fit in any 

of the types specified above. 

During the classification phase, a set of parameters is 

generated with each job as features for jobs. Some of them are: 

Cycle Per Instructions (CPIs), Memory Access Per Instruction 

(MPIs), Hard Disk (HD) usage, and Bandwidth (BW) usage. 

The classification is based on the four features associated with 

each job, the subset are generated according to the equations (1 

to 4) as follows: 
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Where 

 𝐶𝑝𝑖𝑇ℎ: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑓𝑜𝑟 𝐶𝑃𝐼 𝑜𝑓 𝑡ℎ𝑒 𝑗𝑜𝑏 

 𝑀𝑝𝑖𝑇ℎ: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑓𝑜𝑟 𝑀𝑃𝐼 𝑜𝑓 𝑡ℎ𝑒 𝑗𝑜𝑏 

 𝑆𝑖𝑧𝑒𝑇ℎ: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑓𝑜𝑟 𝑗𝑜𝑏 𝑠𝑖𝑧𝑒 𝑡𝑜 𝑏𝑒 𝑠𝑡𝑜𝑟𝑒𝑑 𝑜𝑛 𝐻𝐷 

 𝐵𝑤𝑇ℎ: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑗𝑜𝑏 
 

The thresholds are chosen by examining the parameters’ 

values of the all submitted jobs. Based on these values, the 

median of each parameter is considered as a threshold. Notably, 

fixed values of the threshold are not suitable for the 

environments with dynamic and unpredictable workloads as in 

cloud. So, the thresholds are dynamic in this work and changes 

based on the submitted jobs. 

C. 16-10 Approach 

The aim of this approach is to study the effects of placing the 

jobs that intensively utilize specific VM parameters. The core 

idea of this approach is to subdivide the CI and DI subsets based 

on their features and rely on the new sub-subsets in the process 

of VM placement. The CI subset can be divided into two main 

categories: CPU intensive and RAM intensive. Similarly, the 

DI subset can be divided into two main categories: Hard disk 

intensive and Bandwidth intensive. Further investigation to the 

CI and DI subset leads us to subdivide such jobs into the 

following sub subsets: 

1) CI jobs: The major resources consumed by CI jobs are 

CPU cores and Memory. So, the CI jobs can be further 

subdivided into: 

a. CPU Compute Intensive (CCI) jobs: CCI jobs devote 

most of their execution time in utilizing the CPU cores. 

b. RAM Compute Intensive (RCI) jobs: RCI jobs devote 

most of their execution time in utilizing the RAM. 

2) DI jobs: The major resources consumed by DI jobs are 

Hard disk and Bandwidth. So, the DI jobs can be further 

subdivided into: 

a. Hard disk Data Intensive (HDI) jobs: HDI jobs process 

large volumes of data and devote most of their execution 

time in the movement and manipulation of data in 

databases or files. 

b. Bandwidth Data Intensive (BDI) jobs: BDI jobs usually 

generate a huge amount of network transactions between 

user and cloud environment. The number of user requests 

and the data size of each request can highly impact the 

system performance and consequently the energy 

consumption. 
 

The process of job classification in this approach is based on 

two features associated with CI jobs, and two features 

associated with DI jobs. The features associated with CI jobs 

are CPU usage and Memory usage. The features associated with 

DI jobs are Disk usage and Bandwidth usage. 

Then, to cover all possible VM placement possibilities, the 

VMs allocated to the 16 possible sub-subsets based on the 

above four subsets are placed on PMs by applying MCKP for 

every combinations from the cases illustrated in Table 1. 
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Table 1: All possible job type combinations based on 16-10 approach. 

1 CCI – CCI Based on the usage of CPU, two sets are resulted from 

this classification: CCI and NOT CCI. 

2 CCI – RCI Based on the usage of CPU and RAM, four sets are 

resulted from this classification: CCI, RCI, CCI-RCI, 

and NORMAL. 

3 CCI – HDI Based on the usage of CPU and HD, four sets are 

resulted from this classification: CCI, HDI, CCI-HDI, 

and NORMAL. 

4 CCI – BDI Based on the usage of CPU and BW, four sets are 

resulted from this classification: CCI, HDI, CCI-HDI, 

and NORMAL. 

5 RCI – RCI Based on the usage of RAM, two sets are resulted from 

this classification: RCI and NOT RCI. 

6 RCI – CCI Based on the usage of RAM and CPU, four sets are 

resulted from this classification: CCI, RCI, CCI-RCI, 

and NORMAL. 

7 RCI – HDI Based on the usage of RAM and HD, four sets are 

resulted from this classification: RCI, HDI, RCI-HDI, 

and NORMAL. 

8 RCI - BDI Based on the usage of RAM and BW, four sets are 

resulted from this classification: RCI, BDI, RCI-BDI, 

and NORMAL. 

9 HDI - HDI Based on the usage of HD, two sets are resulted from 

this classification: HDI and NOT HDI. 

10 HDI - BDI Based on the usage of HD and BW, four sets are 

resulted from this classification: HDI, BDI, HDI-BDI, 

and NORMAL. 

11 HDI- CCI Based on the usage of HD and CPU, four sets are 

resulted from this classification: CCI, HDI, CCI-HDI, 

and NORMAL. 

12 HDI - RCI Based on the usage of HD and RAM, four sets are 

resulted from this classification: RCI, HDI, RCI-HDI, 

and NORMAL. 

13 BDI – BDI Based on the usage of BW, two sets are resulted from 

this classification: BDI and NOT BDI. 

14 BDI – HDI Based on the usage of BW and HD, four sets are 

resulted from this classification: HDI, BDI, HDI-BDI, 

and NORMAL. 

15 BDI – CCI Based on the usage of BW and CPU, four sets are 

resulted from this classification: CCI, HDI, CCI-HDI, 

and NORMAL. 

16 BDI – RCI Based on the usage of BW and RAM, four sets are 

resulted from this classification: RCI, BDI, RCI-BDI, 

and NORMAL. 

 

From the above 16 possible combination cases, it is obvious 

that some of them are similar to other combinations, so 

repeating them does not make sense. The cases (2, 6), (3, 11), 

(4, 15), (7, 12), (8, 16), and (10, 14) are similar, so each pair is 

combined in one combination, and the 16 job type combinations 

is reduced to only 10 job type combinations. So, this approach 

is called 16-10 approach. 

The VMs which are allocated to the jobs of the following 10 

combinations cases can be placed together whenever possible, 

and the results are examined from the energy perspective. The 

resulted 10 combinations are: CCI with NOT CCI, CCI with 

RCI, CCI with HDI, CCI with BDI, RCI with NOT RCI, RCI 

with HDI, RCI with BDI, HDI with NOT HDI, HDI with BDI, 

and BDI with NOT BDI. 

The 16-10 approach works with the following steps: 

Step One: Divide the set of submitted jobs into 4 subsets (CCI, 

RCI, HDI, and BDI) as follows: 

CCI job =: CPIi > 𝐶𝑝𝑖𝑇ℎ 

RCI job =: MPIi > 𝑀𝑝𝑖𝑇ℎ 

BDI job =: HDi > 𝑆𝑖𝑧𝑒𝑇ℎ 

CCI job =: BWi > 𝐵𝑤𝑇ℎ 

Step Two: Try all their possible 10 combinations. 

1st Combination: 

- CCI job =: CPIi >= 𝐶𝑝𝑖𝑇ℎ 

- Not CCI job =:  CPIi < 𝐶𝑝𝑖𝑇ℎ 

- Place VMs of CCI jobs with VMs of Not CCI jobs on the 

same PM whenever possible. 

2nd Combination: 

- CCI job =: (CPIi > 𝐶𝑝𝑖𝑇ℎ) and (MPIi < 𝑀𝑝𝑖𝑇ℎ) 

- RCI job =:  (MPIi > 𝑀𝑝𝑖𝑇ℎ) and (CPIi < 𝐶𝑝𝑖𝑇ℎ) 

- CCI-RCI =: (CPIi > 𝐶𝑝𝑖𝑇ℎ) and (MPIi 𝑀𝑝𝑖𝑇ℎ) 

- Normal =: (CPIi < 𝐶𝑝𝑖𝑇ℎ) and (MPIi < 𝑀𝑝𝑖𝑇ℎ ) 

- Place VMs of CCI jobs with VMs of RCI jobs, and VMs of 

CCI-RCI jobs with VMs of Normal jobs. 

3rd Combination: 

- CCI job =: (CPIi > 𝐶𝑝𝑖𝑇ℎ) and (HDi < 𝑆𝑖𝑧𝑒𝑇ℎ) 

- HDI job =:  (HDi > 𝑆𝑖𝑧𝑒𝑇ℎ) and (CPIi < 𝐶𝑝𝑖𝑇ℎ) 

- CCI-HDI =: (CPIi > 𝐶𝑝𝑖𝑇ℎ) and (HDi > 𝑆𝑖𝑧𝑒𝑇ℎ) 

- Normal =: (CPIi < 𝐶𝑝𝑖𝑇ℎ) and (HDi < 𝑆𝑖𝑧𝑒𝑇ℎ) 

- Place VMs of CCI jobs with VMs of HDI jobs, and VMs of 

CCI-HDI jobs with VMs of Normal jobs. 

4th Combination: 

- CCI job =: (CPIi > 𝐶𝑝𝑖𝑇ℎ) and (BWi < 𝐵𝑤𝑇ℎ) 

- BDI job =:  (BWi > 𝐵𝑤𝑇ℎ) and (CPIi < 𝐶𝑝𝑖𝑇ℎ) 

- CCI-HDI =: (CPIi > 𝐶𝑝𝑖𝑇ℎ) and (BWi > 𝐵𝑤𝑇ℎ) 

- Normal =: (CPIi < 𝐶𝑝𝑖𝑇ℎ) and (BWi < 𝐵𝑤𝑇ℎ) 

- Place VMs of CCI jobs with VMs of BDI jobs, and VMs of 

CCI-BDI jobs with VMs of Normal jobs. 

5th Combination: 

- RCI job =: MPIi >= 𝑀𝑝𝑖𝑇ℎ 

- Not RCI job =:  MPIi < 𝑀𝑝𝑖𝑇ℎ 

- Place VMs of RCI jobs with Not RCI jobs. 

6th Combination: 

- RCI job =: (MPIi > 𝑀𝑝𝑖𝑇ℎ) and (HDi < 𝑆𝑖𝑧𝑒𝑇ℎ) 

- HDI job =:  (HDi > 𝑆𝑖𝑧𝑒𝑇ℎ) and (MPIi < 𝑀𝑝𝑖𝑇ℎ) 

- RCI-HDI =: (MPIi > 𝑀𝑝𝑖𝑇ℎ) and (HDi > 𝑆𝑖𝑧𝑒𝑇ℎ) 

- Normal =: (MPIi < 𝑀𝑝𝑖𝑇ℎ) and (HDi < 𝑆𝑖𝑧𝑒𝑇ℎ) 

- Place VMs of RCI jobs with VMs of HDI jobs, and VMs of 

RCI-HDI jobs with VMs of Normal jobs 

7th Combination: 

- RCI job =: (MPIi > 𝑀𝑝𝑖𝑇ℎ) and (BWi < 𝐵𝑤𝑇ℎ) 

- BDI job =:  (BWi > 𝐵𝑤𝑇ℎ) and (MPIi < 𝑀𝑝𝑖𝑇ℎ) 

- RCI-HDI =: (MPIi > 𝑀𝑝𝑖𝑇ℎ) and (BWi > 𝐵𝑤𝑇ℎ) 

- Normal =: (MPIi < 𝑀𝑝𝑖𝑇ℎ) and (BWi < 𝐵𝑤𝑇ℎ) 

- Place VMs of RCI jobs with VMs of BDI jobs, and VMs of 

RCI-BDI jobs with VMs of Normal jobs. 

8th Combination: 

- HDI job =: HDi >= 𝑆𝑖𝑧𝑒𝑇ℎ 

- Not HD job =:  HDi < 𝑆𝑖𝑧𝑒𝑇ℎ 

- Place VMs of HDI jobs with Not HDI jobs. 

9th Combination: 

- HDI job =: (HDi > 𝑆𝑖𝑧𝑒𝑇ℎ) and (BWi < 𝐵𝑤𝑇ℎ) 

- BDI job =:  (BWi > 𝐵𝑤𝑇ℎ) and (HDi < 𝑆𝑖𝑧𝑒𝑇ℎ) 

- HDI-BDI =: (HDi > 𝑆𝑖𝑧𝑒𝑇ℎ) and (BWi > 𝐵𝑤𝑇ℎ) 

- Normal =: (HDi < 𝑆𝑖𝑧𝑒𝑇ℎ) and (BWi < 𝐵𝑤𝑇ℎ) 
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- Place VMs of HDI jobs with VMs of BDI jobs, and VMs of 

HDI-BDI jobs with VMs of Normal jobs. 

10th Combination: 

- BDI job =: BWi >= 𝐵𝑤𝑇ℎ 

- Not BDI job =:  BWi < 𝐵𝑤𝑇ℎ 

- Place VMs of BDI jobs with VMs of Not BDI jobs 

Step Three: Compute the resulted consumed energy in each 

combination. 

D. 16-8 Approach 

 The aim of this approach is to consider all the possible subset 

of jobs which are request the VM parameter resources before 

the process of VM placement. The core idea of this approach is 

to generate 16 subset of jobs by considering the 4 VM 

configuration parameters (CPU, RAM, HD, and BW). This 

approach employs some jobs’ features (CPI, MPI, HD usage, 

BW usage) as an indication to the resources they utilize. If the 

job feature value is greater than the threshold, then it is 

considered as a highly utilizer for the requested resource. The 

resulted subsets and their complement jobs are explained and 

listed in Table 2. 

Table 2: All possible job type combinations based on 16-8 approach. 

VM Parameters 

Job Type 
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d

e
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1 0 0 0 CPU intensive 1 16 

1 0 0 1 CPU-BW intensive 2 15 

1 0 1 0 CPU-HD intensive 3 14 

1 0 1 1 CPU-HD-BW intensive 4 13 

1 1 0 0 CPU-RAM intensive 5 12 

1 1 0 1 CPU-RAM-BW intensive 6 11 

1 1 1 0 CPU-RAM-HD intensive 7 10 

1 1 1 1 CPU-RAM-HD-BW intensive 8 9 

0 0 0 0 Normal 9 8 

0 0 0 1 BW intensive 10 7 

0 0 1 0 HD intensive 11 6 

0 0 1 1 HD-BW intensive 12 5 

0 1 0 0 RAM intensive 13 4 

0 1 0 1 RAM-BW intensive 14 3 

0 1 1 0 RAM-HD intensive 15 2 

0 1 1 1 RAM-HD-BW intensive 16 1 

 

The 16 job types result only 8 job type combinations. So, this 

approach is called 16-8 approach. Then, the VMs which are 

allocated to the jobs that request the complement resources are 

placed together whenever possible. The results after the process 

of VM placement can be examined from the energy perspective. 

As seen from Table 2, 8 possible combination are resulted. 

The 16-8 approach works with the following steps: 

Step one: Divide the input set of jobs into 16 subsets (CPU 

intensive, CPU-BW intensive, CPU-HD intensive, CPU-HD-

BW intensive, CPU-RAM intensive, CPU-RAM-BW intensive, 

CPU-RAM-HD intensive, CPU-RAM-HD-BW intensive, 

Normal, BW intensive, HD intensive , HD-BW intensive, RAM 

intensive, RAM-BW intensive, RAM-HD intensive, RAM-HD-

BW intensive). 
 

- CPU Intensive job =: (CPIi > 𝐶𝑝𝑖𝑇ℎ) and (MPIi < MPI-

threshold) and (HDi < HD-threshold) and (BWi < 𝐵𝑤𝑇ℎ) 

- CPU-BW intensive job := (CPIi > 𝐶𝑝𝑖𝑇ℎ) and (MPIi < 

𝑀𝑝𝑖𝑇ℎ) and (HDi < HD-threshold) and (BWi > 𝐵𝑤𝑇ℎ) 

- CPU-HD intensive job := (CPIi > 𝐶𝑝𝑖𝑇ℎ) and (MPIi < 

𝑀𝑝𝑖𝑇ℎ) and (HDi > 𝑆𝑖𝑧𝑒𝑇ℎ) and (BWi < 𝐵𝑤𝑇ℎ) 

- CPU-HD-BW intensive job =: (CPIi > 𝐶𝑝𝑖𝑇ℎ) and (MPIi < 

𝑀𝑝𝑖𝑇ℎ) and (HDi > 𝑆𝑖𝑧𝑒𝑇ℎ) and (BWi > 𝐵𝑤𝑇ℎ) 

- CPU-RAM intensive job =: (CPIi > 𝐶𝑝𝑖𝑇ℎ) and (MPIi > 

𝑀𝑝𝑖𝑇ℎ) and (HDi < 𝑆𝑖𝑧𝑒𝑇ℎ) and (BWi < 𝐵𝑤𝑇ℎ) 

- CPU-RAM-BW intensive job =: (CPIi 𝐶𝑝𝑖𝑇ℎ) and (MPIi > 

𝑀𝑝𝑖𝑇ℎ) and (HDi < 𝑆𝑖𝑧𝑒𝑇ℎ) and (BWi > 𝐵𝑤𝑇ℎ) 

- CPU-RAM-HD intensive job =: (CPIi > 𝐶𝑝𝑖𝑇ℎ) and (MPIi > 

𝑀𝑝𝑖𝑇ℎ) and (HDi > 𝑆𝑖𝑧𝑒𝑇ℎ) and (BWi < 𝐵𝑤𝑇ℎ) 

- CPU-RAM-HD-BW intensive job =: (CPIi > 𝐶𝑝𝑖𝑇ℎ) and 

(MPIi > 𝑀𝑝𝑖𝑇ℎ) and (HDi > 𝑆𝑖𝑧𝑒𝑇ℎ) and (BWi > 𝐵𝑤𝑇ℎ) 

- NONE intensive job =: (CPIi < 𝐶𝑝𝑖𝑇ℎ) and (MPIi < 𝑀𝑝𝑖𝑇ℎ) 

and (HDi < 𝑆𝑖𝑧𝑒𝑇ℎ) and (BWi < 𝐵𝑤𝑇ℎ) 

- BW intensive job =: (CPIi < 𝐶𝑝𝑖𝑇ℎ) and (MPIi < 𝑀𝑝𝑖𝑇ℎ) and 

(HDi < 𝑆𝑖𝑧𝑒𝑇ℎ) and (BWi > 𝐵𝑤𝑇ℎ) 

- HD intensive job =: (CPIi < 𝐶𝑝𝑖𝑇ℎ) and (MPIi < 𝑀𝑝𝑖𝑇ℎ) and 

(HDi > 𝑆𝑖𝑧𝑒𝑇ℎ) and (BWi < 𝐵𝑤𝑇ℎ) 

- HD-BW intensive job =: (CPIi < 𝐶𝑝𝑖𝑇ℎ) and (MPIi < 𝑀𝑝𝑖𝑇ℎ) 

and (HDi > 𝑆𝑖𝑧𝑒𝑇ℎ) and (BWi > 𝐵𝑤𝑇ℎ) 

- RAM intensive job =: (CPIi < 𝐶𝑝𝑖𝑇ℎ) and (MPIi > 𝑀𝑝𝑖𝑇ℎ) 

and (HDi < 𝑆𝑖𝑧𝑒𝑇ℎ) and (BWi < 𝐵𝑤𝑇ℎ) 

- RAM-BW intensive job =: (CPIi < 𝐶𝑝𝑖𝑇ℎ) and (MPIi > 

𝑀𝑝𝑖𝑇ℎ) and (HDi < 𝑆𝑖𝑧𝑒𝑇ℎ) and (BWi > 𝐵𝑤𝑇ℎ) 

- RAM-HD intensive job =: (CPIi < 𝐶𝑝𝑖𝑇ℎ) and (MPIi > 

𝑀𝑝𝑖𝑇ℎ) and (HDi > 𝑆𝑖𝑧𝑒𝑇ℎ) and (BWi < 𝐵𝑤𝑇ℎ) 

- RAM-HD-BW Intensive job =: (CPIi < 𝐶𝑝𝑖𝑇ℎ) and (MPIi > 

𝑀𝑝𝑖𝑇ℎ) and (HDi > 𝑆𝑖𝑧𝑒𝑇ℎ) and (BWi > 𝐵𝑤𝑇ℎ) 
 

Step two: Try the following combinations in the process of the 

VM placement, and calculate the resulted consumed energy: 

Place the VMs of CPU Intensive jobs with VMs of RAM-HD-

BW Intensive jobs, CPU-BW Intensive with RAM-HD 

Intensive, CPU-HD Intensive with RAM-BW Intensive, CPU-

HD-BW Intensive with RAM Intensive, CPU-RAM Intensive 

with HD-BW Intensive, CPU-RAM-BW Intensive with HD 

Intensive, CPU-RAM-HD Intensive with BW Intensive, CPU-

RAM-HD-BW Intensive with NONE. 

III. PERFORMANCE ANALYSIS 

This section presents the evaluation of the proposed 

approaches. The CloudSim simulator [14], which is an 

extensible simulation toolkit that enables modeling and 

simulation of cloud computing systems and application 

provisioning environments, is used in the evaluation. The 

CloudSim supports both system and behavior modeling of 

cloud system components. A real workload trace to simulate the 

cloud computing environment is used. The jobs information is 

based on real data provided by Google to provide a very high 

level of realism when used directly in performance evaluation 

experiments. More details about this data are available in [15]. 

The PMs and VMs configurations are as those provided by 

Amazon cloud data centers [16]. The evaluation in this section 

is based on the total consumed energy as a measurement. The 

experiments are done and repeated 10 times for 1600 jobs in 

two scenarios. In the first scenario, the jobs are selected 
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according to their types as they in the real workload trace. In 

the second scenario, the jobs are selected with equal distribution 

(i.e. 100 jobs for each type). The total consumed energy resulted 

in executing the jobs by applying the proposed approaches are 

summarized in Fig. 2 for the first scenario, and in Fig. 3 for the 

second scenario. 

 
Fig. 2: Energy consumption resulted in executing 1600 jobs by applying the 

proposed approaches with normal distributed 16 subsets. 

 
Fig. 3: Energy consumption resulted in executing 1600 jobs by applying 

the proposed approaches with equal distributed 16 subsets. 

Applying the CI-DI approach, is better in enhancing energy 

efficiency because it involves minimum number of PMs in 

executing the set of jobs. Minimizing the number of involved 

PMs is a very important factor in enhancing the energy 

efficiency in cloud data centers, because even the completely 

idle PMs consume about 70% of their peak power. Another key 

and important reason is that the resources of the involved PMs 

are better utilized. 

By applying the 16-10 approach (which is actually divided 

into 10 sub-approaches), the resulted consumed energy is vary 

from combination to another. In CCI-CCI combination, the 

resulted consumed energy is acceptable because it combines the 

VMs of the jobs which utilize CPU intensively with the VMs of 

the jobs which do not utilize CPU intensively. The CPU 

intensive jobs are already RAM intensive jobs, so their VMs are 

combined with the VMs of HDI or VMs of BDI. In RCI-RCI 

combination, the resulted consumed energy is also acceptable 

because it combines the VMs of the jobs which utilize RAM 

intensively with the VMs of the jobs which do not utilize RAM 

intensively. The RAM intensive jobs are already CPU intensive 

jobs, so their VMs are combined with the VMs of HDI or VMs 

of BDI. In HDI-HDI combination, the result is worse than CCI-

CCI and RCI-RCI combinations from the energy consumption 

perspective. It combines the VMs of the jobs which utilize HD 

intensively with the VMs of the jobs which do not utilize HD 

intensively. The VMs of HDI jobs are combined with the VMs 

of CCI, RCI, BDI, or their combinations. However, combining 

VMs of HDI jobs with the VMs of CI jobs is satisfactory, but 

with the VMs of BDI, the system performance is effected 

because one job of them is influence the other execution by 

requesting the same resource. Eventually, this affect the energy 

efficiency. Also, in BDI-BDI combination, the result is also 

worse than CCI-CCI and RCI-RCI combinations from the 

energy consumption perspective. It combines the VMs of the 

jobs which utilize BW intensively with the VMs of the jobs 

which do not utilize HD intensively. The VMs of BDI jobs are 

combined with the VMs of CCI, RCI, HDI, or their 

combinations. However, combining VMs of BDI jobs with the 

VMs of CI jobs is fine, but with the VMs of HDI, the system 

performance is affected because one job of them is influence 

the other execution by requesting the same resource. 

Eventually, this affect the energy efficiency. In CCI-CCI, RCI- 

RCI, HDI-HDI, and BDI-BDI combinations, the number of the 

elements of the subsets are equally distributed between the 

subset and its complement. This is an advantage because every 

job has a corresponding one to combine with. The equality in 

the number of elements in each subset comes from using the 

median in calculating the thresholds. In CCI-RCI combination, 

the resulted consumed energy is more than CCI-CCI, RCI- RCI, 

HDI-HDI, and BDI-BDI combinations. In this combination, 

although the number of elements is small for both CCI and RCI 

jobs, the number of elements in CCI-RCI and Normal jobs are 

large and distributed almost fairly between them. So combining 

CCI-RCI and Normal jobs in this combination gives acceptable 

results since they utilize different types of resources, and every 

VM has can find another VM to be placed with in the same PM. 

In HDI-BDI combination, the resulted consumed energy is 

more than CCI-CCI, RCI- RCI, HDI-HDI, and BDI-BDI 

combinations. In this combination, although the number of 

elements is small for both HCI and DCI jobs, the number of 

elements in CCI-RCI and Normal jobs are large and distributed 

almost between them, but in less percentage as the elements are 

distributed in CCI-RCI. So combining CCI-RCI and Normal 

jobs in this combination gives acceptable results since they 

utilize different types of resources, and every VM has can find 

another VM to be placed with in the same PM. It is clearly seen 

that the energy consumption is increased when considering the 

CCI-HDI, RCI-BDI, CCI-HDI, and RCI-BDI combinations in 

the VM placement process. This is because two main reasons: 

the first reason is: Most of the VMs which enforced to be placed 

together on the same host PM are utilized the same type of 

resources. This decreases the PM utilization and consequently 

badly affects energy efficiency.  The second reason is the jobs 

are not distributed equally between the subsets to combine the 

VMs of their jobs. This results in a large number of VMs which 

do not a VM to place with it together on the same PM. These 

VMs need extra computations to find their best PMs. However, 

the outcome that can be concluded from the experiments results 

of the 16-10 approach is that energy efficiency can be affected 

by the type of the resource which is utilized by the VM allocated 

to a specific job, and by the VM placement strategy which 
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decides the VMs to be combined on the same PM based on the 

required resources. 

By applying the 16-8 approach in the VM placement process, 

it is clearly seen that the energy consumption is increased 

dramatically. Although 16-8 approach investigates all the VM 

configuration parameters before deciding where to place the 

VM and with which VM, but it consumes larger amount of 

energy. This is because not all jobs are exist based on the 

classification (or exist in small percentages). As a result, Many 

VMs exist with no corresponding VMs to be placed together on 

the same PM. In other words, the VMs of the jobs which 

intensively utilize specific type of resources possibly do not 

find the VMs of the jobs which intensively utilize the 

complement resources. The set of VMs with no complements 

to be place with them on the same PMs need extra computations 

to do the process of VM placement. 

In the equal distribution subsets, the CI-DI approach also has 

a good performance compared with the other approaches. It is 

seen from Fig. 3 that the 16-8 approach outperforms the CI-DI 

approach. This is because the 16-8 approach has the best jobs 

distribution (exactly equal) among the subsets. Another 

important reason is that the approach combines the VMs 

allocated to jobs which are exactly utilize complement 

resources of the same PM. As a result, the involved PMs are 

utilized optimally, leading to a better energy efficiency. 

IV. CONCLUSIONS 

Cloud data centers consume large amounts of energy. One of 

the recent challenges in the cloud computing model is to 

enhance the energy efficiency in these data centers. This work 

tackles this issue by proposing and evaluating three energy 

aware job submission approaches. Each approach has its 

innovative job classification model, and its novel VM 

placement strategy which employs the jobs’ subsets resulted 

from its corresponding classification model. The following 

notes can be concluded from the evaluation process: 

1- In general, the CI-DI approach outperforms both 16-10 

and 16-8 approaches due to the following reasons: 

 It always enforces the VMs of the jobs which requests 

different types of resources to be placed together on the 

same PM when possible. This maximizes the PMs 

utilization and, at the same time, minimizes the jobs 

influences on each other during their execution. 

 It gives the VMs of the CI jobs the choice to combine 

with the VMs of HDI and/or with the VMs of the BDI 

jobs. In both cases there is no conflict in the resources 

usages. 

 The subsets resulted from CI-DI approach is distributed 

in a good manner. The differences in the number of jobs 

between CI and DI jobs, and between CI-DI and Normal 

jobs are small compared with the differences in the 

numbers of jobs to be combined based on the 16-10 and 

16-8 approaches. So, in CI-DI approach, VMs usually 

find their proper complements to be placed with on the 

same PM. 

2- Placing the VMs allocated to jobs which utilize the same 

kind of resources negatively effects the energy efficiency. 

3- Jobs that utilize the CPU and RAM resources are highly 

correlated. 

4- The most effective parameter in energy consumption is 

the CPU. 

As a future work, we are working to propose new methods to 

calculate other threshold values during jobs classification 

process, and studying the effects of the new thresholds, which 

will produce different subsets of jobs, on the resulted consumed 

energy. Moreover, the VM management concerns, such as VM 

migration and consolidation, will be applied to the proposed 

approaches to make them more integral to work in the cloud 

computing model. 
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