

Abstract—As many today’s applications are accessible via

mobile devices, mobile applications mostly have to be designed

to cater for a wide range of users. Usability is hence among the

most important quality attributes that mobile developers need

to consider. To evaluate usability, heuristic evaluation is one of

the commonly used methods since it is relatively easy to conduct

an evaluation of the software under development against a

number of design principles. This paper targets at the

development of Android applications on mobile devices and

compiles a checklist of user interface design heuristics.

Specifically, we enhance the compiled list by a number of

additional guidelines that are aimed to refine the list and make

it easier to conduct heuristic evaluation. The enhanced checklist

is first evaluated by Android mobile developers with usability

experience. Then, it is used in an experiment on two Android

mobile applications of different domains to compare its

efficiency to that of the traditional design principles. The result

shows that the enhanced checklist has better problem detection

rate at the significance level of 0.05.

Index Terms—usability, heuristic evaluation, Android,

mobile applications

I. INTRODUCTION

S many today’s applications are accessible by mobile

devices, mobile applications mostly have to be

designed to cater for a wide range of users. Due to the fast

growth rate of mobile applications available for mobile users

to download, mobile developers need to consider not only

functional requirements but also quality attributes of their

applications in order to remain competitive with others.

Usability is one of the top quality attributes that are of

concern by developers of interactive applications like mobile

applications and the design has to be user-centered. ISO

9124-11:1998 [1] defines usability as “the extent to which a

product can be used with effectiveness, efficiency, and

satisfaction in a specified context of use.” Focusing on user

interfaces, J. Nielsen [2] refers to usability in simpler terms

as “how easy user interfaces are to use” and categorizes it

into five quality components: 1) Learnability refers to “How

easy is it for users to accomplish basic tasks the first time

they encounter the design?,” 2) Efficiency refers to “Once

Manuscript received June 25, 2016; revised July 29, 2016.

K. Thitichaimongkhol was with the Department of Computer

Engineering, Faculty of Engineering, Chulalongkorn University, and is

currently with GIS Soft Company Limited, Bangkok 10500, Thailand (e-

mail: kritpapon.t@gissoft.co.th).

T. Senivongse is with the Department of Computer Engineering, Faculty

of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

(corresponding author phone: +66 2 2186996; fax: +66 2 2186955; e-mail:

twittie.s@chula.ac.th).

users have learned the design, how quickly can they perform

tasks?,” 3) Memorability refers to “When users return to the

design after a period of not using it, how easily can they

reestablish proficiency?,” 4) Errors refers to “How many

errors do users make, how severe are these errors, and how

easily can they recover from the errors?,” and 5) Satisfaction

refers to “How pleasant is it to use the design?.” Usability of

applications on mobile devices has been a challenging issue

due to specific characteristics of mobile devices including

limitation on screen size, resolution, and resources, touch

and gesture-based interaction, touchless interaction such as

speech, and varying context of use.

To evaluate usability of real or prototype applications,

heuristic evaluation is a widely used inspection method in

which “reviewers, preferably experts, compare a software

product to a list of design principles (or heuristics) and

identify where the product does not follow those principles”

[3]. This method has several advantages as it is relatively

easy and cheap to conduct, and in many cases, developers or

technical people with basic usability knowledge, not

necessarily usability experts, can be reviewers or evaluators.

By nature, however, the inspection cannot be performed

automatically, and the design principles are often broad and

subject to personal interpretation of the evaluators. Hence, a

number of design problems that are detected may be large or

small depending on the evaluators’ interpretation,

experience, and interaction with the software. Sometimes

more minor problems are identified than major problems [4]

and sometimes domain specific problems are missed [5].

This paper aims to enhance usability heuristics to

facilitate evaluators in performing heuristic evaluation of

Android applications on mobile devices. We first study

existing UI design principles, including general UI design

principles, mobile UI design principles, and design

principles for Android and other mobile platform. We

compile a list of UI design checklist and introduce additional

guidelines that are aimed to refine the list to make it easier to

conduct heuristic evaluation. That is, non-expert evaluators

having basic usability knowledge should be able to use the

enhanced checklist with less personal interpretation of the

heuristics. We also present an experiment on two Android

mobile applications of different domains to compare the

efficiency of the enhanced Android UI design checklist and

that of the traditional design principles in terms of problem

detection rate.

Section II of the paper presents theoretical background

and related work. Section III describes the methodology to

construct the enhanced Android UI design checklist and how

to use it in heuristic evaluation. Section IV presents the

Enhancing Usability Heuristics for Android

Applications on Mobile Devices

Kritpapon Thitichaimongkhol and Twittie Senivongse

A

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

enhanced checklist itself. An experiment to test the

efficiency of the enhanced checklist is discussed in Section

V. Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Background on UI Design Principles for Usability

On general UI design principles, one of the most well-

known list is the one suggested by J. Nielsen [6]. There are

ten rules: 1) Visibility of system status, 2) Match between

system and the real world, 3) User control and freedom, 4)

Consistency and standards, 5) Error prevention, 6)

Recognition rather than recall, 7) Flexibility and efficiency

of use, 8) Aesthetic and minimalist design, 9) Help users

recognize, diagnose, and recover from errors, and 10) Help

and documentation. Another well-known set of rules are the

eight rules by B. Schneiderman et al. [7] which include 1)

Strive for consistency, 2) Cater to universal usability, 3)

Offer informative feedback, 4) Design dialogs to yield

closure, 5) Prevent errors, 6) Permit easy reversal of actions,

7) Support internal locus of control, and 8) Reduce short-

term memory load. On the opposite side of the design

principles, there are anti-patterns that UI designer should

avoid. J. Nielsen [8] gives a list of common mistakes which

are 1) Non-standard GUI controls, 2) Inconsistency, 3) No

perceived affordance, 4) No feedback, 5) Bad error

messages, 6) Ask for the same info twice, 7) No default

values, 8) Dumping users into the app, 9) Not indicating

how info will be used, and 10) System-centric features.

On mobile UI design principles in particular, Google lists

Android design principles [9]. They are 1) Delight me in

surprising ways, 2) Real objects are more fun than buttons

and menus, 3) Let me make it mine, 4) Get to know me, 5)

Keep it brief, 6) Pictures are faster than words, 7) Decide for

me but let me have the final say, 8) Only show what I need

when I need it, 9) I should always know where I am, 10)

Never lose my stuff, 11) If it looks the same, it should act

the same, 12) Only interrupt me if it's important, 13) Give

me tricks that work everywhere, 14) It's not my fault, 15)

Sprinkle encouragement, 16) Do the heavy lifting for me,

and 17) Make important things fast. Similarly, Apple gives

design principles for iOS which include 1) Aesthetic

integrity, 2) Consistency, 3) Direct manipulation, 4)

Feedback, 5) Metaphors, and 6) User control.

These design heuristics are broad rules and the relatively

short lists make them useful for heuristic evaluation in

general design contexts. However, as they are not specific

usability guidelines, each rule leaves room for individual

evaluator’s interpretation of its definition, and less

experienced evaluators might not be able to find as many

design problems as the more experienced ones.

B. Background on Heuristic Evaluation

As mentioned earlier, heuristic evaluation is a convenient

method to evaluate UI usability against design principles or

heuristics. Compared to other methods, it is relatively

inexpensive, evaluators do not need formal usability

training, and it can be used in every phase of software

development life cycle. Evaluators will look at the user

interface of a software product and identify the design

aspects that violate design principles and how serious the

violations are. It is possible that the evaluators are assisted

by an observer, e.g. a development team member, during the

evaluation in the case of unstable prototype or the evaluators

having limited domain expertise. As individual evaluators

tend to find different UI problems, the evaluation is

normally conducted by a team of evaluators and aggregate

their evaluation results. A team of 3-5 evaluators is

recommended [2] as they can find 75% of the design

problems. Adding more evaluators is possible depending on

cost-benefit analysis.

In each evaluation session, one evaluator examines the UI.

The session usually lasts 1-2 hours. First, the evaluator will

use the software to get the feel of the whole application and

the flow of interaction. After that, the evaluator will examine

specific parts of the application to identify design problems.

The evaluation results are recorded in an evaluation form

specifying the problems, their location, the principles that

they violate, and how severe they are. J. Nielsen [2] suggests

the following problem severity rating scale: 0 = Not a

usability problem, 1 = Cosmetic problem only, 2 = Minor

usability problem, 3 = Major usability problem, and 4 =

Usability catastrophe. To ensure unbiased evaluation,

evaluators are not allowed to communicate during evaluation

sessions.

C. Related Work

Several researches address usability heuristics of mobile

application design. An example is the work by Inostroza et

al. [5]. They focus on touchscreen-based mobile devices and

present 10 design heuristics that are comparable to those by

J. Nielsen [6], plus an additional heuristic that concerns

physical interaction and ergonomics. Each heuristic is

described using a specification template and is particularized

for touchscreens. They also conduct a statistical test to

evaluate the efficiency of the heuristics. Nayebi et al. [11]

study a number of usability heuristics and application design

guidelines, including iOS human interface guidelines, and

propose 23 usability evaluation criteria for iOS applications.

The criteria are used to evaluate a number of applications

available on Apple’s App Store and their experiment shows

that the evaluation results statistically correlate with user

rating on App Store. Gómez et al. [12] study heuristic

evaluation checklists in the literature and adapt them to

mobile UI. The result is a comprehensive checklist that

comprises 10 design heuristics comparable to those by J.

Nielsen [6], plus 3 more heuristics that concern Skills,

Pleasurable and respectful interaction with the user, and

Privacy. They further divide each heuristic into a number of

subheuristics that are listed as evaluation questions. There

are 158 general questions and 72 mobile-specific, mostly

taken from [13][14][15]. Their statistical experiments show

that the checklist is useful even for untrained developers

who perform heuristic evaluation.

We follow the methodology of the related work to

compile usability heuristics but address Android

applications. Like [12], usability heuristics are presented as

an evaluation checklist of yes/no questions to facilitate non-

expert evaluators. Unlike the related work, our checklist is

reviewed by Android mobile developers with usability

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

experience.

III. METHODOLOGY

The methodology to construct the enhanced Android UI

design checklist is as follows.

A. Review Existing Usability Heuristics

First, we study existing usability heuristics described in

Section II. J. Nielsen’s and B. Schneiderman’s general

design principles, Android and iOS design principles, and J.

Nielsen’s UI anti-patterns are compared to identify

similarities and differences. Design heuristics and specific

guidelines proposed by related work are considered.

B. Construct Checklist for Android Usability Evaluation

Based on the literature review, we construct a checklist of

yes/no questions that can be used to judge compliance with

usability design heuristics in the context of Android mobile

applications. The classification of heuristics and

subheuristics in [12] is adopted. In addition, based on our

experience in Android mobile development, we introduce a

number of evaluation questions as additional guidelines. At

this stage, there are 167 evaluation questions in total, 127

taken from the literature and 40 newly introduced.

C. Validate Checklist

We have the checklist validated by 5 Android mobile

developers, 4 of them having 3-year experience in design for

usability and 1 of them having 1-year experience. They

evaluate each question in the checklist and record the result

in a validation form such as one in Fig. 1. The results Totally

agree, Quite agree, and Disagree are given the scores of 3, 2,

and 1 respectively. We calculate the average of the scores

given by all developers to each question. All questions with

the average score greater than 2 are kept. Those with the

average score less than 2 are considered whether they should

be removed from the checklist or merged with other

questions. Some comments from the developers yield

additional questions. At this stage, there are 146 evaluation

questions left, 94 from the literature and 52 newly

introduced.

D. Define Use of Checklist

As described in Section II.B, the checklist can be used in

different phases of application development by UI designers

or developers, from prototype to finished product evaluation.

In particular, early evaluation in the development could get

the UI design problems detected and fixed early. Evaluators

first use the application under evaluation to get the feel of it

before examining specific parts of the application closely.

Each of them record the evaluation result in an evaluation

form as in Fig. 2.

Fig. 1. Checklist validation form.

Fig. 2. Heuristic evaluation form.

All evaluation results are aggregated, and design problems

and their severity are reviewed. The developers can then fix

the problems accordingly.

IV. USABILITY CHECKLIST FOR ANDROID MOBILE

APPLICATIONS

The enhanced usability checklist comprises 12 heuristics

and 146 evaluation questions as subheuristics. Among the

questions, 94 of them are taken from the literature and cited

by their source [13]. Those without the cited source are 52

questions that we introduce. Due to space limitation, we

leave out most of the questions taken from the literature in

order to fully cover all 52 newly introduced questions.

1. Visibility of system status

System status feedback:

(1) Does every display begin with a title or a header that

describes screen contents? [13]

…

(4) If the user is scrolling to the boundary of an element

(e.g., listview), is there some visual cue?

(5) If the system contains splash screens, does it provide

what the system is doing while the splash screens are

displayed?

(6) If the system receives important information from

background actions (e.g., sms, cloud messaging), does the

system respond (e.g., vibrate, sound) by alerting users?

(7) Does the system provide informative progress

disclosure when performing an action that the user needs to

wait (percentage of completion or time to wait to complete

the task)?

Location information:

(8) Is the logo meaningful, identifiable, and sufficiently

visible? [13]

…

(13) Are operating system’s status bars mostly (or always)

visible, except for multimedia content?

(14) Are operating system’s buttons (e.g., back button,

home button) mostly (or always) visible, except for

multimedia content?

(15) Does the system utilize screen space appropriately

when displaying information?

a. Not anchor the article title when the content is long and

needs scrolling.

b. Not use too much or too little padding or margin

between elements.

c. Provide an expand-collapse element for sub-content (to

save scrolling time).

(16) Are unrelated contents (e.g., ads) avoided?

Response time:

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

(17) Is response time appropriate for the users’ cognitive

processing? [13]

…

 (19) If there are observable delays (greater than five

seconds) in the system’s response time, is the user kept

informed of the system progress?

Selection/input of data:

(20) Is there visual feedback in menus or dialog boxes

about which choices are selectable? [13]

…

 (22) If expandable menus are used, do menu labels clearly

indicate that they expand to a set of options?

2. Match between system and the real world

Metaphors/mental models:

(23) Are metaphors (e.g., icons that match actions) used?

[13]

…

Menus:

(27) Are menu choices ordered in the most logical way,

given the user, the item names, and the task variables? [13]

…

Simplicity:

(29) Do related and interdependent fields appear on the

same screen? [13]

…

 (32) Is terminology consistent with the user’s task

domain?

a. Use the same language as what the users speak.

b. Use nomenclature on specific domain.

c. Employ user jargon and avoid system jargon.

Output of numeric information:

(33) Does the system automatically align format for

numeric values? (e.g., trailing spaces, enter leading, enter

commas, enter currency symbol) [13]

…

3. User control and freedom

(35) Can the user interact with the system continuously

(without system hang or freeze)?

(36) Can the user move forward and backward between

fields or dialog box options? [13]

…

(43) Is virtual keyboard displayed only when necessary?

(44) Can user hide virtual keyboard when not used?

(45) Do screens move forward and backward step by step

sequentially?

(46) Can operating system’s buttons (e.g., back button,

home button) be used without blocking by the system?

(47) Does the system use transitions to show relationships

among screens?

(48) If a dialog is showing, is the location of positive

button (e.g., OK button, next button) on the right and

negative button (e.g., cancel button, back button) on the left?

(Placing positive buttons on the right gives a sense of

continuing and progressing the task whereas placing

negative buttons on the left gives a sense of reversing the

task. This is also easier to comprehend at a glance.)

(49) If a dialog is showing, can the user be dismissed by

touching any area outside the dialog?

(50) Does the system avoid design element that looks like

it can interact (e.g., GUI control) when actually it cannot

interact or provide feedback to users?

4. Consistency and standard

Design consistency:

(51) Is every screen in the system displayed consistently

with all devices of the same device type (smartphone,

tablet)?

(52) Is there consistent location of menu across the

system?

(53) If the system has multipage data entry screens, do all

pages have the same title? [13]

…

(56) Is there a consistent design scheme and stylistic

treatment across the system? (Use of flat design or

skeuomorphic design.)

(57) Is there consistent typography across the system?

(58) Is there consistent design on input element (e.g.,

textbox, dropdown)?

(59) Is there consistent design on physical size (font size,

element size) across the screen size, and screen density?

(60) Does the same input element and the same state have

the same interaction?

(61) Is the input element style modified too much? Can

the user recognize how to interact with the element?

…

 (67) Does the system font appearance (size, typeface) can

be changed to be consistent with operating system font

appearance?

Naming convention consistency:

(68) Is the structure of a data entry value consistent from

screen to screen? [13]

…

5. Error prevention

(75) Are menu choices logical, distinctive, and mutually

exclusive? [13]

…

 (78) Do objects on the screen have the size that is easy to

touch (about 1 x 1 centimeter or 48 x 48 density-

independent pixels)?

(79) Are touchable objects (e.g., buttons) in the screen

placed too close?

(80) Are data input types appropriate for information

types (e.g., use number input type for numeric information)?

(81) Are there visual differences between interaction

objects (e.g., buttons) and information objects (e.g, labels,

images)

6. Recognition rather than recall

Memory load reduction:

(82) Are all data a user needs on display at each step in a

transaction sequence? [13]

…

 (85) Are required data entry fields clearly marked?

(86) Does the system provide an example input for

format-specific or complex information?

General visual cues:

(87) For question and answer interfaces, are visual cues

and white space used to distinguish questions, prompts,

instructions, and user input? [13]

…

 (96) Does the system use image as visual cues to provide

volume scale information? (e.g., uses speakers without

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

waves refer to low sound or mute)

Menus:

(97) Is the first word of each menu choice the most

important? [13]

…

7. Flexibility and efficiency of use

(100) Have splash screens that do nothing (no

background task, only show the image or video) been

avoided?

(101) Are the most frequently used menus in the most

accessible positions? [13]

…

(103) Does the system support both orientations

(horizontal and vertical)?

(104) Does the system keep location of the content on

the screen when users switch orientation?

…

 (107) Does the system use device information such as

date and time, geolocation as input data?

(108) Does the system provide speech-to-text to support

searching?

(109) In a data entry form, can the user move focus from

one textbox to another textbox by pressing next on virtual

keyboard?

(110) Does the system enable users to interact with

elements by swiping, gesturing, or pinching instead of only

touching the elements (e.g., users can pinch the image

element to zoom-in and zoom-out, users can swipe left to go

to the previous page)

(111) If the list is too long, does the system provide

tools for filtering items or scrolling faster?

8. Aesthetic and minimalist design

(112) Is only information essential to decision making

displayed on the screen? [13]

…

 (117) Does the system not use too many typefaces?

(Typefaces can be used to emphasize the content but many

typefaces may make users confused.)

(118) Do information elements (e.g., images, labels)

stand out from the background?

…

(121) Are unnecessary moving animations of

information (e.g., zoom in, zoom out) avoided?

…

9. Help users recognize, diagnose and recover from

errors

(127) Are prompts brief and unambiguous? [13]

…

(134) For data entry screens, are there signals on error

elements in a form, and marks on the elements that need to

be changed?

10. Help and documentation

(135) Do the instructions follow the sequence of user

actions? [13]

…

(139) When users start using the system for the first

time, does the system provide instructions (or tips)?

(140) If instructions for first time user are provided, can

they be characterized as follows?

a. Being simple and clear

b. Focusing on a few feature (e.g., frequently used feature)

c. Being necessary for users to get started

 11. Pleasurable and respectful interaction

(141) For data entry screens with many fields or

incomplete information to fill in, can users save a partially

filled screen? [13]

…

 (143) Do the typefaces used in the system suitable for

reading? (Not contain homoglyphs, e.g., 1, I, and L; Zero

and O)

12. Privacy

(144) Can the system be protected or confidential areas

be accessed with certain passwords? [13]

…

 (146) If the system collected user input information, can

user clear information that has been input (search history)?

V. EXPERIMENT

An experiment to test the efficiency of the enhanced

usability checklist was conducted on two Android

applications on Google Play Store. Both applications can be

downloaded free of charge. App 1 is a Thai TV news

application and App 2 is a Thai business search application.

The profile of 9 evaluators, grouped into 3 groups, is shown

in Table I. We gave basic training on usability and heuristic

evaluation to all 3 groups. Specifically, Group 2 were

assigned to evaluate against a traditional benchmark which,

like related work, was the design heuristics by J. Nielsen [6],

whereas Group 3 were trained to evaluate against our

enhanced usability checklist. We offered no specific training

to Group 1 as they were to evaluate using their own UI

design experience. We gave the evaluators 5 days during

which they filled in the evaluation form and recorded the

time spent in the evaluation. After all evaluation forms were

turned in, we aggregated the results, removed false-positive

problems, and gathered all non-duplicate problems reported

by all groups. For App 1, Fig. 3 depicts the number of

problems detected by each evaluator in each group. It can be

seen that, using our checklist, more problems were detected

by Group 3 and the problems they found were also common,

meaning that the enhanced refined checklist can facilitate the

evaluators (non-usability experts) in spotting the problems.

Then, we counted the number of problems reported by

each evaluator and the total time spent, and computed the

efficiency in terms of problem detection rate, i.e. the number

of problems detected per minute. The results for App 1 are

in Table II.
TABLE I

PROFILE OF EVALUATORS

Group/Evaluator Position
Experience in UI

Design (years)

Group 1 Evaluator 1 Programmer Analyst 4

 Evaluator 2 System Analyst 5

 Evaluator 3 Programmer Analyst 4

Group 2 Evaluator 4 Programmer 3

 Evaluator 5 Programmer 3

 Evaluator 6 Programmer 3

Group 3 Evaluator 7 Programmer 3

 Evaluator 8 Programmer 3

 Evaluator 9 Programmer 4

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

Fig. 3. Number of problems detected by each evaluator for App 1.

TABLE II

SUMMARY OF EVALUATION RESULTS FOR APP 1

Group/Evaluator

Proble

ms

Repor

ted

False

Positi

ve

Proble

ms

Detec

ted

Tim

e

(min

)

Proble

ms

Detec

ted

Per

Min.

Group 1 Evaluator 1 12 2 10 20 0.50

 Evaluator 2 10 1 9 20 0.45

 Evaluator 3 8 2 6 20 0.30

Group 2 Evaluator 4 4 1 3 20 0.15

 Evaluator 5 17 3 14 35 0.40

 Evaluator 6 16 2 14 37 0.38

Group 3 Evaluator 7 20 2 18 37 0.49

 Evaluator 8 35 1 34 50 0.68

 Evaluator 9 55 2 53 63 0.84

We were particularly interested in the problem detection

rate of the enhanced checklist compared to that of the

traditional heuristics. Therefore, we conducted an

independent samples t-test to test the difference between

means of their problem detection rate. The hypotheses are

H0: μ2-μ3 ≥ 0 (mean problems detected per min. of

Group 2 is not less than that of Group 3)

Ha: μ2-μ3 < 0 (mean problems detected per min. of

Group 2 is less than that of Group 3)

We obtained the t statistic = -2.7885, degree of freedom =

4, and P-value P(t < -2.7885) = 0.0247. Given the

significance level α = 0.05, since the P-value is less than the

significance level, we reject H0 and accept Ha. The mean

problems detected per minute of Group 2 for App 1 is less

than that of Group 3 at the significance level of 0.05.

For App 2, we aggregated evaluation results and

conducted the test for difference between means in the same

manner. Again, the mean problems detected per minute of

Group 2 for App 2 is also less than that of Group 3 at the

significance level of 0.05. We conclude that the enhanced

checklist is efficient for heuristic evaluations in different

domains of applications.

VI. CONCLUSION

In this paper, we propose a usability checklist for heuristic

evaluation of Android mobile applications. The checklist

enhances existing heuristics and UI design guidelines by

combining existing evaluation questions and the newly

introduced ones in order to refine evaluation criteria. The

resulting checklist comprises 12 heuristics and 146

evaluation questions as subheuristics, and is statistically

more efficient than traditional heuristics in terms of design

problems detection rate.

The future work includes particularizing the checklist for

domain-specific applications, such as map and navigation

and entertainment. We also see that some of the evaluation

questions might be able to get evaluated automatically, and

that would greatly help the evaluation process, considering

the long checklist.

REFERENCES

[1] ISO, ISO 9241-11:1998 Ergonomic Requirements for Office Work

with Visual Display Terminals (VDTs)-Part 11: Guidance on

Usability, 1998.

[2] J. Nielsen, Usability Engineering. San Diego: Academic Press, 1994.

[3] Usability Professionals Association (2012), Usability Body of

Knowledge [Online]. Available: http://www.usabilitybok.org/

[4] C.-M. Karat, R. Campbell, and T. Fiegel, “Comparison of empirical

testing and walkthrough methods in user interface evaluation,” in

Proc. SIGCHI Conf. Human Factors in Computing Systems (CHI

’92), New York, 1992, pp. 397-404.

[5] R. Inostroza, C. Rusu, S. Roncagliolo, C. Jiménez, and V. Rusu,

“Usability heuristics for touchscreen-based mobile devices,” in Proc.

Ninth Int. Conf. Information Technology – New Generations, 2012,

pp. 662-667.

[6] J. Nielsen (1995, January 1). 10 Usability Heuristics for User

Interface Design [Online]. Available:

https://www.nngroup.com/articles/ten-usability-heuristics/.

[7] B. Shneiderman, C. Plaisant, M. Cohen, and S. Jacob, Designing the

User Interface: Strategies for Effective Human-Computer

Interaction, 5th edition. Prentice Hall, 2009.

[8] J. Nielsen (2008, February 19). Top 10 Application-Design Mistakes

[Online]. Available: https://www.nngroup.com/articles/top-10-

application-design-mistakes/

[9] Google. Android Design Principles [Online]. Available:

https://developer.android.com/design/get-started/principles.html.

[10] Apple. iOS Human Interface Guidelines: Design Principles [Online].

Available:

https://developer.apple.com/library/ios/documentation/UserExperienc

e/Conceptual/MobileHIG/Principles.html

[11] F. Nayebi, J.-M. Desharnais, and A. Abran, “An expert-based

framework for evaluating iOS application usability,” in Proc. 2013

Joint Conf. of 23rd Int. Workshop Software Measurement (IWSM)

and 8th Int. Conf. Software Process and Product Measurement

(Mensura), 2013, pp. 147-155.

[12] R. Y. Gómez, D. C. Caballero, and J-L. Sevillano, “Heuristic

evaluation on mobile interfaces: A new checklist,” The Scientific

World Journal, vol. 2014, 19 pp., 2014.

[13] D. Pierotti, “Heuristic evaluation—a system checklist,” Tech. Rep.,

Xerox Corporation, Society for Technical Communication, 2005.

[14] R. Budiu and J. Nielsen, “Usability of mobile websites: 85 design

guidelines for improving access to web-based content and services

through mobile devices, Nielsen Norman Group, 2008.

[15] R. Budiu and J. Nielsen, Usability of iPad Apps and Websites, 2nd

edition, Nielsen Norman Group, 2011.

 Group 1

 Group 2 Group 3

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

