Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

Analysis of Fill-in-blank Problem Solutions and
Extensions of Blank Element Selection Algorithm
for Java Programming Learning Assistant System

Nobuo Funabiki, Tana, Khin Khin Zaw, Nobuya Ishihara, and Wen-Chung Kao

Abstract—A Web-based Java Programming Learning Assis- characters defined in the code by the author to represent a
tant System (JPLAShas been developed in our group to advance variable, a class, or a method.céntrol symbointends other

Java programming educations. JPLAS providesfill-in-blank grammar elements such as grammar elements such. 4s
problemsfor Java novice students to study grammar and basic «.» “«.n . « ”
(dot), “:” (colon), “;” (semicolon) ,”(,)" (bracket),

programming skills by filling in the blank elements in a high- .
quality code. In this paper, we first analyze solution results of ~ {» } (curly bracket).
students in the Java programming course and the correlation To help a teacher to prepare fill-in-blank problems in

between the number of blanks in a problem and the correct JPLAS, we have proposed th@ank element selection al-
answer rate of the students. Then, we extend thblank element gorithm to generate a fill-in-blank problem from a given

selection algorithmto increase the number of blanks and control d h that blank has th ticall t and
the problem difficulty by changing it. This algorithm has been code suc at any biank has the grammatically correct an

proposed to generate a feasible fill-in-blank problem such that Unique answer [2]. First, in this algorithm, we generate a
any blank has the grammatically correct and unique answer. To compatibility graphby selecting any candidate element for

verify the effectiveness, we apply the extended algorithm t68 5 plank in the code as wertex, and connecting any pair
Java cod_es for the fundame_ntal data structure or algorithms, of vertices by anedgeif they can be blanked together.
and confirm that the extensions can increase the number of
blanks and control the problem difficulty. For this purpose, we define _the conditions that a pair of

elements cannot be blanked simultaneously. Then, we extract
a maximal clique[6] of the compatibility graph, which be-
comes a maximal set of proper blank elements. Empirically,
we have observed that a fill-in-blank problem will become
more difficult when a larger number of elements are blanked.
I. INTRODUCTION Therefore, by blanking a subset of selected elements of the
nqx_lgorithm, we can generate a variety of fill-in-blank problems
é/ﬁi}h different difficulty levels.

Index Terms—JPLAS, Java programming education, fill-in-
blank problem, blank element selection algorithm, solution
analysis.

AVA, as a reliable and portable object-oriented progra

ming language, has been extensively used in a vari h firsitl | lut its of
of industries, including mission critical systems at large " this paper, firstly, we analyze solution results of students

enterprises and small-sized embedded systems for real tifidle Java programming course in our department. Also,
controls. The cultivation of Java programming engineers h4€ observe the correlation between the number of blanks
been highly demanded amongst industries. Hence, a numile@ Problem and the correct answer rate of the students.
of universities and professional schools have designed Jazfondly. we extend the blank element selection algorithm
programming courses to deal with these demands. to increase the nqmber of blanks and control the _problem
To advance Java programming educations, we have &*{-"C“,'W by changing the number of bIanks: To verify the

veloped a Web-basethva Programming Learning AssistantShectiveness, we apply our extended aIgonthnﬁthava
System (JPLAS)L]-[5]. As a function, JPLAS provides the codgs for the fundamentfal data strgcture or algorithms, and
fill-in-blank problemto support self-studies of students wh onfirm that our extensions can increase the number of
have just started learning Java programming. The goal of t @nks and control the problem difficulty.

problem is to encourage students learning the grammar an his Paper IS orgam.ze.d as follows: Sec'tlon Il and Sec-
basic programming skills througtode reading tion Il introduce the fill-in-blank problem in JPLAS and

In a fill-in-blank problem, a Java code with several blan views the blank element selection algorithm, respectively.

elements is shown to each student, where he/she needs t ﬂgtlon IV analyzes solution results of fill-in-blank problems

in the blanks. Thisproblem codeshould be of high-quality 3! mitted by students. In Sectio_n V, three extensions of
worth for code reading. Arelementis defined as the Ieastthe plank element selec.tlon algorlt.hm are presented. Lastly,
unit of a code, such as a reserved word, an identifier, a§&ctlon VI concludes this paper with futures.

a control symbol. To be more precisely, raserved word

is a fixed sequence of characters that has been defined in Il. FILL-IN-BLANK PROBLEM IN JPLAS

the grammar to represent a specified function, and must bdn this section, we review the fill-in-blank problem in
mastered first by the students. Adentifieris a sequence of JPLAS.

Funabiki, Tana, Zaw, and Ishihara are with the Department of Electri-
cal and Communication Engineering, Okayama University, 3-1-1 Tsusth. Software Platform for JPLAS

manaka, Okayama, 700-8530, Japan e-mail: funabiki@okayama-u.ac.jp L .
Kao is with the Department of Electrical Engineering, National Taiwan Based upon a Web appllcatlon system, In the JPLAS

Normal University, Taipei, 106, Taiwan, e-mail: jungkao68@gmail.com. server, we adoptinux for the operating systemJomcat

ISBN: 978-988-14047-1-8 WCECS 2016
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

TABLE |

VERTEX INFORMATION IN CONSTRAINT GRAPH 1) Group Selection Categoryin the group Se'leCtion cat-
tem content egory, all the eleme_nts r_elated to each other in the code are
symbol | symbolof element grouped together. First, in each group, one vertex is randomly
“”Ie row '”d‘?XdOf e'?mle”t t selected. Then, edges are generated between this vertex and
column columninaex or elemen . - .
count | numberof element appearances Fhe other vertices to conflrm that at I.e.ast this ;elected glemt_ant
order | appearingorder of element in the code is not selected for blank. Five conditions are included in this
group statemengroup index partitioned by and } category.
depth numberof { from top

(1) Identifier appearing two or more times in the code
The multiple elements representing the same identifier of
a variable, a class, and a method by using the same name, are

for the Web application servedSP/Servlefor application grouped together. If all such elements are blanked, a student
programs, andySQLfor the database. For the fill-in-blankcannot answer the original identifier
pr0b|em' we adopt open source softwafeex [7] and Jay (2) Pairing reserved words which are Composed of three or
[8]. JFlex is a lexical analyzer generator for a Java cod&)ore elements
which is also coded by Java. It transforms a code into aThe three or more elements representing the reserved
sequence of lexical units that represent the least meaningh@rds in pairs are grouped together. If all of them are
elements to compose the code. It can classify each elemeri@nked, the unique answers may become too difficult as
the code into either a reserved word, an identifier, a symb#te following two cases:
or an immediate data. For example, a staterménialue « switch-case-default
= 123 + 456; is divided intoint, value , =, 123, +, « try-catch-finally
456, and ;. Unfortunately, JFlexcannot identify an identifier (3) Data type for variables in equation
among a class, a method, or a variable. Thag,is applied The elements representing the data types for variables in
as well. Sincgay is a syntactic parsing program based onne equation are grouped together. For examplsum =
the LALR method, it can identify an identifier. a + b, the data types of the three variablesym, a, and

b, must be the same.

(4) Data type for method and its returning variable
B. Definitions of Terms for Fill-in-blank Problem The elements representing the data type of a method and

The definitions of terms for the fill-in-blank problem ardtS réturning variable are grouped together.

listed as follows. Aproblem coderepresents a Java codd®) Data type for arguments in method _
involving some blanks. Ablank indicates an element to be 1N€ €lements representing the data type of an argument in

filed in by a student. Arassignmentonsists of a problem a method and its substituting variable are grouped together.

code with some blanks and their correct answers, a title, ancd® l|3a|r Selection Ca_lteg(_)rytr;]the pzlr selection category J
a comment on the assignment. Generally, several assignméfifs /éments appearing in the code in pairs are groupe

will be given to students in each course, where JPLAS ¢ qgether. For each p.air, an gdge is simply generated between
support multiple courses at the same time. All registeré e two corresponding vertices to assure that at least one

teachers in JPLAS can generate and register new proble1 Etlant IS {wt select'ed for l:'lank. i tat i
and assignments using the shared database. ements appearing continuously in a statemen
The two elements appearing continuously in the same

statement are paired in the code. If both of them are blanked,

I1l. REVIEW OF BLANK ELEMENT SELECTION their unique correct answers may not be guaranteed and the
ALGORITHM fill-in-blank problem may become too difficult for novice
students. The two elements connected with a dat”() are

In this section, we review thélank element selection ;
. . .) also paired.
algorithm [2] using theconstraint graphthat is generated (2) Variables in equation

to describe the constraints in the blank element selection. The elements representing any pair of the variables in

an equation are paired. If both are blanked, it will become
impossible to access the unique answers. For example, for
sum = a + b, sum = b + ais also feasible.

In the constraint graph, each vertex signifies a candidg® Pairing reserved words
element for being blank. The candidate elements or verticesThe two elements representing the paring reserved words
are extracted from the Java code through the lexical analyaige paired. If both are blanked, the unique correct answers
using JFlex and jay. Each vertex contains the associatethay not be guaranteed. The following five paring reserved
information in Table | that is necessary for the followingvords are considered:
edge generation. . if-else
« do-while
« class-extends
« interface-extends

An edge is generated between any pair of two vertices ore interface-implements
elements that should not be blanked at the same time. Th&¥ Pairing control symbols
are three categories to represent the constraints in selectinghe two elements representing a pair of control symbols,
blank elements with unique answers: namely “(,)” (bracket) and“{, } 7 (curly bracket), are

A. Vertex Generation for Constraint graph

B. Edge Generation for Constraint graph

ISBN: 978-988-14047-1-8 WCECS 2016
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

TABLE Il

paired. The novice students should carefully check them in ASSIGNED PROBLEMS AND SOLUTION RESULTS
their codes to decrease the amount of mistakes. D | key grammar| # of Tof T e Fof | correct
3) Prohibition Category:In the prohibition category, an in code blanks | students| trials rate (%)
element is prohibited from the blank selection because it does % arraygg g gg ?1'4112 gg;g
: : : : g array . .
not satisfy thel uniqueness with the high probability. Therg 3 | method(l) 1 24 567 86.32
are three conditions for this category. However, an elementin 4 | method(2) 6 28 2.68 88.27
a fixed sequence of elements indicating a specific meaning in 5 repeat(1) 5 25 19 91.67
a Java code, such amiblic static void main and 6 variable 3 22 545 93.85
) o .) 7 repeat(2) 5 26 6.73 93.94
public void paint(Graphics Q@) , Is excluded from 8 | method(3) 6 32 35 94.08
this category, because they should be mastered by students. 9 | datatype (1) 5 19 242 95.79
e ; ; 10 exception 3 19 4.63 96.49
(1) Identifier appearing only once in code
. . e .| 11 class 7 24 7.61 98.08
The selected element representing the identifier in this| 15 | method(4) 6 31 6.03 98.39
category appears only once in the code. If it is blanked, a 13 | datatype (2) 2 26 2 98.76
oA o 14 branch 7 22 7.18 99.68
student cannot answer the original identifier. 15 | method(d) e P Ve 100
(2) Access modifier _ 3 _ 16 | datatype (3) | 4 24 6.5 100
The element representing an access modifier for an idenf total/ave. 92 25.19 5.00 93.93
tifier is selected for this category. If it is blanked, either
public, protected, private can often be grammat- TABLE Il
ically correct. TWO STUDENT GROUPS BY PROBLEM SOLUTIONS
(3) Constant group A B
The element representing a constant is selected for this #;Of IStUéiiTtSk 17 16
e s # of solved blanks 68-92 | 14- 66
category. If it is blanked, a student cannot answer the original /e course grade —451 16897
constant. ave. # of submission trialy 6.25 3.87

C. Compatibility Graph Generation

By taking the complement of the constraint graph, th?v ANALYSIS OF FILL-IN-BLANK PROBLEM SOLUTIONS
compatibility graphis generated to symbolize the pairs of

elements that can be blanked simultaneously. In this section, we analyze solution results of fill-in-
blank problems offered by students in our Java programming
D. Maximal Clique Extraction of Compatibility Graph course.

Finally, a maximal clique of the compatibility graph is
extracted by a simple greedy algorithm to find the maximd. Fill-in-blank Problem Solution Results
number of blank elements with unique answers from the we collected Java codes from textbooks and Web sites
given Java code. A clique of a graph represents its subgrgpi[13], and generated6 problems with the total ob2
where any pair of two vertices is connected by an edge. TBRinks by applying the blank element selection algorithm.

procedure for our algorithm is described as follows: Afterwards, we asked students to solve them using JPLAS.
1) Calculate the degree (= number of incident edges) evergble Il shows the assigned problems and solution results
vertex in the compatibility graph. by students. In general, as the number of blanks increases,

2) Select one vertex among the vertices whose degreettie correct answer rate decreases, where the correlation
the maximum. If two or more vertices have the samepefficient isr = —0.57.
maximum degree, select one randomly.

3) If the selected vertex is@ntrol symbobnd the number g Final Grades and Two Student Groups

of selected control symbols exceetlg3 of the total -)
y 53 After the course was finished, we evaluate the final grade

number of selected vertices, remove this vertex fromf h p b) i
the compatibility graph and go to (5). of eac st_u ent by one programming assignmeiot,
Fveral quizzes (30% and the final paper test (30%). For

4) Add the selected vertex for blank, and remove it as wel . :
e programming assignment, each student was requested to

as its non-adjacent vertices of the compatibility grapb'i.r I loct a topi h int t0ol. and a f
5) If the compatibility graph becomes null, terminate th cely select a fopic such as a game, a paint 100}, and a 1ace
recognition, and write a Java code to implement it. In the

procedure. .
last class, each code was evaluated drd@point scale by
E. Fill-in-blank Problem Generation the teacher and the students in terms of complexity, com-
. . . . leteness, and uniqueness. Next, we classified the students
In the maximal cliqgue procedure, 3) is used to sustain the
into two groups such that each group has the same number
total number of blank control symbols, because a code | L .
of students, considering the number of solved blanks in each
generally composed of plenty of control symbols. Here, we i L
: roup. Table Il exhibits the statistics in each group.
examined the average number of blanks for control symbcﬁs
and other symbols by the algorithm. Then, we empiricag(lxe))]
selectedl /3 as an appropriate ratio to generate the feasidle Correlation between Solutions and Final Grades
fill-in-blank problemsfor novice students. However, in these First, we analyze the correlation between the number of
condition, the generated fill-in-blank problems can be solvesblved blanks and the course grades among the students in
without reading out the code if students are familiar witgroup A and in group B as exhibited in Figures 1 and 2. The

Java grammar. relatively strong correlation (= 0.62) exists for group A,

ISBN: 978-988-14047-1-8 WCECS 2016
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I

WCECS 2016, October 19-21, 2016, San Francisco, USA

whereasthe weak correlation (= —0.32) does for group
B. These results indicate that to improve Java programi = g
skills, solving a sufficient number of fill-in-blank probler r=-0.55

in JPLAS will be required. If the students stop solving th = >*
in the middle, their improvements will be suspended. =
o ° 4 °
B
£ 130 e
Qo e’
o_i e, ®
5 80 ® o . .
100 * o ¢ e,
r=10.62 o o 30 .)
»n 920 ry o 50 60 70 80 90 100
X
g weo® _) Coursegrade o .
5 80 . o v Fig. 3. Correlation between answer submission trials and course grades
3 ® oot i for group A.
= 70 ae’ >
8 ...- o @
S e * TABLE IV
* et ° .' OPERATORS FOR CONDITIONAL EXPRESSIONS
50 operator | example | operator | example
65 70 75 80 85 90 95 < a<b ++ at++
. . Coursegrade <= a<=b — &-
Fig. 1. Correlation between problem solutions and course grades for group > a>b ! 'a
A. >= a>=b += a+=b
== a==b -= a-=b
I= al= b *= a =b
8& a&&b = a/=b
I ab % a%Db
100
r=0.32
90 \ 4 .. .
. ¢ o A. Operators for Conditional Expressions
9 80 .—0— i i .
_é ® . To assist students to understand the implementation of a
% h . H logic or an algorithm in a Java code, we include elements
2 00 ettt * e representingperatorsin conditional expressions into blank
g 50 ~ elements. Table IV shows the correspondirty operators.
* To satisfy the uniqueness of the correct answers and avoid
o becoming too difficult for novice students, we classify all the
0 10 20 20 10 0 0 20 pperators in one cqnditional expression into the same group
. . Coursegrade in the group selection category.
Fig. 2. Correlation between problem solutions and course grades for group
B.

B. Introduction of Two Parameters

To adjust the difficulty of the generated fill-in-blank
D. Correlation between Answer Submission Trials and Fin Irgr?lieg]letrger?tos ntarlglcljlnr?orgr-]slarr?liloor:):stvﬁetnh;hp?ronblljemrr?ecr;ogl;
Grades we introduce the two parameters, namdd- (blank gap

In JPLAS, students are allowed to continuously repeglimper) and”'B (continuous blank number).
submissions of their answers to check the correctness af) gjank Gap Number:The non-blanked elements in a
the server, because JPLAS has been designed 10 encgusblem code become hints to solve the fill-in-blank prob-
age students to study Java programming by self-learninigm. As more non-blanked elements exist between blanked
However, we suspect that unfortunately, students may sub@éments, it becomes easier. Thus, we try to control the
answers without thinking them carefully. As a result, the)ificulty of the problem by changing the number of non-
may not be able to advance Java programming skills, despifgnked elements between blanked ones by introducing the
of the number of problems they solved. Thus, we analyggank gap numbeBG. To realize it, for the constraint graph,
the correlation between the number of submission trials afg generate an edge for each vertex with every vertex in
course grades in group A. Figure 3 reveals that the negatiyg same statement in the code that exists withinGts
correlation (r= —0.55) exists between them, which supporteighbors, which is the modification of the condition (1) for
our concern of the careless behaviors of students. We Wil pair selection category. Here, we note that the previous
notice this fact to students in the Java programming courggorithm actually adopt$3G = 1 where at least one non-
to lead them to solve the problems with a less number gfanked element exists. For example, in the casB@f= 2,

submissions. bubbleSort at line 1 has an edge witstatic , void,
(, andint so that at least two non-blanked elements exist
V. EXTENSIONS OFBLANK ELEMENT SELECTION in the problem code.
ALGORITHM 2) Continuous Blank NumberOn the contrary, as more
In this section, we propose three extensions of the blablanked elements continue in a problem code, it becomes
element selection algorithm. harder. Thus, we also try to control the difficulty by changing
ISBN: 978-988-14047-1-8 WCECS 2016

ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

. . : TABLE V
the number of continuously blanked elements by introducing AyeraGE NUMBER OF BLANKS FOR DIFFERENTBG AND CB.

the contingous blank number' 5. In addition, we note_that parameter | previous tended
whenCB is 2 or larger, BG must be seb. The following BG 1 3 2 1 0 0

procedure describes the extension to realize it: CB 1 1 1 1 2 3
. . . . [#ofblanks | 24.76 | 19.12 | 22.16 | 25.95 | 39.98 | 40.06
(1) Find a solution by applying the blank element selection

algorithm with BG = 0.
(2) Change the last blanked element into a non-blanked one

if the number of continuously blanked elements excee@§d] wherebubbleSort s not included in the constraint
CB. graph due to the condition (1) for the prohibited category.

These edges are described by the straight lines with (G).
Then,int in line 8 has the largest degrdeamong them.
Therefore, we seledht in line 8, and generate the edges

The analysis in the previous section showed that as thgtween this vertex and the other four verticesifar that
number of blanks increases, the rates of students with corrggd described by the dotted lines with (P).

answers decreases. Consequently, even for the same Java
code, the number of blanks determines the difficulty of the
fill-in-blank problem. To select a larger number of blanks,
we improve the edge generation method for the group se-
lection category in the constraint graph. Instead of randomly
selecting one vertex in the same group, we select the vertex
that has the largest number of incident edges. Then, if this
vertex is not selected for the blank, other vertices can be
selected for blanks.

C. Improvement of Edge Generation

-~
-

-
-

1) Improved Edge Generation Proceduréhe following v N,
procedure explains the details: o ‘\‘ \\
1) Generate the edge between two vertices for each vertex - \(P) \(f)
pair in the pair selection category. [tmp | 3 \\ (G) -
2) Sort the vertex groups for the group selection category = leral . —
in the descending order of the group size. N T BT

3) Select On_e vertex for each group In 2) from the top tng. 4. Example of improved edge generation methodkfebbleSort.
the following procedure:
(1) Calculate the degree of the vertices in the group.
(2) Select the vertex that has the largest degree. If)
two or more vertices have the same largest degrel%', Evaluation of Blank Number Change

randomly select one among them. First, we evaluate changes of the number of selected
(3) Generate the edges between the vertex in (2) aBt@nks by the proposed extensions usiitgJava codes for
the other vertices in the group. fundamental data structure or algorithms in textbooks and

Web sites [13]-[22]. We apply the previous algorithm and

five int in lines 1, 2, 3, 5, and 8 are grouped by the groug'e extended algorithm wheG: andC'B is changed from
selection category, where both the variable and the subsc ﬁﬁo 3 respectively. Table V offers the average number of
for array must beint from line 1. Subsequently, at least?!2nks for thes8 problem codes found by them. The previous
oneint must not be selected as the blank element for tffdorithm assume&¢G = 1 andCB = 1, and the extended
unique correct answer. With the employment of this grou@!gorithm must adopCB = 1 for BG > 1, because at

we elaborate the improved edge generation method for fiest one blank element can be selected continuously to have
constraint graph. BG non-blank elements between blank ones, @@ = 0

for CB > 2, because two or more blank elements can be

2) Example:In the following code fobubbleSort | the

1 publc stac void bubbleSorin)) selected continuously |

3 for (int j=0; j<i; j++) Table V indicates that the extended algorithm wilir =

4: if (arrayli]>array[j+1]){ 1 andCB = 1 can increase the number of blanks slightly
:) VIR y selecting better edges among them of the constraint gra
> ot et 1 by selecting better ed them of th traint graph
7 array[j+1]=tmp; from the previous algorithm. It also reflects that the larger
8 for(int k:array){ BG can decrease the number of blanks and the lafggr

9: System.out.print(); . . .

10- System.out.print(""); can increase it. Hence, we confirm that we can control the
11: } difficulty of generating fill-in-blank problems by changing
}g) System.out.printin(); the value of these newly introduced parameters.

14: }

15} E. Evaluation of Solution Performance

16: }

Then, we evaluate the solution performance of students for

Figure 4 illustrates the corresponding five vertices arfdl-in-blank problems generated by applying the extended
their incident vertices selected in the pair selection categaaigorithm to three Java codes where we change the two
for BG = 2. For exampleint in line 1 has edges witli[, = parameter values while adopting the other extensions.

ISBN: 978-988-14047-1-8 WCECS 2016
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

TABLE VI TABLE IX
PARAMETER VALUES FOR PROBLEM GENERATIONS AVERAGE SOLUTION PERFORMANCE
parameter| L1 | L2 | L3 Group Problem Level
BG 3 [1|0 A | 73% | Euclid | 81% | L1 | 76%
CB 113 B | 71% | TnaDiv | 70% | L2 | 79%
C | 80% | ModExp | 77% | L3 | 71%
TABLE VI
STATISTICS OF GENERATED PROBLEMS
Java code | LOC # of blanks V1. CONCLUSION
[T]L2]L3) . .
Euclid 12 | 6 | 9 | 16 In this paper, we first presented an analysis of solu-
TrialDiv 19 114719] 38 tion results of fill-in-blank problems idava Programming
ModExp | 13 [11] 14] 20 Learning Assistant System (JPLAS) students taking the

Java programming course, and showed that to advance Java
programming skills, students need to solve a sufficient num-

1) Problem Generation: As problem Java codes, weber of problems with a less number of answer submission
adopted Java codes related to the RSA algorithm, namé#lials. Next, we introduced three extensions of thiank
Euclid (calculate the GCD of two arguments using the Eucliglement selection algorithmand evaluated changes of the
method),TrialDiv (calculate the GCD using the trial divisionnumber of blanks by the extensions fat Java codes, and
method), andModExp(calculate the modulo exponentiatiorthe solution performance of students when we changed the
of a big integer) [22]. For the two parameter values in th@&vo parameter values in the extension. In future works, we
algorithm extension, we used the three sets in Table VI Wl adopt the better maximal clique algorithm to further
generate problems with three levels, L1 (easy), L2 (middldncrease the number of blanks, generate a large set of fill-in-
and L3 (hard), from each code. Table VII shows the LOg@lank problems using the algorithm, and apply them in Java
(the number of lines) in the problem code, the number @rogramming courses.
blanks in each problem at each difficulty level. As LOC is
larger, the number of blanks increases for any difficulty level. REFERENCES

2) PrOblem Assignment to Studenihen, we d_|V|ded the (1] N. Funabiki, Y. Matsushima, T. Nakanishi, and N. AmarioA Java
33 students into three groups, A, B, and C, with the equal programming learning assistant system using test-driven development
number randomly, and assigned one level for each problem to g‘:ghgg'le"AENG Int. J. Computer Science, vol. 40, no. 1, pp. 38-46,
e§Ch group so that every student solves the different prOble_rTﬁ Tana, N. Funabiki, and N. Ishihar& A proposal of graph-based blank
with the different levels. Thus, any student solved any level in element selection algorithm for Java programming learning with fill-

r problem ianment. Th n r rrentl Ki in-blank problem,” Proc. IMECS2015, pp. 448-453, March 2015.
our proble as_sg ent ese students are curre tY ta Tﬂ N. Funabiki, S. Sasaki, Tana, and W.-C. Kad,An operator fill-
NEtWOHf Securitycourse and completedava Programming in-blank problem for algorithm understanding in Java programming
course in the last semester. learning assistant systeiProc. GCCE 2015, pp. 346-347, Oct. 2015.

3) Soluton Performance of Studentable VIl shows 14, K280 N fuhi a0 WG Ko 7 prosos of e voce
the solving problem level and th_e percentage of the correctly asgistant system.” Inf. Eng. Express, vol. 1, no. 3, pp. 9-18, Sep. 2015.
solved blanks by the students in each group for each codgg] N. Ishihara, N. Funabiki, and W.-C. Kao, "A proposal of statement
This table indicates that in each group, the percentage for f'E;Q;ﬂ;”klggfnﬁfmas;'sﬂgngr;’gsrf‘e?] 9|er%enEdne”C§X9;:22 '\:‘Or"al"angr%'
TrialDiv is smaller than the others at any difficulty level (L). gp. 19_23’ Sep. 2%15_ ystem. Tl =ng. £xpress, voL &, no- =
Table IX shows the average correct rate for each group, eaf} M. R. Garey and D. S. Johnson, Computers and intractability: A guide
problem, and each level. First, in the groups, Group C has tq E%Itgf mte;_;};ﬂzfx’\éz;comp'ew”ess’ Freeman, New York, 1979.
hlgheSt average correct rate, Wh?re we can say that Groupig jay, " http:/mww.cs rit.edufats/projects/lp/doc/jay/package-summary.
is the best student group. Then, in the problems, the average htmi. _ _
correct ate forialDiv i the owest, because this problem [l U [uatest, £ I st Cosbe 20s0.
has the larger LOC and_ t.he larger number (_)f blanks than” pank creative, 2011. ’
other problems at any difficulty level. Finally, in the levels[11] ITSenka, http://www.itsenka.com/. o
L3 has the lowest average correct rate. However, L2 r;ﬁ%l tJ“at\‘/’;'a'SEg":gn:‘“p;g‘r’;wl‘z-st“tor']'t";"?/em;’;”élia‘l’(%g?]‘?e’f;}g_‘;naster/
the higher rate than L1, because Group B solved better t an Samp.e‘;,_g ples. i Piglobe.nel
Group A forEuclid and Group C solved better than Group B14] Shellsort, ~ http:/www.thelearningpoint.net/computer-science/
for ModExp. We need to further investigate the relationship arrays-and-sorting-shell-sort-with-c-program-source-code.
bet the t t | for the difficulty | | rLdS] L. Sinapova, Lecture Notes, http://faculty.simpson.edu/lydia.sinapova/

etween the two parameter values i1or the dimiculty level a www/cmsc250/LN250Weiss/Contents.htm.

the average correct rate of students, which will be in o@s] S. K. Chang, Data structures and algorithms, World Scientific Pub.,

USA, Oct. 2003.
future works. [17] Dijkstra Algorithm, http://www.ifp.illinois.edurangelia/ge330fall09

dijkstra 118.pdf.

TABLE VIII [18] Prim Java, http://cs.fit.edutyan/java/progr_ams/graph/Prim-java.html.
SOLUTION PERFORMANCE EOR EACH GROUP [19] Graph J_ava, http://www.sanfoun_dl_’y.co_m/java—prpgram. _
_ _ [20] Depth First Search, https://en.wikipedia.org/wiki/Breadth-fsstirch.
Java code Euclid TrialDiv ModExp [21] Breadth First Search, https://en.wikipedia.org/wiki/Depth-fgsarch.
Group | L | correct| L | correct| L | correct [22] M. Kaminaga, M. Yamada, and T. Watanabe, Cryptography using Java,
rate rate rate http://ww.morikita.co.jp/books/book/2214.
A 1 76% 2 71% 3 75%
B 2 87% 3 67% 1 73%
C 3 80% | 1 78% | 2 84%
ISBN: 978-988-14047-1-8 WCECS 2016

ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

