
Analysisof Fill-in-blank Problem Solutions and
Extensions of Blank Element Selection Algorithm
for Java Programming Learning Assistant System

Nobuo Funabiki, Tana, Khin Khin Zaw, Nobuya Ishihara, and Wen-Chung Kao

Abstract—A Web-based Java Programming Learning Assis-
tant System (JPLAS)has been developed in our group to advance
Java programming educations. JPLAS providesfill-in-blank
problemsfor Java novice students to study grammar and basic
programming skills by filling in the blank elements in a high-
quality code. In this paper, we first analyze solution results of
students in the Java programming course and the correlation
between the number of blanks in a problem and the correct
answer rate of the students. Then, we extend theblank element
selection algorithmto increase the number of blanks and control
the problem difficulty by changing it. This algorithm has been
proposed to generate a feasible fill-in-blank problem such that
any blank has the grammatically correct and unique answer. To
verify the effectiveness, we apply the extended algorithm to58
Java codes for the fundamental data structure or algorithms,
and confirm that the extensions can increase the number of
blanks and control the problem difficulty.

Index Terms—JPLAS, Java programming education, fill-in-
blank problem, blank element selection algorithm, solution
analysis.

I. I NTRODUCTION

JAVA, as a reliable and portable object-oriented program-
ming language, has been extensively used in a variety

of industries, including mission critical systems at large
enterprises and small-sized embedded systems for real time
controls. The cultivation of Java programming engineers has
been highly demanded amongst industries. Hence, a number
of universities and professional schools have designed Java
programming courses to deal with these demands.

To advance Java programming educations, we have de-
veloped a Web-basedJava Programming Learning Assistant
System (JPLAS)[1]-[5]. As a function, JPLAS provides the
fill-in-blank problemto support self-studies of students who
have just started learning Java programming. The goal of this
problem is to encourage students learning the grammar and
basic programming skills throughcode reading.

In a fill-in-blank problem, a Java code with several blank
elements is shown to each student, where he/she needs to fill
in the blanks. Thisproblem codeshould be of high-quality
worth for code reading. Anelementis defined as the least
unit of a code, such as a reserved word, an identifier, and
a control symbol. To be more precisely, areserved word
is a fixed sequence of characters that has been defined in
the grammar to represent a specified function, and must be
mastered first by the students. Anidentifier is a sequence of

Funabiki, Tana, Zaw, and Ishihara are with the Department of Electri-
cal and Communication Engineering, Okayama University, 3-1-1 Tsushi-
manaka, Okayama, 700-8530, Japan e-mail: funabiki@okayama-u.ac.jp.
Kao is with the Department of Electrical Engineering, National Taiwan
Normal University, Taipei, 106, Taiwan, e-mail: jungkao68@gmail.com.

characters defined in the code by the author to represent a
variable, a class, or a method. Acontrol symbolintends other
grammar elements such as grammar elements such as“ .”
(dot),“ :” (colon),“ ;” (semicolon) ,“ (,)” (bracket),
“ {, }” (curly bracket).

To help a teacher to prepare fill-in-blank problems in
JPLAS, we have proposed theblank element selection al-
gorithm to generate a fill-in-blank problem from a given
code such that any blank has the grammatically correct and
unique answer [2]. First, in this algorithm, we generate a
compatibility graphby selecting any candidate element for
a blank in the code as avertex, and connecting any pair
of vertices by anedge if they can be blanked together.
For this purpose, we define the conditions that a pair of
elements cannot be blanked simultaneously. Then, we extract
a maximal clique[6] of the compatibility graph, which be-
comes a maximal set of proper blank elements. Empirically,
we have observed that a fill-in-blank problem will become
more difficult when a larger number of elements are blanked.
Therefore, by blanking a subset of selected elements of the
algorithm, we can generate a variety of fill-in-blank problems
with different difficulty levels.

In this paper, firstly, we analyze solution results of students
in the Java programming course in our department. Also,
we observe the correlation between the number of blanks
in a problem and the correct answer rate of the students.
Secondly, we extend the blank element selection algorithm
to increase the number of blanks and control the problem
difficulty by changing the number of blanks. To verify the
effectiveness, we apply our extended algorithm to58 Java
codes for the fundamental data structure or algorithms, and
confirm that our extensions can increase the number of
blanks and control the problem difficulty.

This paper is organized as follows: Section II and Sec-
tion III introduce the fill-in-blank problem in JPLAS and
reviews the blank element selection algorithm, respectively.
Section IV analyzes solution results of fill-in-blank problems
submitted by students. In Section V, three extensions of
the blank element selection algorithm are presented. Lastly,
Section VI concludes this paper with futures.

II. F ILL -IN-BLANK PROBLEM IN JPLAS

In this section, we review the fill-in-blank problem in
JPLAS.

A. Software Platform for JPLAS

Based upon a Web application system, in the JPLAS
server, we adoptLinux for the operating system,Tomcat

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

TABLE I
VERTEX INFORMATION IN CONSTRAINT GRAPH.

item content
symbol symbolof element
line row index of element
column column index of element
count numberof element appearances
order appearingorder of element in the code
group statementgroup index partitioned by{ and}
depth numberof { from top

for the Web application server,JSP/Servletfor application
programs, andMySQLfor the database. For the fill-in-blank
problem, we adopt open source softwareJFlex [7] and jay
[8]. JFlex is a lexical analyzer generator for a Java code,
which is also coded by Java. It transforms a code into a
sequence of lexical units that represent the least meaningful
elements to compose the code. It can classify each element in
the code into either a reserved word, an identifier, a symbol,
or an immediate data. For example, a statementint value
= 123 + 456; is divided into int, value , =, 123 , +,
456, and ;. Unfortunately, JFlexcannot identify an identifier
among a class, a method, or a variable. Thus,jay is applied
as well. Sincejay is a syntactic parsing program based on
the LALR method, it can identify an identifier.

B. Definitions of Terms for Fill-in-blank Problem

The definitions of terms for the fill-in-blank problem are
listed as follows. Aproblem coderepresents a Java code
involving some blanks. Ablank indicates an element to be
filled in by a student. Anassignmentconsists of a problem
code with some blanks and their correct answers, a title, and
a comment on the assignment. Generally, several assignments
will be given to students in each course, where JPLAS can
support multiple courses at the same time. All registered
teachers in JPLAS can generate and register new problems
and assignments using the shared database.

III. R EVIEW OF BLANK ELEMENT SELECTION

ALGORITHM

In this section, we review theblank element selection
algorithm [2] using theconstraint graphthat is generated
to describe the constraints in the blank element selection.

A. Vertex Generation for Constraint graph

In the constraint graph, each vertex signifies a candidate
element for being blank. The candidate elements or vertices
are extracted from the Java code through the lexical analysis
using JFlex and jay. Each vertex contains the associated
information in Table I that is necessary for the following
edge generation.

B. Edge Generation for Constraint graph

An edge is generated between any pair of two vertices or
elements that should not be blanked at the same time. There
are three categories to represent the constraints in selecting
blank elements with unique answers:

1) Group Selection Category:In the group selection cat-
egory, all the elements related to each other in the code are
grouped together. First, in each group, one vertex is randomly
selected. Then, edges are generated between this vertex and
the other vertices to confirm that at least this selected element
is not selected for blank. Five conditions are included in this
category.
(1) Identifier appearing two or more times in the code

The multiple elements representing the same identifier of
a variable, a class, and a method by using the same name, are
grouped together. If all such elements are blanked, a student
cannot answer the original identifier
(2) Pairing reserved words which are composed of three or
more elements

The three or more elements representing the reserved
words in pairs are grouped together. If all of them are
blanked, the unique answers may become too difficult as
the following two cases:

• switch-case-default
• try-catch-finally

(3) Data type for variables in equation
The elements representing the data types for variables in

one equation are grouped together. For example, insum =
a + b, the data types of the three variables,sum, a, and
b, must be the same.
(4) Data type for method and its returning variable

The elements representing the data type of a method and
its returning variable are grouped together.
(5) Data type for arguments in method

The elements representing the data type of an argument in
a method and its substituting variable are grouped together.

2) Pair Selection Category:In thepair selection category,
the elements appearing in the code in pairs are grouped
together. For each pair, an edge is simply generated between
the two corresponding vertices to assure that at least one
element is not selected for blank.
(1) Elements appearing continuously in a statement

The two elements appearing continuously in the same
statement are paired in the code. If both of them are blanked,
their unique correct answers may not be guaranteed and the
fill-in-blank problem may become too difficult for novice
students. The two elements connected with a dot (“ .”) are
also paired.
(2) Variables in equation

The elements representing any pair of the variables in
an equation are paired. If both are blanked, it will become
impossible to access the unique answers. For example, for
sum = a + b, sum = b + a is also feasible.
(3) Pairing reserved words

The two elements representing the paring reserved words
are paired. If both are blanked, the unique correct answers
may not be guaranteed. The following five paring reserved
words are considered:

• if-else
• do-while
• class-extends
• interface-extends
• interface-implements

(4) Pairing control symbols
The two elements representing a pair of control symbols,

namely“ (,)” (bracket) and“ {, }” (curly bracket), are

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

paired.The novice students should carefully check them in
their codes to decrease the amount of mistakes.

3) Prohibition Category: In the prohibition category, an
element is prohibited from the blank selection because it does
not satisfy the uniqueness with the high probability. There
are three conditions for this category. However, an element in
a fixed sequence of elements indicating a specific meaning in
a Java code, such aspublic static void main and
public void paint(Graphics g) , is excluded from
this category, because they should be mastered by students.
(1) Identifier appearing only once in code

The selected element representing the identifier in this
category appears only once in the code. If it is blanked, a
student cannot answer the original identifier.
(2) Access modifier

The element representing an access modifier for an iden-
tifier is selected for this category. If it is blanked, either
public, protected, private can often be grammat-
ically correct.
(3) Constant

The element representing a constant is selected for this
category. If it is blanked, a student cannot answer the original
constant.

C. Compatibility Graph Generation

By taking the complement of the constraint graph, the
compatibility graphis generated to symbolize the pairs of
elements that can be blanked simultaneously.

D. Maximal Clique Extraction of Compatibility Graph

Finally, a maximal clique of the compatibility graph is
extracted by a simple greedy algorithm to find the maximal
number of blank elements with unique answers from the
given Java code. A clique of a graph represents its subgraph
where any pair of two vertices is connected by an edge. The
procedure for our algorithm is described as follows:

1) Calculate the degree (= number of incident edges) every
vertex in the compatibility graph.

2) Select one vertex among the vertices whose degree is
the maximum. If two or more vertices have the same
maximum degree, select one randomly.

3) If the selected vertex is acontrol symboland the number
of selected control symbols exceeds1/3 of the total
number of selected vertices, remove this vertex from
the compatibility graph and go to (5).

4) Add the selected vertex for blank, and remove it as well
as its non-adjacent vertices of the compatibility graph.

5) If the compatibility graph becomes null, terminate the
procedure.

E. Fill-in-blank Problem Generation

In the maximal clique procedure, 3) is used to sustain the
total number of blank control symbols, because a code is
generally composed of plenty of control symbols. Here, we
examined the average number of blanks for control symbols
and other symbols by the algorithm. Then, we empirically
selected1/3 as an appropriate ratio to generate the feasible
fill-in-blank problemsfor novice students. However, in these
condition, the generated fill-in-blank problems can be solved
without reading out the code if students are familiar with
Java grammar.

TABLE II
ASSIGNED PROBLEMS AND SOLUTION RESULTS.

ID key grammar # of # of ave. # of correct
in code blanks students trials rate (%)

1 array (1) 8 30 9.17 83.75
2 array (2) 8 24 4.46 83.75
3 method(1) 11 24 5.67 86.32
4 method(2) 6 28 2.68 88.27
5 repeat(1) 5 25 1.9 91.67
6 variable 3 22 5.45 93.85
7 repeat(2) 5 26 6.73 93.94
8 method(3) 6 32 3.5 94.08
9 datatype (1) 5 19 2.42 95.79
10 exception 3 19 4.63 96.49
11 class 7 24 7.61 98.08
12 method(4) 6 31 6.03 98.39
13 datatype (2) 2 26 2 98.76
14 branch 7 22 7.18 99.68
15 method(4) 6 27 4.15 100
16 datatype (3) 4 24 6.5 100

total/ave. 92 25.19 5.00 93.93

TABLE III
TWO STUDENT GROUPS BY PROBLEM SOLUTIONS.

group A B
of students 17 16

of solved blanks 68 - 92 14 - 66
ave. course grade 74.51 68.97

ave. # of submission trials 6.25 3.87

IV. A NALYSIS OF FILL -IN-BLANK PROBLEM SOLUTIONS

In this section, we analyze solution results of fill-in-
blank problems offered by students in our Java programming
course.

A. Fill-in-blank Problem Solution Results

We collected Java codes from textbooks and Web sites
[9]-[13], and generated16 problems with the total of92
blanks by applying the blank element selection algorithm.
Afterwards, we asked students to solve them using JPLAS.
Table II shows the assigned problems and solution results
by students. In general, as the number of blanks increases,
the correct answer rate decreases, where the correlation
coefficient isr = −0.57.

B. Final Grades and Two Student Groups

After the course was finished, we evaluate the final grade
of each student by one programming assignment (40%),
several quizzes (30%), and the final paper test (30%). For
the programming assignment, each student was requested to
freely select a topic such as a game, a paint tool, and a face
recognition, and write a Java code to implement it. In the
last class, each code was evaluated on a100-point scale by
the teacher and the students in terms of complexity, com-
pleteness, and uniqueness. Next, we classified the students
into two groups such that each group has the same number
of students, considering the number of solved blanks in each
group. Table III exhibits the statistics in each group.

C. Correlation between Solutions and Final Grades

First, we analyze the correlation between the number of
solved blanks and the course grades among the students in
group A and in group B as exhibited in Figures 1 and 2. The
relatively strong correlation (r= 0.62) exists for group A,

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

whereasthe weak correlation (r= −0.32) does for group
B. These results indicate that to improve Java programming
skills, solving a sufficient number of fill-in-blank problems
in JPLAS will be required. If the students stop solving them
in the middle, their improvements will be suspended.

Course grade

of

 s
ol

ve
d

bl
an

ks

Fig. 1. Correlation between problem solutions and course grades for group
A.

Course grade

of

 s
ol

ve
d

bl
an

ks

Fig. 2. Correlation between problem solutions and course grades for group
B.

D. Correlation between Answer Submission Trials and Final
Grades

In JPLAS, students are allowed to continuously repeat
submissions of their answers to check the correctness at
the server, because JPLAS has been designed to encour-
age students to study Java programming by self-learning.
However, we suspect that unfortunately, students may submit
answers without thinking them carefully. As a result, they
may not be able to advance Java programming skills, despite
of the number of problems they solved. Thus, we analyze
the correlation between the number of submission trials and
course grades in group A. Figure 3 reveals that the negative
correlation (r= −0.55) exists between them, which supports
our concern of the careless behaviors of students. We will
notice this fact to students in the Java programming course
to lead them to solve the problems with a less number of
submissions.

V. EXTENSIONS OFBLANK ELEMENT SELECTION

ALGORITHM

In this section, we propose three extensions of the blank
element selection algorithm.

Course grade

of

 s
ub

m
is

si
on

 t
ri

al
s

Fig. 3. Correlation between answer submission trials and course grades
for group A.

TABLE IV
OPERATORS FOR CONDITIONAL EXPRESSIONS.

operator example operator example
< a<b ++ a++

<= a<=b -- a--
> a>b ! !a

>= a>=b += a+=b
== a== b -= a-=b
!= a!= b * = a* =b
&& a&&b /= a/=b
|| a||b % a% b

A. Operators for Conditional Expressions

To assist students to understand the implementation of a
logic or an algorithm in a Java code, we include elements
representingoperatorsin conditional expressions into blank
elements. Table IV shows the corresponding16 operators.
To satisfy the uniqueness of the correct answers and avoid
becoming too difficult for novice students, we classify all the
operators in one conditional expression into the same group
in the group selection category.

B. Introduction of Two Parameters

To adjust the difficulty of the generated fill-in-blank
problem by controlling the ratio between the number of
blank elements and non-blank ones in the problem code,
we introduce the two parameters, namelyBG (blank gap
number) andCB (continuous blank number).

1) Blank Gap Number:The non-blanked elements in a
problem code become hints to solve the fill-in-blank prob-
lem. As more non-blanked elements exist between blanked
elements, it becomes easier. Thus, we try to control the
difficulty of the problem by changing the number of non-
blanked elements between blanked ones by introducing the
blank gap numberBG. To realize it, for the constraint graph,
we generate an edge for each vertex with every vertex in
the same statement in the code that exists within itsBG
neighbors, which is the modification of the condition (1) for
the pair selection category. Here, we note that the previous
algorithm actually adoptsBG = 1 where at least one non-
blanked element exists. For example, in the case ofBG = 2,
bubbleSort at line 1 has an edge withstatic , void,
(, and int so that at least two non-blanked elements exist
in the problem code.

2) Continuous Blank Number:On the contrary, as more
blanked elements continue in a problem code, it becomes
harder. Thus, we also try to control the difficulty by changing

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

thenumber of continuously blanked elements by introducing
the continuous blank numberCB. In addition, we note that
whenCB is 2 or larger,BG must be set0. The following
procedure describes the extension to realize it:
(1) Find a solution by applying the blank element selection

algorithm withBG = 0.
(2) Change the last blanked element into a non-blanked one

if the number of continuously blanked elements exceeds
CB.

C. Improvement of Edge Generation

The analysis in the previous section showed that as the
number of blanks increases, the rates of students with correct
answers decreases. Consequently, even for the same Java
code, the number of blanks determines the difficulty of the
fill-in-blank problem. To select a larger number of blanks,
we improve the edge generation method for the group se-
lection category in the constraint graph. Instead of randomly
selecting one vertex in the same group, we select the vertex
that has the largest number of incident edges. Then, if this
vertex is not selected for the blank, other vertices can be
selected for blanks.

1) Improved Edge Generation Procedure:The following
procedure explains the details:

1) Generate the edge between two vertices for each vertex
pair in the pair selection category.

2) Sort the vertex groups for the group selection category
in the descending order of the group size.

3) Select one vertex for each group in 2) from the top by
the following procedure:
(1) Calculate the degree of the vertices in the group.
(2) Select the vertex that has the largest degree. If

two or more vertices have the same largest degree,
randomly select one among them.

(3) Generate the edges between the vertex in (2) and
the other vertices in the group.

2) Example:In the following code forbubbleSort , the
five int in lines 1, 2, 3, 5, and 8 are grouped by the group
selection category, where both the variable and the subscript
for array must beint from line 1. Subsequently, at least
one int must not be selected as the blank element for the
unique correct answer. With the employment of this group,
we elaborate the improved edge generation method for the
constraint graph.

1: public static void bubbleSort(int[] array){
2: for (int i=array.length-1; i>0; i--)
3: for (int j=0; j<i; j++)
4: if (array[j]>array[j+1]){
5: int tmp=array[j];
6: array[j]=array[j+1];
7: array[j+1]=tmp;
8: for(int k:array){
9: System.out.print();
10: System.out.print(",");
11: }
12: System.out.println();
13: }
14: }
15: }
16: }

Figure 4 illustrates the corresponding five vertices and
their incident vertices selected in the pair selection category
for BG = 2. For example,int in line 1 has edges with(,[,

TABLE V
AVERAGE NUMBER OF BLANKS FOR DIFFERENTBG AND CB.

parameter previous extended
BG 1 3 2 1 0 0
CB 1 1 1 1 2 3

of blanks 24.76 19.12 22.16 25.95 39.98 40.06

and] wherebubbleSort is not included in the constraint
graph due to the condition (1) for the prohibited category.
These edges are described by the straight lines with (G).
Then, int in line 8 has the largest degree4 among them.
Therefore, we selectint in line 8, and generate the edges
between this vertex and the other four vertices forint that
are described by the dotted lines with (P).

int [

int

(

i

tmp

(

]

for

for

int

k

:
(

int

for

(
intj

(G)

(P)

(P)(P)

(P)

(G)

(G)

1Fig. 4. Example of improved edge generation method forbubbleSort.

D. Evaluation of Blank Number Change

First, we evaluate changes of the number of selected
blanks by the proposed extensions using58 Java codes for
fundamental data structure or algorithms in textbooks and
Web sites [13]-[22]. We apply the previous algorithm and
the extended algorithm whenBG andCB is changed from
0 to 3 respectively. Table V offers the average number of
blanks for the58 problem codes found by them. The previous
algorithm assumesBG = 1 andCB = 1, and the extended
algorithm must adoptCB = 1 for BG ≥ 1, because at
most one blank element can be selected continuously to have
BG non-blank elements between blank ones, andBG = 0
for CB ≥ 2, because two or more blank elements can be
selected continuously.

Table V indicates that the extended algorithm withBG =
1 andCB = 1 can increase the number of blanks slightly
by selecting better edges among them of the constraint graph
from the previous algorithm. It also reflects that the larger
BG can decrease the number of blanks and the largerCB
can increase it. Hence, we confirm that we can control the
difficulty of generating fill-in-blank problems by changing
the value of these newly introduced parameters.

E. Evaluation of Solution Performance

Then, we evaluate the solution performance of students for
fill-in-blank problems generated by applying the extended
algorithm to three Java codes where we change the two
parameter values while adopting the other extensions.

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

TABLE VI
PARAMETER VALUES FOR PROBLEM GENERATIONS.

parameter L1 L2 L3
BG 3 1 0
CB 1 1 3

TABLE VII
STATISTICS OF GENERATED PROBLEMS.

Java code LOC # of blanks
L1 L2 L3

Euclid 12 6 9 16
TrialDiv 19 14 19 38
ModExp 13 11 14 20

1) Problem Generation: As problem Java codes, we
adopted Java codes related to the RSA algorithm, namely
Euclid (calculate the GCD of two arguments using the Euclid
method),TrialDiv (calculate the GCD using the trial division
method), andModExp(calculate the modulo exponentiation
of a big integer) [22]. For the two parameter values in the
algorithm extension, we used the three sets in Table VI to
generate problems with three levels, L1 (easy), L2 (middle),
and L3 (hard), from each code. Table VII shows the LOC
(the number of lines) in the problem code, the number of
blanks in each problem at each difficulty level. As LOC is
larger, the number of blanks increases for any difficulty level.

2) Problem Assignment to Students:Then, we divided the
33 students into three groups, A, B, and C, with the equal
number randomly, and assigned one level for each problem to
each group so that every student solves the different problems
with the different levels. Thus, any student solved any level in
our problem assignment. These students are currently taking
Network Securitycourse and completedJava Programming
course in the last semester.

3) Solution Performance of Students:Table VIII shows
the solving problem level and the percentage of the correctly
solved blanks by the students in each group for each code.
This table indicates that in each group, the percentage for
TrialDiv is smaller than the others at any difficulty level (L).
Table IX shows the average correct rate for each group, each
problem, and each level. First, in the groups, Group C has the
highest average correct rate, where we can say that Group C
is the best student group. Then, in the problems, the average
correct rate forTrialDiv is the lowest, because this problem
has the larger LOC and the larger number of blanks than
other problems at any difficulty level. Finally, in the levels,
L3 has the lowest average correct rate. However, L2 has
the higher rate than L1, because Group B solved better than
Group A forEuclid and Group C solved better than Group B
for ModExp. We need to further investigate the relationship
between the two parameter values for the difficulty level and
the average correct rate of students, which will be in our
future works.

TABLE VIII
SOLUTION PERFORMANCE FOR EACH GROUP.

Java code Euclid TrialDiv ModExp
Group L correct L correct L correct

rate rate rate
A 1 76% 2 71% 3 75%
B 2 87% 3 67% 1 73%
C 3 80% 1 78% 2 84%

TABLE IX
AVERAGE SOLUTION PERFORMANCE.

Group Problem Level
A 73% Euclid 81% L1 76%
B 71% TrialDiv 70% L2 79%
C 80% ModExp 77% L3 71%

VI. CONCLUSION

In this paper, we first presented an analysis of solu-
tion results of fill-in-blank problems inJava Programming
Learning Assistant System (JPLAS)by students taking the
Java programming course, and showed that to advance Java
programming skills, students need to solve a sufficient num-
ber of problems with a less number of answer submission
trials. Next, we introduced three extensions of theblank
element selection algorithm, and evaluated changes of the
number of blanks by the extensions for58 Java codes, and
the solution performance of students when we changed the
two parameter values in the extension. In future works, we
will adopt the better maximal clique algorithm to further
increase the number of blanks, generate a large set of fill-in-
blank problems using the algorithm, and apply them in Java
programming courses.

REFERENCES

[1] N. Funabiki, Y. Matsushima, T. Nakanishi, and N. Amano,“ A Java
programming learning assistant system using test-driven development
method,”IAENG Int. J. Computer Science, vol. 40, no. 1, pp. 38-46,
Feb. 2013.

[2] Tana, N. Funabiki, and N. Ishihara,“A proposal of graph-based blank
element selection algorithm for Java programming learning with fill-
in-blank problem,”Proc. IMECS2015, pp. 448-453, March 2015.

[3] N. Funabiki, S. Sasaki, Tana, and W.-C. Kao,“ An operator fill-
in-blank problem for algorithm understanding in Java programming
learning assistant system,”Proc. GCCE 2015, pp. 346-347, Oct. 2015.

[4] K. K. Zaw, N. Funabiki, and W.-C. Kao, ”A proposal of value trace
problem for algorithm code reading in Java programming learning
assistant system,” Inf. Eng. Express, vol. 1, no. 3, pp. 9-18, Sep. 2015.

[5] N. Ishihara, N. Funabiki, and W.-C. Kao, ”A proposal of statement
fill-in-blank problem using program dependence graph in Java pro-
gramming learning assistant system,” Inf. Eng. Express, vol. 1, no. 3,
pp. 19-28, Sep. 2015.

[6] M. R. Garey and D. S. Johnson, Computers and intractability: A guide
to the theory of NP-completeness, Freeman, New York, 1979.

[7] JFlex, http://jflex.de/.
[8] jay, http://www.cs.rit.edu/∼ats/projects/lp/doc/jay/package-summary.

html.
[9] M. Takahashi, Easy Java, Softbank Creative, 2013.

[10] Y. Kondo, Algorithm and data structure for Java programmers, Soft-
bank Creative, 2011.

[11] ITSenka, http://www.itsenka.com/.
[12] tutorialspoint, http://www.tutorialspoint.com/java/index.htm.
[13] Java program samples, http://www7a.biglobe.ne.jp/∼java-master/

samples/.
[14] Shellsort, http://www.thelearningpoint.net/computer-science/

arrays-and-sorting-shell-sort-with-c-program-source-code.
[15] L. Sinapova, Lecture Notes, http://faculty.simpson.edu/lydia.sinapova/

www/cmsc250/LN250Weiss/Contents.htm.
[16] S. K. Chang, Data structures and algorithms, World Scientific Pub.,

USA, Oct. 2003.
[17] Dijkstra Algorithm, http://www.ifp.illinois.edu/∼angelia/ge330fall09

dijkstra l18.pdf.
[18] Prim Java, http://cs.fit.edu/∼ryan/java/programs/graph/Prim-java.html.
[19] Graph Java, http://www.sanfoundry.com/java-program.
[20] Depth First Search, https://en.wikipedia.org/wiki/Breadth-firstsearch.
[21] Breadth First Search, https://en.wikipedia.org/wiki/Depth-firstsearch.
[22] M. Kaminaga, M. Yamada, and T. Watanabe, Cryptography using Java,

http://www.morikita.co.jp/books/book/2214.

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

