

Abstract— This paper exposed the results for an automatic

control implemented into a Raspberry Pi 2 B+ platform, using

the Octave tool for mathematical modeling and the controller

running. Linux operating system was used for this purpose,

being installed the mathematical modeling tool and the

complimentary toolboxes for automatic control. The

distribution of Linux chosen was Raspbian, which is the

vendor’s official recommended distribution with Debian bases.

It was implemented a DC brushed motor control to test the

hypothesis that is possible to build applications for classical

automatic control using this platform, taking the motor velocity

as a variable control interpreted like a differential of potential,

showing an example of control. It was necessary to use

additional devices to complete the system, like an external

Analog to Digital Converter (ADC), due to the selected

embedded board lacked this component. It was also

implemented additional software libraries for communication

between the control system and the real external world across

the pins of the board. These libraries were PIGPIO and Oct2Py.

The first library generates PWM pulses using C++ and Python,

and the second one is used to open a session between Octave and

Python, and can be used Octave in the Python environment. In

the last stage, the test was running in both languages, taking

several measurements for the control system. With the results of

the experiments was determined that the implemented

controller in Python with the Oct2Py was not enough reliable to

run continuously in a control system. On the other hand, the test

on the controller implemented in C++ resulted in better outputs

allowing classical control systems to be executed permanently

without any problem and satisfying the hypothesis.

Index Terms— Embedded automatic control, Octave, PID

control, Raspberry Pi B2+, Raspbian.

I. INTRODUCTION

T can be found in a globalized world several ways to build

an automatic control for a process, either for a small or a

big industry. Among the devices that can perform the control

task, the most popular and known is the Programmable

Manuscript received July 19, 2016; revised August 3, 2016.

The authors are with the Escuela Superior Politécnica del Litoral, ESPOL,

Faculty of Electrical and Computer Engineering, Campus Gustavo Galindo,

Km 30.5 Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador (email:

{rponguil, cevimedi}@espol.edu.ec), website: www.espol.edu.ec

R. A. Ponguillo is the Coordinator of the Basic Electronics Area and a

Researcher of the Vision and Robotics Center at the Escuela Superior

Politécnica del Litoral, ESPOL, Faculty of Electrical and Computer

Engineering, Campus Gustavo Galindo, Km 30.5 Via Perimetral, P.O. Box

09-01-5863, Guayaquil, Ecuador.

C. V. Medina was with the telematics engineering program at the Escuela

Superior Politécnica del Litoral, ESPOL, Faculty of Electrical and Computer

Engineering, Campus Gustavo Galindo, Km 30.5 Via Perimetral, P.O. Box

09-01-5863, Guayaquil, Ecuador.

Logic Controller.

There is a huge variety of companies that trades

programmable logic controllers (PLC) [8], which can turn

expensive according to the customer requirements, demands

or capacity needed, affecting somehow the economy for the

trademarks whenever is asked a maintenance, upgrading or in

the worst case a replacement. Of course, these companies

consider these costs in its operative process before a

production period starts. In addition to physical features of

the device, software that allow the system programming for

each specific task is generally more expensive. But, what

happened if these systems could be replaced for others more

accessible? Or even better, if there is an opportunity to

achieve a free distribution system that does not require

proprietary licenses.

The main goal of this project is to develop a low cost

system based on both open hardware and open software,

which performs control in an automatic way using

mathematical models, such as the proposed ones in

undergraduate courses of automatic control.

It was used a 9V DC motor to test the hypothesis.

Furthermore, to develop the controller was necessary to know

the features of the plant, determining the control variables, in

order to control several aspect of a motor. To show the

validity of the hypothesis (to know if it was possible to use

open source embedded both hardware and software to

perform an automatic control task) it was taken as a control

variable the angular speed of the motor. It was needed a

sensor with this capability and also to feedback an embedded

system to measure the revolutions generated by the motor.

Coupled another motor which worked as a generator was an

alternative method used, so when the motor turns, the

generator would produce a proportional voltage to the motor

revolutions.

To execute the whole system is necessary to have an

embedded system that allow to run Octave and the additional

toolboxes for modeling and deploy the control systems. It was

also needed to abstract the interaction with the external world

across the pins, either when sending the control signals and

when the response of the sensors is received. To achieve this,

several embedded systems platforms were evaluated, which

could implement any Linux operating system distribution

[3][4] such as BeagleBone Black, Raspberry Pi [7], and

FPGA [5] SoC embedded platform. It was chosen the

Raspberry Pi 2 B+ platform for the first part of the project,

because it was easy to find it in the market and there is too

much support information available on the web or books. In

the board was implemented the controller, modeled with

Using Open Source Embedded Hardware and

Software Tools in Automatic Control from

Mathematical Model

Ronald A. Ponguillo, Member, IAENG, Cecibel V. Medina

I

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

Octave [9] and the toolbox for automatic control. At the end,

there were experienced several test to measure the

performance of the embedded system when it runs a classical

PID control.

II. METHODS AND PROCEDURES

A. The Plant

It is defined as a “plant” the object to be controlled, e.g., a

motor, or even a more complex system, like an UAV

(Unmanned Aerial Vehicle). Each system has particular

considerations of how it works, depending on the variables to

consider, which always is defined before specifying the

model that is intended to work, defining the characteristics of

the plant. With a larger number of variables for modeling a

plant, the model complexity level will be increased.

For this project was considered a plant with a feature of 9V

DC motor, which was coupled with a twin motor working as

a generator and was used as a sensor for the system feedback

process, and allowed detecting the state of the motor any time

required. In nominal conditions and without vibrations with a

good coupling the current consumption was 0.2 A. Physical

dimensions of the motor are shown in the Fig. 1.

 Fig. 1. DC motor dimensions.

It worth to mention that the work in the laboratory was not

in nominal conditions because the inertia of the motor-

generator system could break with a voltage of 8 V. With that

voltage was possible to generate up to 3.8 V of response for

a square pulse train which was put through it. The reasons to

generate less voltage than the applied into the motor were

frictional losses, vibrations, electric and magnetics circuit’s

losses, among others, so that even taking a perfect coupling,

it could only generate up to 4.5 V with the motor and the

generator working at nominal values. Another reason to work

at lower voltage levels than the nominal value was to increase

the useful life of the engines.

As a result, a PWM signal was provided with a frequency

of 100 Hz and an amplitude of 8 V to the plant. The sensor

generated a voltage of 3.9 V.

B. Mechanical Coupling

It was necessary to run correctly the automatic control, in

order to guarantee the sensor used return correct data. For this

case, because there were two motors coupled, it generated

vibrations that corrupted the information read by the

acquisition stage. To improve the physical component was

needed to deploy a structure that removes misalignment of

the axes. Clamps were used to set the two motors to the

metallic base. The dimension of the threaded rods used was

5/32 inch. The metallic base to hold the motor-generator

system was a base metal carbon steel with 8 mm thick.

Additional features were considered: the motors were

covered in support areas with brackets made of anti-vibration

sponge and clamps, plus screws were placed with pressure

rings. A whole metal-plate motor on the bottom surface in

contact with the workstation system, plus an antistatic sponge

were added, in order to avoid the presence of eddy currents,

which could lead to erroneous data. The result of the final

physical system is shown in Fig. 2.

Fig. 2. Mechanical coupled system.

C. Modeling Plant

To model the plant, MATLAB’s Ident tool is used [1][2].

Data acquisition through the identification is made with a

DE0 Nano board [10] with FPGA [5].

First, the signal is filtered to obtain only the parts that are

deemed necessary, in this case signals ranging from 2.7 to 3.8

volts approximately, which are the responses when the

system is powered by a PWM signal of 60Hz and 100Hz,

respectively. With the information acquired and the Ident

tool, the transfer function that better approximates the

behavior of the plant is obtained. To estimate this, there were

used two poles and one zero in the transfer function. Fig. 3

shows the results obtained in MATLAB.

Fig. 3. Transfer function of the plant obtained with MATLAB’s

Ident tool.

To build the system controller, a classic PID control [1][6]

as the ones used in the undergraduate courses of automatic

control courses was considered. To evaluate the controller

parameters, MATLAB’s PIDTOOL function was used. This

evaluates the system and returns the values for the

proportionally, integrative and derivative constants that are

part of the model and adjust the PID controller for a better

performance. Fig. 4 shows the transfer function of the PID

controller obtained with MATLAB’s PIDTOOL.

D. Embedded System

Raspberry Pi 2 B+ is a small-scale computer, open

hardware and accessible in many hardware stores around the

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

world, useful to perform electronics projects. The operating

system distributions range that handles this embedded

platform is based on the Linux operating system: an open

source operating system and for free distribution. There are

several distributions available for testing, being the case of

Raspbian, the official manufacturer's distribution based on

Debian and optimized for Raspberry Pi, which has 35,000

available packages and pre-compiled for easy installation.

Wolfram Alpha has also preinstalled, which is also a

mathematical modeling tool, which for a moment was

considered to be used, but was dropped because additional

packages have to be paid. Raspberry Pi 2 B+ has an ARM

Cortex-A7 900MHz quad-core, and has a RAM of 1GB. The

board has four USB 2.0 ports, 40 GPIO pins, a video output

port Full HDMI, an Ethernet port, a combined audio port and

composite video as shown in Fig. 5 [7]. For data storage an

SD card is used, having there the operating system.

Fig. 4. Transfer Function for the PID controller obtained with

MATLAB’s PIDTOOL.

Fig. 5. Distribution of ports on Raspberry Pi 2 Model B+.

The board has 40 pins freely accessible to the user, 26 of

them are pins for general purpose or GPIO, useful for UART

and SPI communication. It has also pins that deliver voltages

of 3.3 V and 5 V with their respective ground pins. This pin

map is based on the BCM2835 distribution specified in Fig.

6. It is necessary to say that pins from Raspberry Pi have not

internal protection and is recommended connect no more than

3.3 V, although the same board can energize up to 5 V.

It is needed the use of an external ADC due to the lack of

an ADC module into the board, in order to abstract the analog

data that may be required during the control, not only in the

case of a specific plant, but also to any other use of the

embedded system for development purposes. It can be used

several programming languages with libraries, such as

Python, C ++, C, Basic, Java, among others, to use the general

purpose pins that interacts directly with the external

environment. The chosen ones were Python and C ++, due to

reasons inherent to their management and interaction with

Octave, which requires at the same time interaction with the

GPIO pins to interact with the plant and the sensor.

Fig. 6. BCM2835 distribution in Raspberry PI 2 B + GPIO.

E. Signal conditioning

Another important issue is the mechanical connection

between the plant and the sensor. It is also necessary the

conditioning of the input and output signals to both the

controller system and the controlled system, in order they can

communicate by the same parameters. Knowing the variables

of the plant and the sensor, the sensor must return a signal

voltage, which is a function of the speed regarding to the

plant. This voltage for the Raspberry must be connected to its

external ADC, ADS115. This analog signal is filtered by a

100uF capacitor to stabilize the data that enters to the ADC

to also reduce the noise. Due to the low frequencies handled

within the ADC and the sensor, a low pass filter is enough to

obtain a good signal reliability. Although the ADC supports

an input of 5.5 V, it has been placed protection diodes to the

ADC input and generator output to isolate the embedded

system circuit to avoid unexpected increases in current or

voltage surges, as this was unprotected. The circuit is shown

in Fig. 7.

Fig. 7. Signal conditioning between the sensor and the ADC.

This is also applicable to the connection between the ADC

and the sensor, since the model is feedback controlled. The

signal sent is a PWM, which is conveyed through one of the

Raspberry Pi’s pins to a transistor that acts as a switch and

amplifier. When this signal is applied and closes the circuit,

the current flows through the plant and if the voltage is

enough to break the inertia of the system, the motor starts to

move. As in the case of the sensor, for Raspberry Pi

protection a diode was placed to prevent an overcurrent (Fig.

8).

F. Software

Octave is a mathematical modeling tool based on an

interpretative high level language, and has the ability to solve

linear or nonlinear systems problems, like other experiments

while is modeled mathematically. Most of the programs made

in MATLAB are easily converted and interpreted by the

Octave format (with *.oc extension). An Octave property is

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

the use of a "batch-oriented" programming, aimed to carry

out tasks without the user interaction. In order to execute each

of the instructions send a group of input data processed in a

group that is a "batch processing", thus returning a group of

output data. For processes data must be collected in a group

or be stored in a set by this way, processing Octave like a unit.

Fig.8. Signal conditioning between GPIO and the plant

It is necessary to show that is possible to create scripts

using Octave through languages that can extend its properties,

e.g., Python, C ++, C, FORTRAN, among others. On the

other hand, Octave is free software, being distributed and

modified according to the needs, always under the GNU

General Public License (GPL) and also published by the Free

Software Foundation.

The next step was to install and test the control toolbox in

the Octave environment. Own repositories for Octave were

used. It can be installed a toolbox just writing the command

"-forge pkg install package_name". It was installed from the

Linux console using the "apt-get install octave-control"

command and the 2.3.52 package as the compatible version

with the Octave version installed. Sometimes, even though

the control toolbox is installed, this is not initialized in

Octave; in this case, it just loads the toolbox in the

environment with the "load pkg-name" command to be

executed in Octave [9].

III. TEST AND RESULTS

A. Results for the PID Test

Based on a classic PID control model as shown in Fig. 9

and using the Octave API in C ++, it is possible to make the

control of the proposed plant. To measure and display the

results was used the Analog Discovery Oscilloscope from

Digilent.

Fig.9. Model of the proposed system.

The reference was set to 3 V on the sensor output. The

stabilization takes about 20 seconds, which for the case of

study is not bad for the platform used (Fig. 10).

Fig. 10. Response taken with a fixed reference.

When a variable reference is added, the controller does not

stabilize the plant with the same easiness as it does when the

reference remains fixed (Fig. 11). As point to point is

analyzed, it is noticed that the change from the reference level

keeps an error in the tenth between 4% and 7%, and it

represents a big mistake for a motor dimensions chosen,

because the delivered values are in a range between 2.5 to 3.8

volts as was mentioned before.

Fig. 11. Results of the experiment 2 with PID. Variable reference.

B. Results for Software Test

It was observed in the previous section how the controller

stabilizes the plant, but to know how reliable is the control is

necessary to establish the time it takes to do this task from the

initiation of peripherals instantiation function PID, and of

course the time it takes to complete each iteration completely,

i.e., take the data, get the error, evaluate, adjust the value of

the work cycle and send the PWM module. These times are

described in Table I, where all the data is expressed in

seconds.

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

TABLE I

RUNTIMES PID CONTROLLER IN SECONDS

Test
Initializa

tion

Sum of

Iterations

Average

iteration

Slower

Iteration
Total time

P1 0.5726 292.06 0.2434 0.4363 292.6326

P2 0.5712 291.75 0.2431 0.4333 292.3212

P3 0.523 291.92 0.2433 0.4360 292.4430

P4 0.5671 291.68 0.24307 0.43506 292.2471

Aver

age
0.5585 291.8525 0.2432 0.4352 292.4110

Fig. 12 depicts a time histogram for one test. In the PID are

1,200 iterations and the highest concentrations are in the inner

loop iterations, which is around 0.24 seconds. This time could

be less, but it was necessary to add a delay in the program,

because the plant did not respond to the same speed as the

controller.

Fig. 12. Percentage of iterations for PID Controller.

C. Results for Hardware Test

The Quad Core ARM processor in the Raspberry has a

consumption of 12% without performing the PID execution

(Fig. 13). Likewise, when the program starts to instantiate

PID, the peripherals have a useful charge of 26%. Then,

charge decreases as control iterations start, e.g., the

acquisition and adjustment of the PWM controller output.

Fig. 13. Percentage of CPU usage while the Raspberry executes

PID control.

IV. CONCLUSION

The initial hypothesis was tested, assuming a controller run

on an embedded open source platform using system

mathematical models, such as is posed in undergraduate

courses.

Communication libraries were tested with embedded

system environment that allows abstracting the use of

general-purpose pins. A library in Python and another in C

++ were evaluated. It was verified that interaction between

Python and Octave with the Oct2Py library was useful only

to analyze groups event, but did not provide reliability to

generate continuous control event by event, as the C ++

library did.

 ACKNOWLEDGMENT

The authors would like to thank Vladimir Sanchez Padilla,

because of his review and advice in the technical literature of

the present paper.

V. REFERENCES

[1] Dukkipati, R. V. (2013). Matlab for Control System Engineers. New

Academic Science.

[2] Keesman, K. J. (2011). System Identification: An Introduction.

Springer.

[3] Love, R. (2010). Linux Kernel Development, Third Edition. Pearson

Education Inc.

[4] Marsh, N. (2010). Introduction to the Command Line. The Fat-Free

Guide to Unix and Linux Commands. Second Edition.

[5] Moore, A. (2014). FPGAs for Dummies, Altera Special Edition.

Hoboken: John Wiley & Sons, Inc.

[6] Moudgalya, K. (2008). Digital Control. Wiley-Interscience.

[7] Norris, D. (2014). Raspberry Pi Projects for the Evil Genius. McGraw-

Hill Education.

[8] Pérez Adrover, E. (2012). Introduction to PLCs: A beginner's guide to

Programmable Logic Controllers. Elvin Perez Adrover.

[9] Schmidt Hansen, J. (2011). GNU Octave. Beginner's Guide.

Birmingham: Packt Publishing.

[10] Terasic Technologies Inc. (2013). DE0-Nano User Manual.

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

