

Abstract—As the threat of global warming comes out

of the land of speculation and into the real world, the
demand for accurate, repeatable climate science is
growing at a tremendous pace. To help the ever-
increasing number of researchers with their ballooning
datasets, climate science tools need to improve in
tandem. The current paradigm of passing terabytes of
raw data over the network repeatedly and the wide
variety of semi-compatible tools needs to be replaced.
We are doing so with a single web application, able to
handle the diverse needs and growing demands of the
climate science world, following the same continuous
delivery deployment model as SaaS businesses.
Lawrence Livermore National Laboratory and the
ACME [1] project are uniquely suited to fill this void in
the scientist’s tool kit; we are at the crux of data
providers’ networks, HPC infrastructure, researchers,
and the developers building the tools. This paper will
discuss the challenges faced by this effort and the
prototype, which is currently in development.

Index Terms— SaaS, climate science, web
programming, data science, high performance
computing

I. INTRODUCTION
esearch into the climate is growing at an ever-
increasing rate, but the toolkit available to scientists has

remained relatively static. Each tool has marched forward in
features and version numbers, but the world of climate
science is ready for a shift into the world of rich web
applications. The ACME Web Dashboard project’s aim is to
take the many multifaceted tools distributed through the
scientists workflow and tie them together into a single web
interface. The Dashboard will allow researchers to divorce
themselves from the fine-grained details of their workflows,
and automate away all of the many laborious tasks that keep
them away from their actual work: doing science.

Manuscript received July 29, 2016. This work was supported in part by

the U.S. Department of Energy under grant (ESGF/ACME/AIMS funding
information)

S. A. Baldwin is a Computer Scientist, Mathematical Programmer in the
AIMS project at Lawrence Livermore National Laboratory, Livermore, CA
94550 USA (phone: 925-423-8954 email: baldwin32@llnl.gov)

M. B. Harris is a Computer Scientist, Mathematical Programmer in the
AIMS project at Lawrence Livermore National Laboratory, Livermore CA,
94550 USA (phone: 925-423-8978 email: harris112@llnl.gov)

From a tools programmer’s perspective, the four primary

facets of a climate scientist’s work are as follows: access to
data and models, running simulations on that data using
models, visualizing the results of the simulations, and lastly
publishing their results for others to examine and use.

Currently, all four of these domains are handled by

different applications. All of those applications force the
users to focus on learning the intricacies of individual
command line tools, and deal with the various
incompatibilities of those tools, both minor and major.

To retrieve data, users must either first install the Python
based Earth System Grid Federation (ESGF) [2] client and
its dependencies, or manually crawl through the web pages
of specific data nodes, use their Open ID credentials to
authorize the data, and then wait as terabytes of data are
transmitted over the wire and stored on their local machine.
They can run some initial analysis locally, but for any
serious computation, they have to get set up with whatever
HPC platforms are available to them, stage the model run,
and wait until it actually wraps up. Once the simulations are
completed, they bring the output to their local machines and
can begin analyzing the results. To do so, they install the
Ultrascale Visualization Climate Data Analysis Tool
framework (UV-CDAT) [3] and its whole suite of
dependencies, allowing them to visualize and interact with
the data. If they are on a supported platform (modern flavors
of Linux or OSX), this should go smoothly. However, if
they have to build from source, this process can take several
hours.

This process in its entirety is extremely complex and

forces climate researchers to spend an inordinate amount of
time battling with their computers instead of doing what
they do best—the actual science. Our aim with this project is
to create a single web interface to relieve the pain-points for
scientists while also reducing the computational and
bandwidth requirements for performing their jobs.

II. PROTOTYPE DESIGN

A. Frontend User Interface

Although climate science is complex, the user experience
doesn’t need to be. One of the problems faced by the climate
science community is reproducibility of results, partially
because every institution has a different method for setting
up and configuring their work environment. By reducing the
barrier to entry and unifying the interface and toolset, we

Science as a Service
Sterling A. Baldwin, Matthew B. Harris

R

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

can dramatically reduce the reproducibility problem, and
allow more scientists access to cutting edge tools.

The look of the user interface will go through many

revisions before we are ready to publish a finished product,
but the fundamentals will remain the same. The interface is
built around a tiling window manager written from scratch
in javascript, with each window encapsulating a service.
During the early phase of the project, several open source
windowing libraries were evaluated. After much
deliberation, each candidate was found wanting. The up-shot
of this process was that we were able to find what we liked
and disliked about all the alternatives and incorporate those
decisions into our own interface. For example, we
experimented with the jsPanel [6] library, which makes
attractive panels with the ability to move, resize, and easily
populate with content, but it was very difficult to get the
panels to interact with each other. We took the lessons
learned and went back to the drawing board.

Our windowing system allows the user to create many

sub-windows inside the browser window proper, with the
ability to move and resize the windows to whatever degree
they like. Each window is bound to a service, so that all
functionality based on that service lives inside the window.
This allows for a simple design, while also allowing each
window to easily query the status of the other services and
behave accordingly. This functionality was critical to us,
allowing us to easily create new windows types as we need
them, and create dynamic interaction between the service
windows while maintaining the autonomy of each window.
For example, the visualization service needs to be able to
query the data node service to find which node the user has
selected, but the user should not be able to close the data
window after selecting a node and still be able to use the
visualizer. Because the project is still in its early stages, it’s
important that we use an architecture that allows for
extensibility as the project grows.

Although the frontend can be seen as a wrapper for the

underlying services, it needs to expose those services
functionality in a way that the user understands intuitively
without the need for an excessive learning curve. To this
end, we strive to make the interface behave as much as
possible like a native desktop application, so that all the
assumptions they have about usability match with the
dashboards functionality. Much of the CDAT user base has
been doing climate work for years; therefore it’s important
to us that they are able to jump into using our product
without the tedium and frustration of figuring out how a new
environment works. In the best-case scenario, they should
understand how the interface functions simply by looking at
it.

A major design goal for the frontend was to make it
simple and intuitive, while simultaneously giving the user as
many options and as much customization as possible. We
cannot assume that scientists will be using the tool for
exactly the same thing, or have the same preferences on how
they would like their environment to look.

Additionally, the site needs to function on all modern
browsers and in all operating systems, allowing users to

move between computers and facilities without breaking any
of the features. To this end, we have implemented testing
using the open source Robot framework [7] developed by
Google. This allows us to quickly write tests to ensure that
as we add new features we don’t break older features, and
that all features function across all target browsers.

B. Backend Servers and Service Interface

Simultaneous to the frontend effort, the backend has been
in development to manage the users interaction with the
service layer. The backend is broken into two distinct parts:
a) the service layer, and b) a python based Django [5] web
server to manage these services and direct data between the
user and the 3rd parties. Although the user would never
know these three hidden layers exist, by breaking them apart
we reduce overall complexity, allowing each distinct part to
exist independently and speed up development by creating
each service concurrently.

The service layer consists of three main components: the
interaction with the ESGF high capacity data store, the
visualization server (CDATWeb), and the secure high
performance compute node (Velo [4]) with its on-site data
store. One of the main challenges of the project so far has
been developing the service layer for each of these while
their APIs are still in active development. Of these three
tools, only the ESGF has a stable development ready API,
while CDATWeb and Velo are themselves only in the
beginning of their development life cycle.

 The volatility of the APIs the project depends on has
repeatedly shown that going with a Django backend was the
correct choice. Besides all the benefits of using a framework
written in python, using a Model View Controller (MVC)
architecture makes adapting to changing dependencies much
less painful. By adopting the MVC framework, we can build
the database model, and the users view interaction
independently of the more volatile controller allowing us to
make changes to how the web server interfaces with the
Velo and CDATWeb APIs while not worrying that it will
break things elsewhere in the project.

The Django server’s main purpose is to work as a hub
interfacing with the 3rd parties—but also much more. In
addition, it allows us to cache responses as well as
minimizing data duplication, while maximizing code
reusability. It works as both a request dispatcher to the
service layer as well as a short-term data store, reducing the
amount of times that large batches of data need to be
transmitted through the network.

By physically locating the Django server along side the
visualization and Velo servers, we are able to cut down on
network lag as well as bandwidth overhead. One of the
compelling reasons for this whole project has been the issue
of repeatedly moving very large datasets. By placing the
service hub in the same facility as the data warehouse and
HPC compute nodes, we can cut down hugely on both the
scientists time wasted waiting to download these terabyte
sized files as well as the amount of duplication involved.

Instead of requiring each user to have a copy of the

entire dataset, the Django server can get a copy from the

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

ESGF node, visualize it, and only send the results outside of
the data center. This cuts down hugely on the amount of
time and space needed by reducing the time and space
requirements from scaling linearly—at least one copy per
user stored and at least one copy transmitted—to a constant
of one copy in the ESGF nodes and when required, one copy
maximum stored on the Django server. This creates
additional benefits if two users are accessing the same data,
as the Django server doesn’t even need to do the step of
retrieving the data from ESGF but instead can serve many
users from the same dataset simultaneously. Effectively, this
changes the process from a linear time/space complexity
O(n) to constant complexity O(1).

III. CHALLENGES OF IMPLEMENTATION

As the ACME dashboard project enters full swing, we

are continuing to discover unforeseen challenges. All three
of the main services that the climate dashboard interacts
with are moving targets, quickly changing as they go
through their own development cycle. Fortunately, two out
of three of them (ESGF and CDAT) are not only open
source, but are being developed by other teams also out of
the Lawrence Livermore National Labs, making
collaboration much easier. The other service, Velo, has the
highest bar for security as it directly interfaces with the HPC
infrastructure itself.

Managing the security of credentials for all these
services posed another challenge. Each one of the external
APIs has their own method of managing user permissions.
For the dashboard prototype, we have been assuming that all
of our users would already have credentials and permission
to use each of these services, and so although we have a
method of storing their credentials so we can access their
accounts, we have yet to design or implement a method of
creating new users. As we move towards production,
working with the other teams to implement this will be a
considerable challenge as they all have their own
authentication mechanisms, none of which support new user
creation through their APIs.

An additional challenge will be scaling the project to

work with generic HPC resources. Currently, the project is
targeting the Oakridge National Lab and their Titan
supercomputer as the first deployment site, and the Velo
service is tailored to specifically work with Titan. After we
have deployed the prototype and are able to find a candidate
for a second site, we may be forced to create another level of
abstraction and encapsulate the Velo service in a generic file
access and HPC job service wrapper. It is very possible that
we will be forced to custom tailor each deployment with
their specific HPC configuration.

IV. CONCLUSION
Climate science is growing in importance to global

political leaders as well as scientists. As interest grows, the
tools to do the science need to grow as well. The current
paradigm of each researcher hand crafting their environment
needs to be replaced by a fast and more usable framework of

Science as a Service.
By creating a single tool encapsulating the data service,

the HPC service, and the visualization service, we can
greatly increase the effectiveness of individual researchers,
as well as the international climate modeling effort. At the
same time, we can relieve pain points in the key challenges
of reproducibility and the explosion of computation resource
demands. The scale of datasets and modeling complexity is
ever growing, and so our toolsets must evolve to handler
bigger data, and ever increasing demand.

ACKNOWLEDGMENT
We would like to thank each member of our team for all

their hard work and dedication to the project and its goals:
Dean Williams, Renata McCoy, Matthew Harris, Jonathan
Beezeley, John Harney, Samuel Fries, Bibi Raju, Brian
Smith, Sterling Baldwin, Dakotah Webb and every member
of the ACME project.

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract DEAC52-07NA27344.
LLNL-CONF-674391

 REFERENCES
[1] "New Project Is the ACME of Addressing Climate Change."

Lawrence Livermore National Laboratory, 19 Aug. 2014. Web. 24
June 2016.

[2] Pascoe, Stephen. "Esgf-pyclient Documentation." Welcome to Esgf-
pyclient Documentation — ESGF Pyclient 0.1.4b Documentation.
Earth System Grid Federation, 2012. Web. 24 June 2016.

[3] "Ultrascale Visualization." Home. Lawrence Livermore National Lab,
n.d. Web. 24 June 2016.

[4] "VELO." Computational Sciences & Mathematics. Pacific Northwest
National Labratory, May 2015. Web. 24 June 2016.

[5] "Django Overview." Django Overview. N.p., n.d. Web. 25 June 2016.
[6] "JsPanel a JQuery Plugin to Create Multifunctional Floating

Panels."JsPanel. N.p., n.d. Web. 25 June 2016.
[7] "ROBOT FRAMEWORK." Robot Framework. N.p., n.d. Web. 25

June 2016.

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

