
A Survey on Migration Process of Mobile Agent

Oyediran M. O, Member, IAENG, Fagbola T. M, Olabiyisi S. O, Member, IAENG, Omidiora E. O,

Fawole A. O Member, IAENG

Abstract- Mobile agent is a software object that migrates

through many nodes of a heterogeneous network of computers

under its own control in order to perform task using resources of

these nodes, during the past several years, mobile agent has

received significant attention. Not only in the wide range of

commercial and law enforcement applications, but also the

availability of feasible technologies, Although current migration

process of mobile agent systems have reached a certain level of

maturity, Autonomous migration of mobile agent is an area that

has witnessed a lot of research activity and their development is

still limited by the conditions brought about by many real

applications. Several approaches have been proposed for the

migration process of mobile agent. This paper provides an up-to-

date survey of migration process of mobile agent research. To

present a comprehensive survey, we categorize existing mobile

agent migration process approaches and present detailed

descriptions of representative methods within each category with

special focus on the soft computing approaches.

Index Term - Mobile agent, Migration, Itinerary

I INTRODUCTION

In the past few years, computer systems have evolved from

monolithic computing device to much more complex client-

server environment (Osunade, 2007). Now, new phase of

evaluation allows complete mobility of application code

among supporting platforms to form a loosely coupled

distributed system. Mobile-agent paradigm is one such

technology. Mobile agents paradigm has captured researchers‘

and industry‘s attention long time ago because of its

innovative capabilities and attractive applications (Preeti,

Sattyam and Pragyan, 2012). Mobile agent is a software entity

that migrates from one host to another, performing data

collection and software configuration tasks on behalf of a user,

it can migrate among computers and agent runtime

environments (ARE). (Mohamed, khaoula and noreddine,

2012).

Manuscript received June 7, 2016; revised June 9, 2016.

Oyediran M. O (Member, IAENG), is with Department of computer science

and engineering LAUTECH, Ogbomoso, Nigeria. (+2348038637607,
mayor_yoppy02@yahoo.com). Fagbola T. M, is with Department of

Computer Science FUOYE, Oye – Ekiti, Nigeria. Olabiyisi S. O (Member,

IAENG), is with Department of computer science and engineering

LAUTECH, Ogbomoso, Nigeria. Omidiora E. O, is with Department of

computer science and engineering LAUTECH, Ogbomoso, Nigeria, Fawole

A. O (Member, IAENG) is with Department of Electrical Engineering The

Polytechnic Ibadan, Nigeria.

The following properties distinguish mobile agents from other

computing programs:

 Mobility- Mobile agent has the ability to move from

one host to another, either by moving the agent's code

or by serializing both code and state to allow the

agent to continue the execution in a new context.

 Communication - Mobile agent must have the

ability to communicate with others agents of the

system in order to exchange information and benefit

from the knowledge and expertise of other agents.

 Adaptability - Mobility of agent required to learn

about user's behavior and adapt it to suit the user.

Indeed, to evolve adequately the differences between

heterogeneous systems, the agent must be able to

adopt the changes during the execution.

 Autonomy- Mobile agent must be able to make his

own decision to be performed to achieve the user's

tasks, also he must be able to migrate from one

machine to another in the network and execute the

user's tasks.

 Persistence - A persistent agent it will be able to

retain the knowledge and state over extended period

of time to be accessed later on. Once the mobile

agent is set up, it is not dependent on system that has

been initiated and it is automatically recovered when

the agent is terminated or when it is flushed from

memory to the database.

Mobile agent migration can be use instead of communications

between a server-side and a client-side program. This enables

to develop distributed systems, such as a ubiquitous

computing environment, without being aware of

communications APIs (Application Programming Interface)

and protocols (Higashino, Takahashi, Kawamura and

Sugahara 2012). MA have several advantages in distributed

system (a) By migrating to the other side of an unreliable

network link, an agent can continue executing even if the

network link goes down, even this mobility property makes

mobile agents particularly attractive in mobile computing

environments, (b) By migrating to an information resource, an

agent can invoke resource operations locally, eliminating the

network transfer of intermediate data (Soheil, Mohammad,

Behzad and Ahmad). However, this paper, reviewed the

current development of mobile agent migration process. It is

organized as follows: Section 2 review related works on

migration process. In section 3 materials and methods

(comparative evaluation metrics) of mobile agent. Section 4

results, and a summary and discussion of open problems and

unaddressed research issues are presented in Section 5.

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

II LITERATURE REVIEW

One of the characteristics of mobile agents is the ability to

transfer from host to hosts over a network, migration of

mobile agent means that the movement of an agent to another

location in the network (e.g. computer) and transparent

continuation at the point before the migration occurred,

several research have been done on mobile agent migration

process, Garima and Prakash, 2012, presented mobility and

migration pattern of mobile agent, in the paper, migration

pattern and migration strategies were discussed, he identify

that there are various migration strategies. One possibility is to

send the complete program (whole code) over the network.

The opposite is to transmit only certain required parts (units)

of the code. Another choice is whether to push code over the

network, i. e. code will be sent over the network in advance, or

to pull (download) code from a reachable location, i. e. the

mobile agent (the execution unit) loads code from some

suitable source. If the push code variant is used, code could be

sent to the next location only, or to all locations on the agent‘s

itinerary. One of the pitfalls of the "push strategy" is that it

drives classes that could not have been used in the next

locations or could never have been used at all. On the other

hand, a "pull strategy" requires a fast reliable retained

connection or at least a fast way to reconnect to the agent

source through the agent lifetime (Xu and Qi, 2008). All of

these strategies can be classified as follows:

Push-all-to-next

The code and all referenced objects are totally transferred to

the next location

Push-all-to-all

The complete code of the agent are transmitted to all

destination platforms the agent intending to visit so it needs all

itinerary to be known in advance.

Pull-all-units

The agent only transmits the data and after the destination

receives it starts to download all class files immediately when

the first class file must be downloaded.

Pull-per-unit

After the destination receives the data, it tries to download the

needed class file only.

Framework from mobile agent migration were also discussed,

the typical behavior of a mobile agent is to migrate from one

site to another from time to time. During the process of

migration, the current site, i.e. the one the agent currently

resides on, is called the Home platform and the other site to

which the agent wants to migrate to is called the Destination

Platform. The sender and the receiver must communicate over

the network and exchange data about the agent that wants to

migrate. Thus, it was said that some kind of communication

protocol is driven, and they call that the migration protocol

(Peine, 2002). Some systems simplify this task to an

asynchronous communication, comparable to sending an

electronic mail, whereas other systems develop rather

complicated network protocols on top of TCP/IP. The

migration process contains six steps, which are executed in

sequence. The first three steps are executed on the home

platform:

1) Initialize the migration process and suspend thread: The

process of migration typically starts with a special command,

the migration command, by which the agent announces its

intention to migrate to another site, whose name is given as

parameter of the migration command. The first task for the site

is now to suspend the execution thread of the agent and to

guarantee that no other child thread is still alive. This

requirement is important for the next step, where it is

imperative that data and state are frozen and cannot be

modified later on.

2) Capture agent’s data and execution state: The current state

of all variables (the data) of the agent is serialized, i.e. their

current values are written to an external persistent

representation, e.g. a memory block or a file. The agent‘s state

is also stored there, so that the point of suspension is known.

Result of the serialization process is the serialized agent which

is a flat byte stream that consists of the agent‘s data and state

information.

3) Transfer the agent: The serialized agent is transferred to the

destination platform using a migration protocol. Whether any

code is sent to the Destination platform depends on different

parameters.

The last three steps (4-6) are executed on the Destination

platform.

4) Receive the agent: The serialized agent is received using

the migration protocol. The destination platform checks

whether the agent can be accepted based on information about

the agent‘s owner and the home platform. The destination

platform may filter out agents that come from sites that are

unknown or not trusted.

5) Desterilize the agent: The serialized agent is desterilized,

i.e. the variables and the execution state are restored from the

serialized agent. The result of this step should be an exact

copy of the agent that existed on the home platform just before

reaching the migration command.

6) Start agent execution in new thread: The destination

platform resumes agent execution by starting a new thread of

control. At least when resuming execution, the agent‘s code is

needed. In this general framework we make no assumption

about how the code is transferred to the destination platform.

One possible technique is for example that the destination

platform loads the code from the agent‘s home site or its code

server.

Preeti, Sattyam and Pragyan, 2012 developed a secure

migration process for mobile agents from one host to another

host named Mobile-C The migration process of mobile agents

and ACL messages in Mobile-C is inspired from the SSH

protocol. The security protocol was based on SSH because

SSH already contains the key features required for our security

process. The SSH protocol provides CIA system for the

transfer of data without utilizing a central server. In his work

for authentication, integrity and confidentiality he use several

Algorithms. They are as follow:

Authentication process

Authentication refers to a process in which an agency ensures

that the other agency in a conversation is in fact who it is

declared to be. Before the secure transfer of a mobile agent

between two agencies, they must authenticate each other. Each

agency in a network contains a list of known hosts provided

by the administrator (Xu and Qi, 2008). This list provides

RSA public keys of other trusted agencies in a network.

Before agency A wants to transfer a mobile agent to agency B,

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

agency A must verify that agency B contains a correct private

key for the public key in agency A‘s known-host list. In

addition, agency B must verify that agency A contains a

correct private key for the public key in agency B‘s known-

host list.

Confidentiality

ISO defines confidentiality as ‗ensuring that information is

accessible only to those authorized to have accesses‘. This

means that while a mobile agent is migrating from agency A to

agency B, it would not be accessible in an understandable

form by any adversary. Mobile-C uses an AES 256 bit key to

encrypt the mobile agent at the sending agency and to decrypt

it at receiver agency. The insurance of security of this process

relies on a secure transfer of the AES 256 bit key. Public key

en-/decryption is used to transfer the AES key securely. The

AES key is exchanged between two agencies in the

authentication process (Tentori, Rodrıguez and Vara, 2011).

This eliminates the further exchange of messages between two

agencies for the AES key transfer. After successful

authentication, the sender agency encrypts the mobile agent

with the AES key and the receiver can decrypt it. According to

National Institute of Standards and Technology (NIST) AES

with 256 bit key size is safe to use for data encryption until

2030. The same nonce (as used in the authentication process)

is used as session identifier during the transfer of both the

AES key and the mobile agent. This is to avoid the replay

back attack on agencies.

Integrity

Integrity is a process to ensure that the contents of a mobile

agent are the same as sent by the sender agency. In other

words, a successful integrity check should ensure that the

agent was not tampered with while in transit from the sending

agency to the receiving agency. Mobile-

C uses a SHA2 hash code to check the integrity of mobile

agents.

Random number generation

True random number generation is always an issue and an

important concern for cryptographic algorithms. The

programming language C‘s random function has

vulnerabilities and is thus not recommended for use in

cryptographic applications. For this reason, Mobile-C uses

Hardware.

Volatile Entropy Gathering and Expansion (HAVEGE) for

high random number generation.

It is a heuristic software approach to generate empirically

strong random numbers (Peine, 2002). Mobile-C uses

HAVEGE to generate the nonce, challenge text, and AES 256

bit key during the mobile agent migration process.

Mohamed, Khaoula and Noreddine, in the paper they present

the design and the implementation of Mobile-C, an IEEE

Foundation for Intelligent Physical Agents (FIPA) compliant

agent platform for mobile C/C++ agents. Such compliance

ensures the interoperability between a Mobile-C agent and

other agents from heterogeneous FIPA compliant mobile agent

platforms. Also, the Mobile-C library was designed to support

synchronization in order to protect shared resources and

provide a way of deterministically timing the execution of

mobile agents and threads. The new contribution of this work

is to combine the mechanisms of agent migration and their

synchronization.

Higashino, Takahashi, Kawamura, and Sugahara, 2012

propose a cache mechanism for mobile agent migration. They

focus on an agent runtime environment and try to reduce data

traffic in mobile agent migrations. In the proposal, an agent

runtime environment caches agent codes and agent status.

Cached codes and status are reuse when a mobile agent comes

back again. Thus, the method enables to reduce data traffics

caused by mobile agent migration at the agent runtime

environment level. The method also allows flexible

implementations of mobile agents, since an agent runtime

environment is independent from the mobile agent behaviors.

The method was applied on a mobile agent framework, called

Maglog, and conducted experimental results.

Rani and Batra, in 2014, perform a comparison of migration

strategy of mobile agent system, according to the paper, there

exist three migration strategies.

(A)Ideal Migration Strategy: it is also called static

migration. In this approach, a explicit itinerary graph is

created based on its initial itinerary, after creating itinerary

graph load information of itinerary graph is fetched. The

drawback of this approach is that the change of load will

outdate the edge and it requires a centralize server.

(B)One step Migration: This approach finds an optimal

solution step by step during migration. It considers only the

load on adjacent vertex. The drawback of this approach is that

it does not provide the global optimal solution.

(C)Learning Migration Strategy: This approach tries to find

out a globally optimal solution, in this approach during each

time, agents records the software and hardware load

information of a network. Next time, agent can use those

travel experiences accumulated during previous migration.

Each time, the old experiences will be updated by new

information collected by agent. Rani and Batra, in 2014 also

discuss, classification of itinerary, types of itinerary and

itinerary planning of mobile agent.

According to Rani and Batra, Itinerary is the set of sites that

MA has to visit, it can be classified as:

1. Static

2. Dynamic

1) Static planning: When the itinerary is fixed, the agent

migration path is known at the MA‘s creation time and it does

not change during the agent‘s execution. For instance, fixed

itinerary agents are suitable for visiting a predetermined list of

devices to collect data, where the itinerary is typically

supplied by the user.

2) Dynamic planning: In dynamic planning, the mobile agent

autonomously determines the source nodes to be visited and

the route of migration according to the current network status.

Types of Itinerary;

 1. Static Itinerary Static Order (SISO)

2. Static Itinerary Dynamic Order (SIDO)

 3. Dynamic Itinerary Dynamic Order (DIDO)

If we know the different server address then it is best to use

the static itinerary agent. If we do not know the server address

then it is better to use the dynamic itinerary agent.

1. Static Itinerary Static Order (SISO) In static itinerary

the list of the remote host address is given by the owner

at the time of dispatching the agent, the mobile agent

should visit only the listed remote host and return to its

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

home. In SISO, the agent should visit only the given

remote host in the given order.

Fig 2: Static Itinerary Static Order

2. Static Itinerary Dynamic Order (SIDO) In SIDO, the

agent should visit only the given list of remote host in the

dynamic order. The order of visiting the remote host is

decided based on the current conditions (shortest path or

network traffic based routing) of the host, where the

agent is currently residing.

Fig. 3 Static Itinerary Dynamic Order

3. Dynamic Itinerary dynamic Order (DIDO) In DIDO

mobile agent, the client only knows the very first

remote server for sending the mobile agent whether the

required content is there or not. The remaining remote

server will be visited with the help of the server where

the agent is currently residing that is based on the

requirement of the agent. DIDO mobile agent will roam

with two different things.

1. Query Based

2. Non Query Based

1. Query Based Approach In query based approach

the client will send the mobile agent with the query for

the particular content to the first remote server. The first

remote server will be selected with the name. If the

content is there than agent will collect the information

otherwise it will not get any information and ask the help

of the server to transfer it to the next server.

2. Non Query Based Approach In Non query based

approach it will ask the server to forward it to the next

server which is having the information relevant to the

query (in case of query based) otherwise it will ask the

server to forward to the nearby servers. After visiting the

particular number of servers (decided by the client),

agent will return back to the home (client) with the

information.

III MATERIALS AND METHOD (Comparative

evaluation metrics)

It was recommended to use a standard evaluation

metric to benchmark any developed migration process in

mobile agent, table 1, list some famous evaluation metrics.

IV RESULTS, DISCUSSION AND REMARKS

In this section, the results from the aforementioned evaluation

metrics were discussed. Rani and Batra (2014) in his paper,

presented his result as follows: When the size of MA code is

varied from 7.5K to 160K, the freezing time of caching-added

scheme is lower than the freezing time of without caching

scheme. As the size of MA code increases, the performance of

the scheme is improved from 118% to 125%, which was

calculated by adding the freezing time of all the nodes or sites

visited by the MA, Zhong Zhighui (2011) developed an ant

colony algorithm based on path planning for mobile agent

migration the, improved ant colony algorithm converges much

faster than the basic ant algorithm and ant colony algorithm,

the convergence of the cycles were increased by 28% and

20%. Convergence speed can not only provide better quality

solutions, but also reduce the time to complete the task.

Higashino, Takahashi, Kawamura and Sugahara

(2012), developed mobile agent migration based on code

caching, and uses migration time as evaluation metric, the

migration time of the model with cache is about half of

without cache. To be precise, it is 52% without cache,

Osunade and Atanda in 2008, in his research work titled

analysis of two mobile agent migration patterns, uses

transmission time as evaluation metric The transmission time

for the mobile agent to migrate from the home host to the first

host on the itinerary is dependent on the execution time used

to load all needed code units on that host; the agent data and

state; and the transmission delay between the two hosts. The

equation is as follows:

ETT = ETX*
𝑆

𝐵

Where,

ETT - Expected Transmission Time

ETX - Expected Transmission Count

S – Average size of packets

B – Current link Bandwidth

The result shows that the model performs better than the

existing model in terms of transmission time.

V CONCLUSION

In this paper, we presented some major issues on migration

process, the likes of: migration pattern, migration strategies,

security aspect of mobile agent, classification and types of

itinerary of mobile agent, evaluation metrics of mobile agent

and results from different evaluation metric, were all discussed

and reviewed. In summary, we present a comprehensive

survey on migration process of mobile agent. We have tried

our best to provide researchers in the field with the up-to-date

information of research on migration process of mobile agent.

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

Table 1: Evaluation metrics of mobile agent

AUTHOR/ YEAR TITLE EVALUATION METRIC

Rani and Batra (2014) A Comparison of Migration Strategy of

Mobile Agent System

Freezing time of mobile agent

Zhong Zhighui (2011) Ant Colony Algorithm Based on Path

Planning for Mobile Agent Migration

Convergence speed

Higashino, Takahashi, Kawamura and

Sugahara (2012)

Mobile Agent Migration Based on Code

Caching

Migration time of mobile agent

Osunade and Atanda (2008) Analysis of two mobile agent migration

patterns

Transmission time of mobile agent

Osunade (2007) Data migration patterns for java-based

mobile agent systems

Transmission time and network load of

mobile agent

Oyediran et al., (2016) Development of an optimized mobile

agent migration pattern for pull-all data

strategy

Transmission time and network load of

mobile agent

REFERENCES

[1] Mohamed B, Khaoula A. and Noreddine G:

―Communication and migration of an embeddable

mobile agent platform supporting runtime code

mobility‖ International Journal of Advanced Computer

Science and Applications, 3(1), 50-56. 2012.

[2] Osunade: ―Data migration patterns for java based mobile

agent system‖ {unpublished Ph.D Thesis} in the

department of computer science, university of Ibadan, 1-

80. 2007.

[3] Osunade S. and Atanda F.A.: ―Analysis of two mobile

agent migration patterns‖, journal of mobile

communication, 2(2), 64-72. 2008.

[4] Rani S., Batra E. S: ―A comparison of migration strategy

of mobile agent system‖, International Journal of

Advanced Research in Computer Science and Software

Engineering. 4(9), 117-122. 2014.

[5] Zhong Zhishui: ―Ant Colony Algorithm Based on Path

Planning for Mobile Agent Migration‖, Elsevier Science

Direct. 23, 1-8. 2011.

[6] Higashino M., Takahashi K., Kawamura T., and

Sugahara K: ―Mobile agent migration based on code

caching‖, 26th International Conference on Advanced

Information Networking and Applications Workshops,

651 – 656. 2012.

[7] Preeti S., Sattyam K. M., and Pragyan V: ―A secure

migration process for mobile agents form one host to

another host‖, Journal of computer Applications, 5(4),

117 – 123. 2012.

[8] Garima verma, Atma Prakash Singh: ―Mobility and

migration pattern of mobile agent‖ Azad Institute of

engineering & Technology, Lucknow, India, 1 – 5. 2012.

[9] Soheil J., Mohammad H., Behzad M and Ahmad K:

―Clone-based mobile agent itinerary planning using

separate trees for data fusion in WSNS‖, International

Journal of Wireless & Mobile Networks, 4(4), 228 –

244. 2012.

[10] Bellifemine F., Caire G., Poggi A., Rimassa G: ―A

software framework for developing Multi - agent

applications‖, Lessons learned. Information and

Software Technology; 50(1–2): 10–21. 2008.

[11] Gray R., Cybenko G., Kotz D., Peterson R., Rus D:

―Applications and performance of a mobile-agent

system‖ Software—Practice and Experience; 32(6):543

573. 2002.

[12] Peine H: ―Application and programming experience with

the Ara mobile agent system‖. Software—Practice and

Experience 2002; 32(6):515-541. 2002.

[13] Kawamura T., Hamada Y., Sugahara K., Kagemoto K.,

and Motomura S: ―Multi-agent-based approach for

meeting scheduling system,‖ Proceedings of IEEE

International Conference on Integration of

Knowledge Intensive Multi - Agent Systems, pp. 79–84.

2007.

[14] Jurasovic K., Jezic G., and Kusek M: ―A performance

analysis of multi-agent systems,‖International

Transactions on Systems Science and Applications, vol.

1, no. 4, pp. 335–342. 2006.

[15] Xu Y. and Qi H: ―Mobile agent migration modeling and

design for target tracking in Wireless sensor networks,‖

Ad Hoc Networks, vol. 6, no. 1, pp. 1–16. 2008.

[16] Wu Q., Rao N.S.V., Barhen J: ―On computing mobile

agent routes for data fusion in distributed sensor

networks,‖ IEEE Transactions on Knowledge and Data

Engineering, vol. 16, no. 6, pp. 740–753. 2004.

[17] Zhirou Z. and Wengang C: ―Model and optimization of

mobile agent‘s migration in grid,‖ Proceedings of the

2nd International Conference on Bio-Inspired

Computing: Theories and Applications (BICTA ‘07), pp.

127–130. 2007.

[18] Tentori M., Rodr´ıguez M., and Favela Vara J: ―An

agent-based middleware for the design of activity-aware

applications,‖ IEEE Intelligent Systems, vol. 26, no. 3,

pp. 15–23. 2011.

[19] Al Shrouf F, Abusaimeh H, Al Shqeerat K, Al Omari M:

―Evaluating time performance optimization analysis for

mobile agent message communication using assignment

computing agent‖. Journal of Applied Sciences;

12(12):1290-1296. 2012.

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

