
Comparison of Apriori and Parallel FP Growth over
Single-node and Multi-node Hadoop Cluster

Chandanmeet Narula, Geeta Sikka

Abstract—Frequent itemsets play a fundamental role in
finding fascinating patterns in databases, thus helping in many
data mining tasks. It helps to identify set of items, characteristics,
symptoms etc. that very commonly occur together in our
database. To find these itemsets, the typical algorithms known to
us are Apriori algorithm and FP (Frequent Pattern) Growth
algorithm. In this paper, we implemented these two algorithms
over Hadoop MapReduce platform and compared the execution
time of both the algorithms. We found that over Hadoop
platform also, FP Growth performs better than Apriori
algorithm.

Index Terms: Frequent Itemsets, Apriori, FP Growth,
Hadoop MapReduce, Comparison

I. INTRODUCTION

Today we are in the age of information. We are collecting
tremendous amount of information from various sources with
the help of our sophisticated technologies such as computers,
satellites etc. The information is in the form of business
transactions, scientific/personal/medical data, digital media
and many more forms. In this information age, this
information leads to power and success. But this enormous
information simply does not lead to decision making. There is
need to develop powerful means for analyzing and interpreting
the data in order to extract interesting knowledge from this
which can be helpful in taking decisions. So, here Data
Mining and its techniques come into picture.

The organization of paper is stated as: Section 2 puts light
on basic concepts about Association Mining which is one of
the data mining techniques. Under it, we will see the two
popular mining algorithms: Apriori and FP Growth algorithm.
Section 3 will give brief idea about Hadoop and Map-Reduce
Approach. Section 4 presents the literature survey done. In
section 5, we will see Apriori and Parallel FP Growth
algorithms over Map-Reduce and we will make the
comparison of the execution time of two algorithms over
Hadoop Map-Reduce Platform. Finally, the section 6 derives
the conclusion of paper.

Chandanmeet Narula is pursuing M Tech from NIT Jalandhar, India and the
email id is: chandannarula20@gmail.com

Geeta Sikka is Associate Professor and Head of Computer Science
Department at NIT Jalandhar, India and email id is: sikkag@nitj.ac.in

II. BASIC CONCEPTS

First, Association Rule Mining is used to discover relations
between various items in large databases [10] using different
measures such as minimum support, confidence and other
measures. Association rules were introduced for discovering
patterns between items in large-scale transaction data by
Rakesh Agrawal et al. [10]. These association rules are used in
many applications such as market-basket analysis, web usage
mining, in unmasking the intrusions, stable production and
bio-informatics etc.

 Association Rule Mining is a two-step process:

 Generation of Frequent Item-sets: Generate all item-sets
whose support ≥ minimum support minsup.

 Generation of Rules: The association rules are generated
using the generated frequent item-sets. They should satisfy
the minimum support and minimum confidence criteria.

Two Important Algorithms for Association Rule Mining are:

A. Apriori Algorithm

It follows Apriori principle which states that the subsets of
frequent itemsets are also frequent. Say itemset: {PQR} is
frequent, it means: P, Q, R, PQ, QR, and PR are also
frequently occurring in transactional database

 In the first pass of the algorithm, the frequency of
occurrences of each item is counted and frequent 1-itemset
is determined. [10].

 The next pass of the algorithm, say pass k, consists of two
phases:
o The frequent itemsets of previous pass are joined with

itself to find candidate itemsets for the next pass using
the Apriori Candidate Generation Function [10].

o Then, we need to check which of the itemsets out of all
candidate itemsets are frequent, hence the database is
scanned and the support of candidate itemsets is found
out.

 The flow chart for Apriori algorithm is shown in Fig 1.

B. Frequent Pattern (FP) Growth Algorithm

Here, frequent itemset mining is possible without the
generation of candidates. Only two scans of database are
needed. It consists of two steps:

 FP tree is built which is compact in size and for its
construction; the database is scanned only twice.

 Once the FP tree has been constructed, the frequent
patterns will be extracted from it.

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

Fig. 1. Flow chart of Apriori Algorithm

This has been outlined below with the help of example
where Table I shows the list of transactions in our
transactional database. Table II contains the support count of
all the items present in the input database. Table III shows the
transactions sorted according to the frequency of items. The
threshold i.e. minimum support count is 2. So the
items/itemsets whose occurrence count is less than 2 are
removed from the frequent item list. Fig. 2 shows the
constructed FP tree. From this generated FP-tree, conditional
pattern base, conditional FP-trees are created from which the
frequent patterns are generated as shown in Table IV.

 These algorithms are applied over large data sets. These
huge datasets present new challenges such as data storage and
data transfer. To manage the data resources and data flow
between the storage and computing resources is becoming the
mail bottleneck, that too on a single sequential machine. The
solution for the above problem is parallel and distributed
computing. Here, Hadoop comes into picture which provides
parallel computation and is used to deal with Big Data.

C. Big Data And Hadoop	
 Each day, the huge amount of data is getting generated by

various sources such as climatic sensors, social media,
purchase transaction records etc. and this data is accounting to
2.5 quintillion bytes per day. The facts state that 90% of this
data has been produced in just last two years. Due to volume,
variety of this data, it is termed as big data [11]. This is not
just the matter of size of data that is being generated; rather it
helps to gain deep understanding of new and originating data
that can help in making the businesses more agile, and finding
answers to questions that seemed impossible in the past.

Table I: Transactional Database

Table II: Frequent of Items

Table III: Transactions order according to Frequency of Items

Fig. 2. FP Tree Construction

TIDs List of

Items

1 a b e

2 b d

3 b c

4 a b d

5 a c

6 b c

7 a c

8 a b c e

9 a b c

b 7

a 6

c 6

d 2

e 2

TIDs List of

Items

1 b a e

2 b d

3 b c

4 b a d

5 a c

6 b c

7 a c

8 b a c e

9 b a c

 Start

Get Frequent Items

Generate Candidate Itemsets

Get Frequent Itemsets

Generate
Set=Null

Generate Strong Rules

Yes

No

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

Table IV: Conditional Pattern Base, Condition FP tree and Frequent Pattern Generation from the constructed FP-tree

Item Conditional Pattern Base Condition FP-tree Frequent Patterns Generated

e {(ba:1), (bac:1)} {b:2, a:2} be:2, ae:2, bae:2

d {(ba:1),(b:1)} {b:2} bd:2

c {(ba:2),(b:2),(a:2)} {b:4, a:2} ,{a:2} bc:4, ac:2, bac:2

a {(b:4)} {b:4} ba:4

Hadoop is the heart of platforms for assembling Big Data

now-a-days. It uses a distributed computing architecture that
consists of multiple servers installed on commodity hardware,
thus making it very inexpensive to scale and support
extremely large data stores. [12] Hadoop is moreover an
open source framework. We can say that Hadoop provides a
reliable, scalable platform for storage and analysis. Map-
Reduce is a batch query processor. It runs an adhoc query on
your whole dataset and generates the result in reasonable time.
It provides programming model that abstracts problem from
disk read and writes and transforms into a computation over a
set of keys and values. You just need to write your program in
terms of Map and Reduce functions and the input data should
have the form of key-value pair. The map function processes a
key/value (K1,V1) pair to generate a set of intermediate
key/value pairs (K2,V2), and the reduce function merges all
intermediate values associated with the same intermediate key
and outputs a new set of key/value pair(K3,V3) [13]. The
processing will be taken care of by the Hadoop Platform.

In Hadoop, the MapReduce system reads the input and
writes the final results from/into its file system (HDFS). There
is a job tracker that runs on the master node of Hadoop cluster
taking care of the progress of the job and there are task
trackers that run on worker nodes that perform map and
reduce tasks in real.

map(K1, V 1) → [<K2, V2>]

reduce(K2, {V 2}) → [<K3, V3>]

The working of Hadoop has been depicted in Fig. 3.

III. RELATED WORK

 We studied the previous work done regarding our concern
i.e. the implementation of Apriori and Parallel FP Growth
algorithm in general and over map reduce and below are our
findings:

Rahul Mishra et al. [1] have applied Apriori algorithm and
FP growth over web mining data in order to determine the web
usage of any site to determine the factors why users stay on a
particular site, what is the pattern of the site usage by them.
This is helpful in increasing the sales on E-Commerce site.

Othman Yahya et al. [2] suggest using Hadoop Map
Reduce Programming model for parallel and distributed
computing. It is an effective model to write easy and efficient
applications where large datasets can be processed on clusters
of computing nodes, that too in a fault tolerant manner. This
paper provides insights into the implementation of Apriori
over Map Reduce model and the researchers proposed new
algorithm MRApriori: MapReduceApriori Algorithm.

Juan Li1 et al. [3] have implemented Apriori algorithm
over Amazon EC2 Map Reduce Platform. The paper clearly
explains how things work over EC2 cloud. The researchers
implemented revised Apriori i.e. changing Apriori algorithm
as per MapReduce platform over single node and multiple
node Hadoop cloud.

Ning Li et al. [4] proposed parallel Apriori algorithm over
MapReduce. In this algorithm, the occurrence of each
potential candidate of size k is counted by the map function
and thus there is parallel computation of all the potential
candidates during this map stage. Then, the reduce function
performs the procedure of summing the occurrences counts.
For each round of the iteration, such a job is carried out to
implement the occurrences computing for potential candidates
of size k.

Zahra Farzanyar et al. [5] told that being Apriori a serial
mining algorithm, it has to be converted into parallel mining
algorithm. Many parallel apriori algorithms were introduced
but new problems that didn’t exist in sequential computing
came into picture with these parallel apriori algorithms such
as: balancing the work load, partitioning of data and
distribution of the jobs and their assignment to nodes and
parameters passing between nodes. To encounter these
problems, MapReduce model was introduced. MRApriori
Algorithm based on MapReduce model outperforms other
parallel apriori algorithms, but still the count of partial
frequent itemsets generated is large. The authors of this paper
advised Improved MPApriori algorithm and the results proved
that the execution time was considerably reduced.

Zahra Farzanyar et al. [6] extended their work which they
presented in their previous paper [5].They made changes in
phase I of Apriori Algorithm and produced data containing
partial frequent item sets count and this is given as input to
phase II. So, the numbers of itemsets to be taken care of by
Map function is considerably reduced in phase II and hence
work of Reducers is also decreased as compared to the phase
II of IMRApriori algorithm. Thus, communication load
between mappers and reducers in phase II is decreased and
execution times is also reduced.

In [7], Haoyuan Li et al. thought to parallelize FP growth
to achieve greater speed up since the sequential FP growth is
much faster than Apriori algorithm. They used this approach
for query recommendation over web and tried to understand
how Google fetch results.

Le Zhou et al. [8] advised balanced parallel FP Growth
algorithm over MapReduce approach in their work. It
considers the load balance feature which helps in improving
parallelization and it leads to increase in performance.

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

Sankalp Mitra et al. [9] proposed improved parallel FP
Growth algorithm where they considered the fact that the
efficiency of MapReduce model significantly reduces when
the operations have to be performed over small files. They
generate large sequence file by merging small files to form a
large transactional database and then applied PFP algorithm
over this one large file.

IV. ALGORITHMS AND THEIR COMPARISON

We were curious to know how these two popular mining
algorithms work over MapReduce. We had implemented these
algorithms in Java on a sequential machine earlier, but not on
Hadoop MapReduce Platform. It was interesting to learn how
the sequential algorithms are converted into parallel
algorithms. The Mapper and Reducer functions had to be
defined for them.

For implementing Apriori Algorithm over Hadoop
MapReduce, the below given algorithms have been followed
by us:

A. Apriori Algorithm over MapReduce

 To generate 1-FrequentItemset, follow
algorithms have been followed by us.

Procedure: Mapper (key, value=Transi)
foreach item aItemi in Transi do
 Call Output (aItemi , 1);
end
Procedure: Reducer(key=aItemi ,
value=S(aItemi))
Count← 0;
foreach item 1 in Transi do
 Count← Count + 1;
end
if Count > minSupport then
 Call Output (S(aItemi) , Count);
end

 After 1-FrequentItemset has been generated,
for each level k, following mapper and reducer
function is used to generate k-FrequentItemset

Procedure: Mapper(key, value=Transi)
Generate the kth itemset from output of last level
k-1
Generate Candidate Itemset,Ck from k-1 itemset
foreach candidateItem cItemi in Ck do

if Transi contains cItemi then
Output (cItemi , 1);

end
end
Procedure: Reducer(key=aitemi ,
value=S(aItemi))
Count ← 0;
foreach item 1 in Transi do

Count ← Count + 1;
end
if Count > minSupport then
 Call Output (S(aItemi) , Count);
end

B. 	Parallel FP Growth Algorithm over MapReduce

We have implemented Parallel FP Growth algorithm
following the paper written by Haoyuan Li et al. [7] where the
whole process has been divided into 5 steps:

 Step 1. Sharding of database
 Step 2. Parallel counting of items
 Step3. Grouping items
 Step4. Parallel FP Growth
 Step 5. Aggregating

The brief outline of the above steps is:

1. Parallel Counting: MapReduce pass is performed to
calculate the support value of all items in the database.
Each mapper is given one slice or we can say one shard of
database and it gives count of 1 to each item appearing in
the transaction. The output of Mapper is given to Reducer
where the results are combined of all Mappers and at the
end of this MapReduce pass, we have item list of the
transactions, i.e. we come to know what all items are in our
database and the count of occurrence of these items. The
output of reducer is stored in F [] list.

2. Parallel FP Growth: It’s the key step of PFP algorithm.
This step takes one MapReduce pass where mapper and
reducer perform following functions: Mapper deals with
generation of group dependent transactions and Reducer
performs FP Growth on group dependent shards given as
output by Mapper. In this phase, the mapper produces key-
value pairs and in the reducer process, the local FP trees
and conditional FP trees are generated recursively,
considering the minimum support count.

3. Aggregating: The output of Parallel FP Growth reducer
phase is aggregated to get the final results

 Aggregating Algorithm
We made changes in the Aggregating algorithm (rest of the

algorithms have been implemented as described in [7].) and
implemented it as per below given algorithms.

Procedure: Mapper(key, value=v + supp(v))
foreach first item aItemi in v do

Call Output(aItemi , v + supp(v));
end
Procedure: Reducer(key=aItemi , value=S(v +
supp(v)))
Define HashMap to store unique patterns :
MAP<pattern,support>;
foreach pattern v in v + supp(v) do

if MAP contains pattern v then
if supp(MAP(v)) < supp(v) then

insert and replace
<v,supp(v)> in MAP;
end

else
insert <v,supp(v)> in MAP;
end

end
foreach entry <v,supp(v)> in MAP do

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

Call Output(v, supp(v));
end

We performed the experiment over single node Hadoop
cluster installed over Ubuntu operating system having
specifications Intel(R) Core(TM)2Duo CPU @ 2.2 GHz and 3
GB RAM and with the transactions of database T10I4D100K
and produced the results shown in (Table V).

We also performed this experiment over 4-node Hadoop
cluster installed over Ubuntu operating system having
specifications Intel(R) Core(TM) i5-3330 CPU @ 3.00GHz
and 8 GB RAM and found the results given in Table VI & Fig
4.

V. CONCLUSION

So, in our work, we find that as the number of transactions
is increasing, the time being taken to generate frequent
itemsets is also increasing. The motive of paper was to
compare the time taken in generation of frequent itemsets by
two popular algorithms: Apriori and FP Growth over Map-
Reduce model and we conclude that FP Growth algorithm
outperforms Apriori over Hadoop Map-Reduce Platform. And
we also find that over multi-node Hadoop cluster, time is
noticeably reduced for finding the frequent itemsets from
given set of transactional database. We also notice that the
processor and the memory available also play a major role in
getting speedy results.

REFERENCES
[1] Rahul Mishra, Abha choubey, “Comparative Analysis of Apriori

Algorithm and Frequent Pattern Algorithm for frequent Pattern Mining
in Web Log Data” , In International Journal of Computer Science and
Information Technologies, Vol. 3 (4) , 2012.

[2] Othman Yahya, Osman Hegazy, Ehab Ezat, “An Efficient
Implementation of Apriori Algorithm Based on Hadoop-MapReduce
Model”, In International Journal of Reviews in Computing, Vol. 12
2012.

[3] Juan Li , Pallavi Roy , Samee U. Khan , Lizhe Wang , Yan Bai, “Data
Mining Using Clouds: An Experimental Implementation of Apriori over
MapReduce”, In Proceedings of 12th International Conference on
Scalable Computing and Communications (ScalCom'13), 2012

[4] Ning Li, Li Zeng, Qing He and Zhongzhi Shi, “Parallel Implementation
of Apriori Algorithm Based on MapReduce”, In Proceedings of 13th
ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing, 2012.

[5] Zahra Farzanyar, Nick Cercone, “Efficient Mining of Frequent itemsets
in Social Network Data based on MapReduce Framework”, In
IEEE/ACM International Conference on Advances, 2013.

[6] Zahra Farzanyar, Nick Cercone, “Accelerating Frequent Itemsets Mining
on the Cloud: A MapReduce –BasedApproach”, In Proceedings of 13th
International Conference on Data Mining Workshop, 2013.

[7] Haoyuan Li, Yi Wang, Dong Zhang, Ming Zhang, Edward Chang, “PFP:
Parallel FP-Growth for Query Recommendation”, In Proceedings of the
2008 ACM conference on Recommender systems, 2008.

[8] Le Zhou, Zhiyong Zhong, Jin Chang, “Balanced Parallel FP-Growth
with MapReduce”, In Information Computing and Telecommunications
(YC-ICT), 243-246. 2010

[9] Sankalp Mitra, Suchit Bande, Shreyas Kudale, Advait Kulkarni, Leena
A. Deshpande, “Efficient FP Growth using Hadoop-(Improved Parallel
FP-Growth)”, In International Journal of Scientific and Research
Publications, Vol. 4, Issue 7, 2014.

[10] Rakesh Agrawal and Ramakrishnan Srikant, “Fast Algorithms for
Mining Association Rules”, http://rakesh.agrawal-
family.com/papers/vldb94apriori.pdf, 1994

[11] Bringing big data to the enterprise. #ibmbigdata DOI= https://www-
01.ibm.com/software/in/data/bigdata

[12] What is Big Data? DOI= http://www.zettaset.com/index.php/info-
center/what-is-big-data/

[13] Hadoop: MapReduce Tutorial, DOI=

 https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

Fig. 3. Processing of data by Hadoop MapReduce

Table V: Comparison of Apriori and Parallel FP Growth Algorithm over single-node Hadoop Cluster

Number of

Transactions

Apriori Algorithm (Time in

secs)

PFP Growth Algorithm

(Time in secs)

2000 78.340 33.599

5000 216.492 81.694

9000 603.050 384.879

10000 661.511 626.736

15000 1311.729 1035.475

20000 3971.819 3392.179

25000 6368.553 6227.533

Table VI: Comparison of Apriori and Parallel FP Growth algorithm over 4-node Hadoop Cluster

Number of

Transactions

Apriori Algorithm (Time in

secs)

PFP Growth Algorithm

(Time in secs)

1500 92.054 45.84

5000 154.607 54.87

10000 250.673 101.943

15000 377.843 164.004

20000 600.154 261.13

25000 916.679 366.267

 Fig. 4. Graphical Representation of Apriori and PFP Growth Performance over 4-node Hadoop Cluster

Apriori

FP Growth

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

