
 

 
Abstract— The explosion in the number of Internet of 

Things (IoT) and fog computing applications and the need for 
large data centers to host cloud and web applications make it 
necessary to create mechanisms to effectively control complex, 
heterogeneous and distributed digital ecosystems. These 
rapidly developing IT markets require distributed, fast and 
lean Root Cause Analysis (RCA) techniques to analyze 
dependent events. In this context, scalability and dynamically 
changing systems become the main obstacle to build models 
and infer root causes using well-established probabilistic 
network techniques like Bayesian Networks (BN), which are 
expensive to calculate and update, even when using 
improvements such as pre-compilation through Arithmetic 
Circuits (AC). In this paper, we propose a new mechanism that 
leverages the fact that these systems usually contain a lot of 
repeated elements. Our system provides a novel cache-based 
mechanism that, thanks to the fact that ACs can be split into 
subparts, will enable the reuse of previous computations to 
speed up the inference. The presented solution provides a fast 
RCA when the system model changes, without the necessity to 
compile the whole BN again. We evaluate our algorithm on the 
diagnostic system, which consists of millions of nodes, for 
connected IoT, fog and datacenter. Results show that the 
system is able to perform an order of magnitude faster, using 
less resources. 
 

Index Terms— arithmetic circuits, Bayesian networks, 
probabilistic reasoning, root cause analysis 
 

I. INTRODUCTION 

apid development of the Internet of Things (IoT), and 
increasingly widespread use of mobile and smart 

devices generating frequent data collection and exchange 
needs are forcing organizations to change the way they 
engage customers, develop and deliver new products and 
services. Consequently, data analytics is ubiquitous, 
bringing intelligence to every process [1]. According to 
Cisco, IoT will unleash $19 trillion in new profits and cost 
savings globally in the next decade [2]. Besides, global data 
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center traffic will grow nearly 3-fold from 2014 to 2019 and 
by 2019, more than 86 percent of workloads will be 
processed by cloud web services in data centers [3]. With a 
reference to work about Big Data and IoT frameworks in 
[4], data coming from IoT systems, e.g., smart cities, are 
characterized by high diversity of their structure, high 
degree of variability, high velocity and huge volume. 
Furthermore, data are transformed and analyzed at different 
layers of system, spreading from preprocessing in the sensor 
microprocessors to data centers running data mining and 
deep learning applications. 

A growing amount of data and the demand for their 
processing bring about new approaches and paradigms in 
network and datacenters infrastructure. Measurements and 
data coming from IoT devices are not only processed in the 
cloud, since the infrastructure and processing capabilities 
can be insufficient. The needs of, e.g., geographical 
distribution of resources, real-time communication, 
incorporation with large networks are handled by fog 
computing. Through this paradigm, part of processing is 
done by edge devices or clouds closer to data sources, 
resulting in less latency and bandwidth usage [5]. 
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Fig. 1 - Overview of IoT computing model in reference to [6] (Permitted for 

use). 

 
For an efficient monitoring, troubleshooting and 

management of huge IoT environments it is necessary to 
provide a robust Root Cause Analysis (RCA) mechanism 
which is scalable and tractable enough to perform fast 
diagnosis on the whole system and will find explanations to 
the problems whether they are located in the neighborhood 
of the particular device, other processing tier or they are 
compound.  
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A. Problem definition 

Root Cause Analysis is one of the crucial functionalities in 
commercial1,2 platforms for management and monitoring of 
the IoT environment. RCA based on Bayesian networks 
(BN) can perform an accurate diagnosis even if information 
about the system state is not complete like it usually 
happens in large and heterogeneous IoT environments 
extended with centralized control from datacenters and 
computing strategies based on fog computing. However, in 
order to perform more accurate root cause analysis, 
reasoning should be performed considering a large number 
of statistics, dependencies and observations, which results in 
(i) the large size of the diagnostic model - a network of 
millions of nodes and (ii) greater computational complexity. 
Thus, the analysis cannot be performed frequently with a 
satisfying level of accuracy and with the use of little 
resource, i.e., memory utilization at the level of hundreds of 
megabytes for BN with more than a million nodes. The 
diagnostic model needs to be changed often, e.g., when new 
devices are connected to the system, hardware is upgraded 
or the structure of the physical network changes. Using 
emerging technologies, such as Software Defined 
Infrastructure [7, 8] will cause frequent system structure 
changes, thus the demand to adjust the diagnostic system to 
it is high. Furthermore, the diagnostic system should be 
flexible enough for these changes, reducing recalculations 
as much as possible. Taking into account research in [9] on 
RCA using large Bayesian networks, two important 
conclusions can be drawn: (i) network can be divided into 
clusters, i.e., subnetworks which reduce calculation 
complexity and (ii) the root cause is usually in the region of 
the observed failures. 

B. Contribution 

 We propose the method which uses global cache and it is 
able to reuse computations and subnetworks of the 
diagnostic model, which results in faster compilation – 
offline stage and inference – online. The reasoning is 
performed with use of Arithmetic Circuits (AC) which are 
compiled from Bayesian networks and are much faster in 
this process. Thanks to the use of AC, we made it possible 
to manipulate AC’s computations and structures while the 
diagnosis model changes, without recompiling BNs. We are 
also able to reuse compiled structures for different instances 
of the same diagnostic model. Our contribution results in 
less memory footprint, faster diagnosis and better scalability 
of the diagnostic process compared to the use of other 
conventional systems, e.g., based on using a single 
Arithmetic Circuit for the whole system or using Case 
Based Reasoning (CBR), as we show later on in Section IV. 

II.  RELATED WORK 

A. RCA Systems 

A lot of research [10-12] has been carried out to develop 
high-performance RCA systems in large distributed 
environments. However, there are not many publications 
proposing implementation of probabilistic reasoning for 
large IT systems with complex models.  

 
1 http://www.striim.com/internet-of-things/ 
2 http://www.splunk.com/en_us/solutions/solution-areas/internet-of-

things.html 

A common approach for implementing root cause 
analysis is using classification algorithms or a specialized 
algorithm for alarms correlation [13]. Research in [14] aims 
to provide a large graph based RCA system and deploy it on 
the distributed servers. It is resulting with a fast and robust 
diagnostic system. Another example system for a complex 
enterprise network root cause analysis is presented in [15]. 
This research introduces the idea of constructing a causality 
graph between events in the system which is used to localize 
the problem. The most important issues which should be 
faced by an efficient RCA system based on causality and 
event correlation are accuracy, diagnosis time, tractability 
and scalability.  

When compared to other diagnostic techniques [16], the 
Bayesian networks are distinguished as a solution for 
problems of an unacceptable quantity of false alarms. These 
alarms can be set off by a monitoring system based on a 
threshold approach. Moreover, the system with Bayesian 
reasoning is able to provide early alerts before the fault 
actually occurs, whereas many faults do not develop 
gradually over time, rather they occur instantaneously. This 
is not the only reason, why threshold approach is not an 
accurate way for the causality analysis. Another publication 
[17] presents large scale deployment of a diagnostic system 
for web applications. The solution is based on Bayesian 
networks and noisy-OR nodes and it uses approximate 
reasoning with acceptable results. 

For instance, recent research on inference optimization 
for large scale BN is presented with the use case of failure 
diagnosis in Virtual Private Networks [18].  

The idea of splitting Bayesian networks into objects, 
which are related to components, to simplify their 
representation is well known in literature in the area of 
Probabilistic Relational Models (PRM) [19, 20]. In this 
framework, a fairly large amount of work on structured 
probabilistic inference was done in [21] which produced 
high performance algorithms for PRM, using d-separation. 
An exact analysis and limitations of sectioning Bayesian 
network is fully described in [22]. Another step for 
optimization of Bayesian inference and model construction 
was made in [23], introducing general framework for 
canonical models. Its main objective was the simplification 
of complex Bayesian models, especially those in which 
nodes have many parents.  

In [24], authors describe software health monitoring 
system using the BNs designed for monitoring, diagnosis 
and prediction in the software-hardware environment. The 
designed system meets the requirements of being powerful 
enough to reliably detect and localize significant failures 
with a provision of an advanced reasoning, but the research 
does not include large scale deployment.  

Darwiche et al. [25, 26] proposed compilation to AC in 
order to accelerate problem resolution time using BNs. 
However, these techniques present numerical problems for 
very large systems, and furthermore, compilation requires 
large amounts of memory. Arithmetic circuits were 
successfully deployed in the diagnosis of spacecraft´s 
electrical systems, which is described in [27]. Another 
application of precompiled BN in a diagnostic system is 
presented in [28] but, this publication explores small 
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systems and it does not consider large scale RCA. In 
particular, authors neither consider replicated components 
nor their subgraphs in Bayesian network representation.  

B. RCA in IoT and fog computing 

However, performing such analysis considering all the 
tiers presented on Fig. 1 is not deeply studied in the 
literature. In [29] authors summarize the main research 
motivations for cloud services’ reliability, e.g., failures and 
faults detection in the cloud has been hard, there has been 
little available research on scalable fault detection methods 
or difficulties in recognizing the faults leading to failures. 
Besides, Aggarwal [30] states the problem of having 
incomplete data transmitted from sensors and the 
significance of this problem for Big Data analytics. In [31] it 
is stated that failures in fog computing can be localized in 
sensors, network, lack of network coverage, service 
platform or the web application. Authors in [32] propose 
integration of Big Data with a Cyber Physical System, 
describe a data-driven approach to building fault tolerant 
control systems and they emphasize the significance. 
Moreover, the accurate mathematical models, will not be 
able to deal with the scale and computational complexity of 
large Internet of Things structures, thus another set of 
solutions is demanded. 

III. PROPOSED ALGORITHM 

A. Most Probable Explanation and Arithmetic Circuits 

 Discovering the root cause in the model based on BNs, it 
means to solve the problem of a calculation of a Most 
Probable Explanation (MPE), which is defined as follows.  
Most Probable Explanation (MPE) - computing an MPE 
is a problem of finding such an explanation , where 

 stands for the set of all variables considered, including 
those in  – given evidence, in the Bayesian network, that 
maximizes the conditional probability  [33]. 

 

 (1) 

 
 The calculation of MPE is intractable and remains NP-
hard, even if all variables are binary and both outdegree and 
indegree of the nodes is at most two [34]. The problem can 
be partially dealt with by precompiling the subnetworks of 
the replicated elements. As we show in this paper, joining 
them in a certain manner allows reusing computations and 
as a consequence an acceleration of the diagnosis of a very 
large system. Arithmetic circuits were introduced in [25] 
and they are based on the multi-linear function which can be 
constructed for each Bayesian network. 

Multi-linear function (MLF) for Bayesian network with 
variables A and B is represented as follows   

 

 
(2) 

 
where  denotes evidence indicators for B and  stands 
for parameters associated with its conditional probability 
depending on the value of A. 
 An AC describes network´s probability function, in a 
manner which facilitates calculations during Bayesian 

inference. These transformations do not cause loss of 
diagnostic accuracy, neither sensitivity of the original model 
and can be evaluated much faster. Thus, the Arithmetic 
Circuit can be easily transformed to the maximizer circuit, 
which as mentioned at the beginning of this section is 
designed to calculate MPE solutions, thus instead of adding, 
it performs max operations. The complexity of the AC 
compilation process time as well as inference is 

, where  stands for the number of variables 
and  for the treewidth of the input Bayesian network. 

B. Method 

The presented solution leverages from the IoT system 
structure, which is consisted of repeated components, e.g., 
sensors, actuators, smart devices, servers, routers. The 
following example shows how to leverage repeated 
structures in Bayesian networks. Method follows the 
concept presented and proved in [18], for a Root Cause 
Analysis via an approximate reasoning using subnetworks 
of considered nodes. In Fig. 2 where is a BN that each node 
has two possible states B1: {b11, b12}, B2: {b21, b22} and 
A: {a1, a2}. These states could have any arbitrary meaning 
like b11 being “B1 is working fine” and b12 being “B1 has 
a problem” for instance. An AC created from this network 
and designed to calculate MPE can be seen on Fig. 4. 

 

 
Fig. 2. The example Bayesian 
network to transform into AC 

 
Fig. 3. The Bayesian network 

example 

 
Fig. 4. The Arithmetic Circuit for the example Bayesian Network with 

marked parts corresponding to the B1 and B2 nodes 
 

If states and conditional probabilities of nodes B1 and B2 
are the same, there is no necessity to compile the whole BN 
from Fig. 2, but only consider the one shown in Fig. 3 and 
then aggregate computations from replicated nodes during 
the evaluation of the AC. The result of transformation BN 
from Fig. 3 into the AC can be seen on Fig. 5.  

 

 
Fig. 5 – The AC with multiply and max nodes for calculating MPE in 

Bayesian network on Fig. 3 with marked parts corresponding to the B node 
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On Fig. 5 the parts of the AC that are replicated if more 
nodes of type B are added to the Bayesian Network from 
Fig. 3 are marked. It can be clearly seen that, in the worst 
case scenario, which is a system without replicated 
elements, complexity of the AC size grows as mentioned 
before. The system prepares an arithmetic circuit for each 
object type in the system. Thus, we leverage the diagnosing 
model by less complexity of the network. Instead of 
compiling the whole system, the compilation is invoked for 
each component class of the system. This means that if a 
system is composed of 1000 components of the same type, 
only a single compilation for the component would be 
required, leveraging the fact that most complex systems 
have a large number of replicated components. 

In order to include connections between components and 
provide method tractability, specific Bayesian network 
nodes which are responsible for interconnection are cloned 
and placed in the referencing object (child component). This 
particular step is illustrated on an example network with 2 
Components ( 

Fig. 6) that, after this processing step, results in 
Component 1 having one duplicated node as shown in Fig. 
7.  

 

 
Fig. 6. Diagnostic model in form of BN, for two components of different 

types 
 

 
Fig. 7. BN of Component 2 after transformation, prepared for 

compilation into AC 

 
 Below, we present Algorithm 1 for evaluation of models 
and aggregating the results - performing RCA. The input 
consists of (i) compiled diagnostics models – AC for each 
component type, including a reference to the external nodes, 
(ii) system instances schema defining dependencies between 
instances’ specific nodes, number of instances of each 
component and their connections and (iii) set of evidence  
(observations of a state). As a result, marginal probabilities 
for each variable in the system are received. 
 

We use the following notation: 
: single instance of a component 

: nodes in instance  which are referenced to by other 
external nodes from other instances 

: nodes in instance  which are external nodes from 
other instances , thus in instance  they are cloned 

: internal nodes (including )  
: aggregated value of a node , which is referenced by 

external nodes 
: value of a node  

 

Algorithm 1: Evaluation algorithm - pseudo code 

Input: Compiled models M, instances schema: ∏, set of 
evidence e 
1 start with instances where I.S = Ø 
2 foreach I in ∏ do 
3  foreach s in I.S do 
4    assert s.A aggregated all summands 
5   key := (type(I), e, weights) 
6   if global cache contains value for key then 
7    result := cache[key] 
8   else 
9   foreach node s in I.S do 
10   weight := s.A+log(s.probability) 
11     add s.idweight to weights map 
12   result := evaluate M[I] with e and weights 
13   put keyresult in cache 
14  print result for I.N 
15  foreach node p in I.P do 
16  let I´ stand for an instance where is a node that p 

was cloned from 
17   assign values p.v to its referenced node I´.S for 

aggregation 
18   nodes I´.S aggregate received value incrementally 

with an accumulated I´.S.A 

IV. EVALUATION 

 The aim of the experiments, was to compare time and 
memory performance of the new idea with existing 
reasoning approaches, and validate RCA accuracy. Used 
diagnostic network, simulates huge IoT and datacenter 
environment, and is used to simulate the scale and 
complexity of the real environment. Thus, the references are 
a conventional approach, i.e., compilation of whole BN of 
diagnosis model into one Arithmetic Circuit and case based 
reasoning. 

A. Implementation  

Simulation of the proposed RCA was implemented with 
Scala 2.11.8 and Java 8, outputting a program to run in 
JVM. For the purposes of an efficient AC compilation and 
evaluation Ace 3.03 library was used and for CBR tests 
library FreeCBR4. Since, calculated probabilities are small 
orders of magnitude, i.e., 10-100, it was necessary to use 
logarithmic calculation space, in order to avoid interrupting 

 
3Automated Reasoning Group, University Of California, Ace: 

http://reasoning.cs.ucla.edu/ace/ 
4 http://freecbr.sourceforge.net/ 
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the calculations by arithmetic underflow exceptions. Before 
invoking the appropriate code of the program, JVM warmup 
is performed to avoid measuring the time of JIT 
compilations. Experiment for each particular model was run 
5 times and the presented results are the average values. The 
program calls Garbage Collector before each test. 
Experiments were run at the following configuration: SSD 
disk, 2.5 GHz Intel Core i7 - 4 cores, 16GB RAM on Unix 
based OS. Maximum JVM heap size was set to 13GB. 

B. Results 

 The proposed approximate reasoning method was 
evaluated on the diagnosis model which is presented on Fig. 
8. On this scheme, prefix of the node label indicates the 
component type, i.e., S stands for server, D for IoT device, 
E for edge device, G for global causes, R for rack. 
Experiments were run for the following quantity of devices: 
20 servers per rack, 3 ÷ 30 racks, 600 devices of 3 different 
types per server, 1 edge router per 600 devices. Belief 
Propagation algorithm with a limit to 10 iterations was run 
on the Bayesian network. This part was implemented with 
Figaro5 library, and the result is not presented on the plots, 
because the evaluation of the model for the first iteration 
took 2855s with a maximum memory usage of 6 GB and the 
offline stage lasted for 130s. 
 

 
Fig. 8. Simplified Bayesian network presenting relations between events in 
different components. One instance of each component type is shown only. 

 
 The following plots illustrate maximum memory 

consumption and time of online and offline stages for the 
considered algorithms. Inference performance was also 
investigated in dimension of an evidence entropy, which 
was changed by setting the same or random values as the 
observations. Quality of the proposed cache based RCA 
method is presented in Table I.  
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Fig. 9. Offline stage time 

 

 
5 https://github.com/p2t2/figaro 
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Fig. 10. Offline stage maximum memory usage 
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Fig. 11. Evaluation time 
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Fig. 12. Evaluation maximum memory usage 
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Fig. 13. Maximum memory usage depending on observations entropy 

 
Table I - Accuracy of the proposed method, measured on the above model 

Measure Value 
Sensitivity (TPR) - true positive rate 0.5726 
Precision (PPV) 0.9988 
Negative predictive value (NPV) 0.7273 
Specificity (SPC) - true negative rate 0.9994 

 
Summing up, results prove that the proposed method is 

characterized by extremely good precision and specificity, 
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and acceptable enough sensitivity and negative predictive 
value. In addition, it is about an order of magnitude faster in 
evaluation and requires more than two times less memory 
comparing to the accurate approach with compilation the 
whole BN to a single AC. 

V. FUTURE WORK 

Further research area is focused on the deployment of the 
fast root cause analysis system for efficient diagnostics in 
Big Data systems for the smart city. The other significant 
step to take, is the creation of a new compilation algorithm 
for Bayesian networks to leverage repeated structures and 
improve accuracy of the method proposed in this 
publication. It will be achieved by more complex analysis of 
the nodes’ dependencies between components. 
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