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Abstract—Experts and researchers always refer to the rate of 

error or accuracy of a database. The percentage of accuracy is 

determined by the number of correct cells over the total 

number of cells in a dataset. After all, the detection and 

processing of errors depend on the randomness of their 

distribution in the data. Apparently, if the errors are 

systematic (present in a particular record or column), then 

they can be fixed readily with minimal changes. As a result, 

sorting errors would help to address many managerial 

questions. Enhanced Lempel-Ziv algorithm is reflected as one 

of the effective ways to differentiate random errors from 

systematic errors in a dataset. This paper explains Lempel-Ziv 

algorithm usage in differentiating random errors from 

systematic ones and proposes its improvement. The experiment 

spectacles that the Enhanced Lempel-Ziv algorithm 

successfully differentiates the random errors from the 

systematic errors for a minimum data size of 5000 and with a 

minimum error rate of 10%.  

Index Terms—Data accuracy, Enhanced Lempel-Ziv, 

Prioritization, Random errors, Systematic errors 

 

I. INTRODUCTION 

From the early age of software, data owned by an 

organization is one of the crucial assets. In order to improve 

the quality of information, primarily the data quality needs 

to be measured, to evaluate the value of any information 

available. Redman et.al, mentioned “the science of data 

quality has not yet advanced to the point where there are 

standard measures for any data quality issues” [1]. 

Considering the quality of data at the database level, the rate 

of error at the attribute level plays a vital role. The error rate 

is defined as the number of erroneous cells over the total 

number of attribute cells available in dataset. Lee et.al, had 

defined the accuracy rating as 1– (Number of desirable 

outcomes / total outcomes) [2].   These definitions ascribe to 

individual cells which are data attributes for specific 

records. 

Organizations are attentive towards the reliability, 

correctness and error free data. But the error in the data may 

not enclose to a particular area. Prioritization of databases 

plays a critical role when they are suggested to improve 

their existing quality. The number of errors per dataset or 

current quality might influence the priority to fix the 

problems. Hence finding the error relies on the vector 

quantity known as measure of randomness of error in data.  
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Distinguishing between dataset with random errors and 

dataset with systematic errors would help in better 

assessment of database quality. In this research, the 

developed method obtains more appropriate complexity 

metric using Lempel-Ziv algorithm to absolutely state the 

type of error. 

The outcomes are computed by considering a sample 

dataset with errors (as 1‟s) and no errors (as 0‟s) where we 

could estimate and govern whether the errors are random (or 

not) by using Enhanced Lempel-Ziv (LZ) complexity 

measure. The proposed method helps to obtain the dataset 

with highest percentage of errors. Hence, it will be useful to 

address the decision-making query such as prioritizing the 

databases, which should be considered primarily, to fix the 

issues. 

The rest of the paper is organized as follows. Related work 

in the areas of data quality and studies in randomness of 

dataset are detailed in section 2. The approach, Enhanced 

Lempel-Ziv algorithm, is explained in section 3. Section 4 

shares the test cases and results that have been used and 

obtained from the study, and the paper is finalized with 

conclusion and future work section. 

 

 

II. RELATED WORK 

The definition of randomness has its root from the branch 

of mathematics which considers the storage and 

transmission of data [3]. With the same percentage of errors 

existing in a dataset, the distribution of errors affects the 

management of a dataset more significantly. Hence the 

difference in the complexity measure can readily be 

observed which specifies the distribution of errors. 

 

 
Fig 1.Distribution of Errors [3]. 

(a)Errors in one column; (b) Errors in one row; (c) Errors 

randomly distributed throughout the table 

 

Fisher et.al, stated that the database might account for the 

same percentage of errors but have the errors randomly 

distributed among many columns and rows, causing both 

analysis and improvement to be significantly more 

complicated. Figure 1 depicts the datasets with 5% error rate 

as Redman‟s cells with error divided by total number of 

cells [3].  

Sometimes error may be due to a single record or there 

may be existence of different errors in a single field which is 
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referred as systematic error as shown in Fig 1(a) and Fig 

1(b) and can be handled by a single change. On the other 

hand, there may be existence of different errors in different 

records which are distributed in the dataset. Though the 

percentage of errors is same as that of systematic, the dataset 

is considered to be out of control. These are known as 

random errors as depicted in Fig 1(c). More effort is 

required to fix such kind of errors that needs to be taken care 

based on priority. All three cases could report the same 

percentage but represent different degrees of quality. 

Different algorithms like Kolmogorov-Chaitin 

complexity, Lempel-Ziv complexity and probabilistic 

entropy based measures like Shannon entropy, Approximate 

entropy, Sample entropy etc. [4], are used to measure the 

degree of randomness in a database. The Lempel-Ziv 

measure of complexity is one of the most popular methods 

used to obtain the degree of randomness where the data is 

considered as binary sequence [5]. 

The Kolmogorov-Chaitin (KC) complexity measure 

provides the disorder in any sequence. Whenever a sequence 

is random, it is considered to be incompressible. The length 

of the minimal description of sequence conveys the 

complexity, which leads to the measure of randomness of 

the sequence. Kolmogorov-Chaitin complexity of a 

sequence of binary digits is defined as “the shortest program 

that can output the original sequence of bits”. It can also be 

stated that sequence is said to be completely random, if KC 

complexity is approximately equal to the size of sequence of 

bits [2]. 

 

𝐻𝐾𝐶 𝑀0 = |𝑃𝑚𝑖𝑛 | 
 

where HKC is the KC complexity measure, M0 is the 

original sequence and Pmin is the minimal program [2]. 

This complexity measure not only organizes hierarchy of 

degrees of randomness but also describes the properties of 

randomness more precisely than statistical information. It is 

also used to measure the information content of a sequence.  

But, the major problem in the calculation of KC 

complexity is that there will not be any general algorithm 

for such a program, and is highly dependent on the data 

available in the dataset. In such a case, it is hard to estimate 

the value of time complexity when 𝑛 → ∞. 

Shannon Entropy, defined as the weighted average of the 

self-information within a message or the amount of 

randomness that exists in a random event, is another method 

used to find the random errors in a given dataset. Shannon 

entropy depends on the probability distribution of the 

sequence. Let X is the random variable of the sequence of 

binary digits S with a probability mass function p(x), and 

then Shannon Entropy H(X) is given as  

 

𝐻 𝑋 = − 𝑝 𝑥 𝑙𝑜𝑔𝑝(𝑥)

𝑥∈𝑆

 

 

The value of H(X) varies from 0 to log (|S|), depicting 

zero to no uncertainty and log (|S|) when all elements have 

equal probabilities [6]. As the length of the sequence 

increases, it underestimates the higher entropies while 

overestimating lower entropies. 

On the other hand, the Lempel-Ziv algorithm evaluates the 

complexity of a system objectively and quantitatively and 

overcomes the limitation of calculation of complexity 

statistically. The randomness parameter analyses difference 

between systematic patterns versus degree of random 

distribution. Unlike KC complexity measure, in which length 

of the program plays a major role, LZ complexity measure 

depends on two operations on the binary digits: copy and 

insert. It depends on the formation of number of distinct 

substrings along the length of sequence and the rate of their 

occurrence [3]. 

The LZ complexity algorithm and its corollaries are used 

in the development of application software and dictionary 

based lossless compressions such as WINZIP etc. It is 

extensively employed in biomedical applications to estimate 

the complexity of discrete time signals [3]. 

Apart from the above applications, Lempel and Ziv in 

1976[2] mentioned that the algorithm has overcome the 

restraint of interpreting the complexity through characteristic 

quantities of statistical complexity. Simultaneously, as the 

calculation of characteristic quantities require longer data 

sequences, other algorithms can only identify whether system 

is complicated or not, whereas Lempel-Ziv Complexity 

measure shows the degree of system complexity [2]. 

Fisher et.al, had used the Lempel-Ziv complexity measure 

to obtain the randomness in a dataset [3]. But, the output is 

unable to provide accurate values of complexity measure for 

the small values of n, as the parameter, epsilon (𝜀𝑛 ) is 

disregarded. As a result, it not only overestimates the 

complexity measure but also impotent to differentiate 

noticeably between the random errors and systematic errors 

when the dataset size is less than 10000. 

The proposed methodology, in this paper, enhances the 

Lempel-Ziv algorithm by considering the parameter 𝜀𝑛  and 

calculates the value of complexity measure appropriately. It 

differentiates between random and systematic errors for 

smaller dataset size commencing from 5000. It also 

determines the dataset with highest percentage of error 

among the given datasets of particular data size. 

 

 

III. METHODOLOGY 

LZ Complexity measure is a prominent approach used to 

differentiate the random and systematic errors.  The word 

„randomness‟ is used in an instinctual manner in day to day 

life to define regularity deficit in a pattern. Sequences which 

are not random will cast a doubt on the random nature of the 

generating process [7]. 

A. Lempel-Ziv Algorithm: 

The steps for obtaining normalized complexity in the 

Lempel-Ziv Algorithm are given below. 

1. Divide the sequence into consecutive disjoint 

words such that the next word is the shortest template not 

seen before. 

2. The size of the disjoint sets is considered to be the 

complexity measure c(n) of the sequence, which is also 

defined as number of steps required to form the disjoint sets 

in a complete sequence. 

3. The asymptotic value of b(n) is calculated as 

 

𝑏 𝑛 = 𝑛/ log2 𝑛  
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4. The Lempel-Ziv complexity measure C(n) is 

evaluated by 

5.  

𝐶 𝑛 =  
𝑐 𝑛 

𝑏 𝑛 
 

 

The measure C(n) represents the rate of occurrence of 

new substring, and its value varies between 0 (for systematic 

sequences) and 1(for totally random sequence). While 

calculating the randomness in the database files, the measure 

is easily computable for large values of n [3].  

B. Enhanced Lempel-Ziv Algorithm: 

The high level architecture of the proposed system is 

shown in Figure 2. We assume a sample database is given as 

an input to the system and we already know whether the data 

available in the sample database is either correct or incorrect. 

Then, the system samples the data cell values into binary 

sequence, where 1‟s indicate the cells with errors whereas 0‟s 

indicate the cells without errors. After the binary sequence is 

generated, the analyzer applies the Enhanced LZ complexity 

algorithm to generate unique substrings from the sequence. 

Based on the created substrings, normalized LZ complexity 

is calculated for each of the datasets, which signifies whether 

the errors stationed in the data are systematic or random. 

 

 
Fig 2. Architecture of Proposed Methodology 

 

 

Although original LZ complexity objectively and 

quantitatively estimates the system complexity, there is a 

drawback of over valuation of normalized complexity for 

short-series. Fisher et.al, has stated that the C(n) value goes 

close to zero for deterministic sequences and approaches 1 

for non-deterministic or random sequences [3]. But it may 

not be applicable for the finite sequences appropriately to 

distinguish between random errors and systematic errors. In 

order to overcome such disadvantages and improve the 

complexity measure to differentiate the randomness and 

prioritize the databases which can be considered to obtain the 

integrity, the Lempel-Ziv algorithm is modified. Yong Tang 

et.al, mentioned that the asymptotic value of b(n) is accurate 

if the value of 𝑛 → ∞ [2]. But for every finite sequence, 

there exists a value 𝜀𝑛 , such that 

 

𝑏 𝑛 = 𝑛/ (1 − 𝜀𝑛)log2 𝑛. 

 

The value of epsilon (𝜀𝑛 ) is given by 

 

𝜀𝑛 = 2
1 + log2 log2(2𝑛)

log2 𝑛
 

 

The value of  𝜀𝑛  ought to be measured for small values of 

n, whose value varies between 0 and 1, having its value 

around 0.5 for n being 1000000. Hence the value of 𝜀𝑛  

cannot be ignored for finite sequences, where the results are 

not accurate in the measure of randomness. It shows that the 

upper limit is underestimated, which illustrates that the 

normalized complexity C(n) is overestimated [2]. Based on 

the above analysis, following are the constraints to be 

considered to evaluate accurate measure of Lempel-Ziv 

algorithm: 

1. The critical value of n when (1 − 𝜀𝑛) log2 𝑛 is greater 

than zero. 

2. The assumption of sufficient sequence length. 

The new LZ complexity measure is given by, 

 

𝐶 𝑛 =  
(1 − 𝜀𝑛)𝑐(𝑛)log2 𝑛

𝑛
 

 

Upon the calculation of new complexity measure, the 

randomness can be determined appropriately even for the 

short series whose length is significantly much less than ∞.  

C. Illustration of obtaining normalized complexity 

measure C(n): 

To illustrate this procedure, the sequence of eleven (n = 

11) symbols S = 01010010011 is considered. Enhanced 

Lempel Ziv‟s algorithm parses the sequence into six 

substrings {0, 1, 01, 00, 10, 011} rendering c(n = 11) = 6.  

The notation S(i) is used to identify the ith bit in the string 

S. The algorithm parses S from left to right looking for 

substrings that are not present in the superset U. As the 

algorithm proceeds and the superset is grown, the first 

substring seen from left to right is S(1) = 0, and U = {0}. 

Then S(2) = 1 is parsed and added to U. Hence U = {0, 1}. 

The next bit is S(3) = 0, already present in U, S (4) = 1 is 

appended to S(3), interpreting substring 01. As 01 is not 

present in the superset, it is included to U= {1, 0, 01}. The 

next bit S (5) = 0 is included in U, so S (6) = 0 is appended 

to it. The resulting substring (00), not present in U, is 

therefore added to the superset: U= {1, 0, 01, 00}. As the 

algorithm proceeds, the next two bits S (7) = 1 and S (8) = 0 

are parsed. Similarly S(9) = 0 and S(10) = 1 are parsed. As 

the resulting substring 01 is part of U, S (11) = 1 is 

appended to it, rendering 011. That value is added to the 

superset, yielding   U = {1, 0, 01, 00, 10, 011}. The size of 

the superset U is taken to be the complexity measure 

c(n=11) = 6, which is also the number of steps required to 

construct U.  
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Enhanced Lempel-Ziv complexity measure c(n) of a 

binary random sequence is in the limit equal to b(n) = n/(1-

ɛn)log2(n). Dividing c(n) by b(n) gives the normalized 

Enhanced Lempel-Ziv Complexity measure C (n). 

( )
( )

( )

c n
C n

b n


 
The normalized C(n) represents the rate of occurrence of 

new substrings in the sequence. C(n) values go from close to 

0 (for deterministic/ periodic sequences) to 0.4 (for totally 

random sequences).   

IV. TEST CASE AND RESULTS 

A. Test Data 

Three different types of datasets are generated for testing 

and to obtain the comparative results, specifically, random 

dataset, dataset with systematic errors in rows, and dataset 

with systematic errors in columns. All three types of 

datasets with different percentage of errors are used to 

obtain the test results respectively. For each of the data type 

and percentage of errors, 10 different data sets are 

generated. Particularly, for the size of 5,000 samples, 30 

different test datasets are generated for each of different 

percentage of errors varying from 5% to 20% and another 9 

datasets at 50% are considered for random type of errors, 

systematic errors in rows and systematic errors in columns. 

Same strategy is applied for 10,000 data sizes. 

B. Test Results 

With the algorithm, a total of more than 120 different 

datasets is analyzed for each of the sample size. Each type 

of data is tested by 10 different sets in each sample size with 

particular percentage of error.  

Figure 3 reflects the average C(n) scores for different type 

of datasets in different sample sizes for 10% of errors in each 

dataset. It can be clearly understood from the figure, that 

both systematic type of errors (rows and columns) have 

lower C(n) scores related to the random type of errors. From 

the experiment, it is also clear that the selected sample sizes 

should have a minimum value of n >= 5000 as the 

differentiation is quite difficult for lower values of n. The 

same experiment is conducted on the datasets having 5%, 

15% and 20% errors respectively. Unlike in the dataset with 

5% errors where the random errors are not clearly 

differentiated as shown in Figure 4, the algorithm 

distinguished between random and systematic errors in the 

datasets with 15% and 20% errors. For the dataset with 15% 

errors, the average values of C(n) are 0.19, 0.13, and 0.25 for 

systematic errors in rows, columns and random errors 

respectively. The average values of C(n) for the dataset 

having 20% errors are 0.19, 0.14, and 0.28 for systematic 

errors in rows, columns and random errors respectively. The 

standard deviation for these values is in the order of 10-4, 

showing the algorithm as effective. It is a clear indication 

that the Enhanced Lempel-Ziv complexity can differentiate 

the random errors from systematic errors.  

As also expected, with the increase of data size, the C(n) 

value of systematic type of data will vary from 0.1 to 0.2 

while for random errors the value is greater than 0.23 for 

different datasets. As the percentage of errors increases to a 

very high value beyond 50%, the algorithm still distinguishes 

between random errors and systematic errors but with 

different threshold values. With the tests on different datasets 

having 50% errors, the average value of C(n) for systematic 

errors in columns is nearly 0.07 while for systematic errors in 

rows has an average value of 0.2. For the random errors the 

average value of C(n) is 0.37. Though random errors have 

highest value it cannot be restrained once the errors increase 

beyond 50%. 

 

 

 
Fig 3. Test Results 

(C(n) for the different datasets having 10% of errors) 

 

 
Fig 4. Test Results 

(C(n) for the different datasets having 5% of errors) 

 

 

The Enhanced complexity also differentiates between the 

percentages of errors by giving highest complexity measure 

for high percentage of errors. As shown in Figure 5, the 

databases with high percentage of random errors have high 

complexity measure than the databases with low percentage 

of errors for different data set sizes. 

Hence, with these results it would be easier to answer the 

managerial questions to consider the prioritization of 

databases, which may require the processing proximately. 

 

 
Fig 5. Test Results 

(C(n) for the different datasets having different error percentages) 
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Figure 6 clearly reflects that at any given percentage of 

errors the random errors have highest complexity and for any 

given type of errors the value of complexity measure is high 

for high percentage of errors in a given dataset having same 

number of data cells. But as the percentage of errors reach 

closer to or beyond 50%, due to high errors organization and 

hence it would be hard to prioritize the datasets in such 

scenario. 

 

 

 
Fig 6. Test Results 

(c(n) for the different datasets having 10000 data cells) 

 

 

V. CONCLUSION 

Enhanced Lempel-Ziv Algorithm is an effective and 

efficient way to obtain the degree of randomness in a dataset, 

without over-estimating the normalized complexity, C(n), for 

moderate data sizes. It is simple and fast algorithm that 

renders an intuitive measure of the degree of randomness of 

the data errors. It is well instituted in conceptual principles 

and has vast applications in practical fields. It is one of the 

most prominent applications to assess the random number 

generators by The Computer Security Division of the 

National Institute of Standards and Technology (NIST), a 

key component of all modern cryptographic systems.  

The tests also have been performed on sample sizes from 

500 to 4000, which cannot differentiate the random errors 

from systematic errors due to data size constraint. The above 

proposed algorithm predominantly differentiates between the 

errors when the minimum sample size is 5000. 

The proposed method is a significant step in comparing 

databases. In the near future, a probability distribution 

function as means of characterizing random distribution 

errors may help to monitor and benchmark the quality status 

of datasets and may assist to obtain the prioritization of 

datasets even for more percentage of errors. 
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