



Abstract—Traveling salesman problem (TSP) is an

important optimization problem in many fields such as

mathematics, computer science, engineering, bioinformatics,

operations research, etc. In this paper, an effective Genetic

Algorithm (GA) is developed to solve large-scale TSP. The

proposed GA with three innovations, i.e. generating good initial

population by considering the city locations, doing the

crossover in crossover window and doing the mutation in

mutation window, can deal with large-scale TSP very

effectively. Effectiveness of the proposed GA is demonstrated

through five case studies, ranging from small-scale to large-

scale TSP (up to 13509 cities).

Index Terms—Genetic algorithm, large-scale traveling

salesman problem, crossover window, mutation window

I. INTRODUCTION

RAVELING salesman problem (TSP) is a very well-

known combinatorial optimization problem, which has

been attracting a lot of attention from researchers in various

fields such as mathematics, computer science, engineering,

bioinformatics, supply chain, operations research, etc. [1, 2].

In general, TSP can be stated as follows. There is a list of

cities with a given locations; and a salesman wants to find

the cheapest tour in terms of distance, time, money, etc. to

visit all of the cities, each exactly once, and then return to

the city of origin [3]. An effective solution method for TSP

has an important application in many areas such as

transportation, logistics, biology, chemotaxis, computer

science, engineering, etc. [4].

Finding the optimal solution to a small-scale TSP is very

easy, but for a large-scale TSP, it is very difficult, most of

the times impossible, due to extremely large search space

involved. From computational complexity theory point of

view, TSP is a NP-hard problem [5]. It should be noted that

NP is a technical term in computational complexity theory in

computer science and mathematics, which stands for Non-

deterministic Polynomial-time. NP problems are decision

problems that can be solved by non-deterministic

polynomial-time bounded Turing machines [6]. In addition,

NP-hard problems are decision problems which are as hard

as any NP problem [7]. Moreover, NP-hard problems are

Manuscript received: June 24, 2016, revised: July 18, 2016. This work

was supported by Australian Government in form of Endeavour

Postgraduate Scholarship.

Mr Son Duy Dao is a PhD student at School of Engineering, University

of South Australia, Australia (corresponding author to provide e-mail:

son.dao@mymail.unisa.edu.au).

Prof. Kazem Abhary is with School of Engineering, University of South

Australia, Australia.

Dr. Romeo Marian is with School of Engineering, University of South

Australia, Australia.

……………………………………………………………….

algorithmically solvable but computationally intractable [7].

There is no exact method that can find the global optimal

solutions to NP-hard problems in polynomial time, and fast

meta-heuristics are the popular approaches to search for

high-quality/practical solutions to the problems [8].

Genetic Algorithm (GA) is a popular meta-heuristic

method, often used to solve complex large-scale

optimization problems [9]. In this paper, an effective GA

with innovative chromosome, crossover and mutation is

developed to solve large-scale TSP. Effectiveness of the

proposed GA is demonstrated through a number of

comprehensive case studies.

II. LITERATURE REVIEW

TSP is one of the oldest optimization problems in the field

of operations research; it has been the subject of intensive

study for more than three decades [4]. A lot of progress in

solving TSP has been made so far, due to the development of

new optimization algorithms and computing techniques.

Nevertheless, solving large-scale TSP is still very

challenging. According to Robert Bosch [10], finding an

optimal solution to the 100,000-city Mona Lisa problem

would set a new world record for TSP. The existing best-

known solution to the problem, with the total distance of

5,757,191, was found by Yuichi Nagata in July 27, 2012,

which was achieved after 11.5 CPU years of computing;

however, it is still not the optimal solution. To help perk up

interest in searching for a better solution to the 100,000-city

Mona Lisa problem, Robert Bosch [10] is offering a $1,000

prize to the first person who finds a solution with the total

distance shorter than 5,757,191. There is no doubt that

solving large-scale TSP is still a challenging and open

problem.

Like other NP-hard problems, TSP is computationally

intractable [7]. Solution methods for TSP can be generally

classified into two groups: exact methods and meta-heuristic

methods. On one hand, exact methods, e.g. branch and

bound, dynamic programming, linear and integer

programming, etc., can find the optimal solution to TSP but

they are computationally expensive; and therefore, exact

methods are not always feasible for solving large-scale TSP

[11]. On the other hand, meta-heuristic methods are not

capable of guaranteeing the optimal solution to TSP but they

can find good solutions to any TSP pretty quickly; that is

why meta-heuristic methods are the preferred choices for

solving large-scale TSP [11-13].

GA is one of the most popular meta-heuristic methods,

often used to solve large-scale optimization problems [9].

An Effective Genetic Algorithm for Large-Scale

Traveling Salesman Problems

Son Duy Dao, Kazem Abhary, and Romeo Marian

T

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

Solving TSP using GA is certainly not new in the literature.

To date, there have been a significant number of

publications, in which GA based methods were developed to

solve many different versions of TSP. Due to space limit,

only a few, most related and recent publications are reviewed

herein. In the research of Wang et al. [14], TSP was solved

by a so called multi-offspring GA, and some small and

medium-scale TSP instances were used to test the proposed

algorithm. Nagata & Soler [15] have developed an

innovative GA for TSP, in which a local search procedure

was used for generating the initial population, and the

developed GA was comprehensively tested by a large

number of small-scale TSP instances. In addition, a GA with

a new mutation operator named greedy sub tour mutation was

proposed by Albayrak & Allahverdi [16] and the proposed

algorithm was tested with a number of small-scale TSP

instances. In the work of Maity, Roy & Maiti [17], a

modified GA with new selection and crossover was

developed and tested with 11 small-scale TSP instances.

Moreover, a hybrid GA with two local optimization

strategies [18] and an improved GA with new crossover

operator called two-part chromosome crossover [19] have

been developed for TSP, and the developed algorithms were

tested with small and medium-scale TSP instances. Finally,

Paul et al. [9] have investigated the effectiveness of different

population seeding techniques for permutation-coded GA,

with a number of large-scale TSP instances.

It can be seen that the research on developing GA to solve

large-scale TSP is still very limited. Almost all published

works deal with small and medium-scale TSP (the scale with

less than or equal to 3038 cities). To the authors’ best

knowledge, there has been only one research done by Paul et

al. [9], dealing with large-scale TSP (the scale with up to

18512 cities). Nevertheless, the research of Paul et al. [9]

mainly studied several seeding techniques for generating

initial population of permutation-coded GA; effective

crossover and mutation strategies of the GA to deal with

large-scale TSP were not developed there. To overcome

these limitations, an effective GA with innovative strategies

for (1) initial population, (2) crossover and (3) mutation is

developed herein to solve large-scale TSP. Effectiveness of

the proposed GA is demonstrated through five case studies,

ranging from small-scale to large-scale TSP (up to 13509

cities).

III. PROPOSED GENETIC ALGORITHM

Like the traditional GA, the proposed GA has five

components, namely chromosome encoding, crossover,

mutation, evaluation and selection. The connection of these

five components, called GA structure, is shown in Fig. 1;

details of the components are described in the subsequent

Sections.

A. Chromosome Encoding

A string of positive integer numbers as illustrated in Table

1 is a natural way to encode a solution to TSP. In Table 1,

the positive integer numbers represent the corresponding

cities. For example, numbers 4 and 9 represent the cities 4

and 9, respectively. The sequence of the numbers represents

the sequence of the cities in the corresponding tour, e.g. the

illustrated chromosome in Table 1 encodes the following

tour: 4 → 9 → 2 → 1 → 10 → 14 → 5 → 12 → 8 → 6 →

15 → 11 → 13 → 7 → 3 → 4.

Fig. 1: Structure of the proposed GA

Table 1: Chromosome

Normally, chromosomes in the first generation of a GA,

called initial population, are randomly generated. However,

this approach is not very effective when solving TSP,

because it does not take advantage of location information of

the cities. The city location information in TSP is always

available and it is valuable to generate better chromosomes

that will serve as starting points of GA search. A good initial

population plays an important role in performance of a GA,

especially when solving large-scale TSP. In this paper, an

innovative approach for generating a good initial population

is developed. The fundamental idea of the proposed

approach is generating a chromosome in which two adjacent

genes should contain two cities that are very close,

sometimes but not always closest, to each other. The

proposed approach is implemented by the following steps.

Step 1: Sort the cities according to the increase of their x

coordinate (named matrix A).

Step 2: Sort the cities according to the increase of their y

coordinate (named matrix B).

Step 3: Randomly select one city and assign it to the first

gene of the chromosome.

Step 4: Assign the selected city as the seed.

Step 5: Incrementally and symmetrically expand the

segments starting from the seed in matrices A and

B as illustrated in Fig. 2, until the two segments

have at least one city, except the seed, in common.

4 9 2 1 10 14 5 12 8 6 15 11 13 7 3

Begin

Population (P)

Evaluation (P + C + M)

Selection (P - E)

Optimal solution

i N

No

End

Yes

Crossover (C)

Elite (E)

Mutation (M)

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

Step 6: Determine the common city/cities, except the seed,

in two segments in Step 5.

Step 7: Assign the common city in Step 6 to the next gene

of the chromosome. If there is more than one

common city in Step 6, they are assigned in the

same manner but in a random order.

Step 8: Select the city in the last gene, filled so far, of the

chromosome, for example, city 14 as illustrated in

Fig. 2.

Step 9: Remove all common cities (including the seed) in

two segments in Step 5, but except the selected city

in Step 8, from matrices A and B.

Step 10: Assign the selected city in Step 8 as the new seed.

Step 11: Repeat Steps 5-10 until all cities have been

assigned to all genes of the chromosome.

4 9 2 1 10 14 5 12 8 6 15 11 13 7 3

 Expanded

7 1 11 15 2 5 13 6 10 3 4 14 9 12 8

6 13 10 5 14 - - - - - - - - - -

10 = 5 14 =

Matrix A:

Matrix B:

Expanded

Legend:

Chromosome:

The common citiesThe seed

Fig. 2: Proposed chromosome generating procedure

It is noted that the segment(s) in Step 5 may not be

symmetrically expanded when the seed is located at the

position which is very close to the first or last element of

matrices A and/or B. In those cases, the segment(s) will be

asymmetrically expanded and the lengths of the two

segments must be still the same.

B. Crossover

The traditional crossover [20] is not very effective when

solving large-scale TSP, due to extremely large search space

of the problem. An innovative crossover is therefore

proposed herein. The proposed crossover is implemented by

the following steps.

Step 1: Randomly select one chromosome called parent.

Step 2: Randomly select one segment containing a certain

number of genes, which is called crossover

window, as illustrated in Fig. 3.

Step 3: Randomly select one cut point to divide the

selected crossover window into two pieces as

highlighted in Fig. 3.

Step 4: Swap the two pieces as illustrated in Fig. 3.

 Parent: 4 9 2 1 10 14 5 12 8 6 15 11 13 7 3

 Offspring: 4 9 14 5 12 8 6 2 1 10 15 11 13 7 3

Crossover window

Cut point

Fig. 3: Proposed crossover

It is noted that the length of crossover windows, measured

in term of gene quantity, is a constant selected by the users.

In addition, each crossover operation has only one input

(one parent) and one output (one offspring). Finally, the

offspring chromosome is always feasible and therefore no

further repair is required.

C. Mutation

Like the traditional crossover, the traditional mutation

[20] is not very effective when dealing with large-scale TSP.

An innovative mutation is therefore developed herein. The

developed mutation is described as follows.

Step 1: Randomly select one chromosome called parent.

Step 2: Randomly select one segment containing a certain

number of genes, which is called mutation window,

as illustrated in Fig. 4.

Step 3: Randomly select two different genes in the selected

mutation window, for example, two genes

containing two cities 1 and 12 as shown in Fig. 4.

Step 4: Exchange the two selected genes as illustrated in

Fig. 4.

 Parent: 4 9 2 1 10 14 5 12 8 6 15 11 13 7 3

 Offspring: 4 9 2 12 10 14 5 1 8 6 15 11 13 7 3

Mutation window

Fig. 4: Proposed mutation

It is noted that like crossover windows, mutation windows

have a constant length, measured in term of gene quantity

and selected by the users. Each mutation operation has only

one input (one parent) and one output (one offspring). In

addition, no further repair is required because the offspring

chromosome is always feasible.

D. Evaluation

The objective function of TSP, to be minimized, is the

total distance of the travelling tour. The distance between

two cities is calculated by Eq. 1, where xi, yi, xj and yj are the

coordinates of cities i and j. Quality of a chromosome is

evaluated through its total travelling tour distance. A

chromosome with a better quality is more likely to be

selected for the next generation. How to do the selection will

be presented in the next Section.

 (1)

E. Selection

The Roulette Wheel selection, one of the popular

selection methods in the literature, is adopted herein. The

Roulette Wheel method selects a new population based on

the probability distribution associated with the fitness values

or qualities of chromosomes [20]. In this paper, the elite

strategy is also used in the selection process, in which the

best chromosome in one generation is always guaranteed to

pass to the next generation.

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

Effectiveness of the proposed GA will be demonstrated

through five case studies in the next Section.

IV. CASE STUDIES

A. Problem Description

Five TSP instances from an online library named TSPLIB

[21] are used herein to verify the robustness of the proposed

GA. The five TSP instances are Ulysses22, Gr202, U2152,

Pla7397 and Usa13509. Due to space limit, full dataset of

the instances are not presented in this paper. For the dataset,

it is advised to refer to the online library at TSPLIB [21].

The number of cities in each instance is shown in Table 2.

To solve these five TSP instances, the proposed GA and the

traditional GA were applied; performances of the two

approaches will be reported in the next Section.

B. Result and Discussion

Qualities of solutions to the five TSP instances, obtained

by the proposed GA and the traditional GA in the same

computing time of 90 minutes, are compared to each other.

Each algorithm was independently run for 10 times, and its

solution quality in terms of the best fitness value (called

Best), average fitness value (called Mean) and standard

deviation of the fitness values (called Std.deviation) is

shown in Table 2.

The traditional GA is exactly the same as the proposed

GA, except two following aspects. First, the initial

population of the traditional GA is randomly generated.

Second, crossover and mutation of the traditional GA do not

have two strategies developed in this paper, i.e. crossover

window and mutation window, respectively. Parameters of

the two algorithms were also set exactly the same, as shown

in Table 3, where P, C, M and L are population size, number

of chromosomes to be crossed in each generation, number of

chromosomes to be mutated in each generation and length of

crossover/mutation window, respectively. It should be noted

that L value of the traditional GA is not available as there is

no crossover/mutation window in the traditional GA.

Table 3: Parameters of two algorithms

As can be seen from Table 2, for small-scale problem, i.e.

Ulysses22, fitness values obtained by the proposed GA and

the traditional GA are about the same. For larger problems,

the proposed GA outperforms the traditional GA in all three

measures: Best, Mean and Std.deviation. The Mean values

achieved by the two algorithms are visualized in Fig. 5. It is

noted that Logarithmic scale (base: 10) was used to scale

up/down the vertical axis of Fig. 5, for better visualization.

As can be seen from Fig. 5, for large-scale problems, the

proposed GA can provide much better solutions, compared

to the traditional GA. It can be concluded that although the

proposed GA, like other meta-heuristics, is not capable of

guaranteeing the global optimal solution for large-scale TSP,

it is very effective in finding the good solutions in a

reasonable computing time.

Fig. 5: Mean value of the achieved tour distances

P C M L

Proposed GA 50 40 10 20

Traditional GA 50 40 10 -

No. Problem (*) No. of cities Computing time (min) Fitness value Traditional GA Proposed GA

1 Ulysses22 22 90 Best 76.1 75.3

Mean 76.9 76.4

Std.deviation 1.1 0.9

2 Gr202 202 90 Best 946.7 582.8

Mean 1014.8 619.7

Std.deviation 46.8 27.5

3 U2152 2152 90 Best 2259986.9 100817.2

Mean 2295021.4 107023.2

Std.deviation 26024.6 3071.7

4 Pla7397 7397 90 Best 2729030057.2 41500787.8

Mean 2740286300.8 44261679.3

Std.deviation 6514995.7 2388918.1

5 Usa13509 13509 90 Best 2123360930.3 37428783.1

Mean 2132622914.5 38516350.3

Std.deviation 5266762.9 503770.4

* Note: The problems are from an online library named TSPLIB [21]

Table 2: Performance comparison

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

V. CONCLUSION

In this paper, an effective GA for solving large-scale TSP

has been developed. With three novel features, i.e.

generating good initial population by considering the city

locations, doing the crossover in crossover window and

doing the mutation in mutation window, the proposed GA is

capable of dealing with large-scale TSP. The performances

of the proposed GA have been compared with that of the

traditional GA in five case studies, ranging from small-scale

to large-scale TSP (up to 13509 cities). For small-scale TSP,

the performances of the proposed GA and the traditional GA

were about the same. For large-scale TSP, the proposed GA

could provide much better solutions, compared to the

traditional GA. There is no doubt that although the proposed

GA, like other meta-heuristics, is not capable of

guaranteeing the global optimal solution for large-scale TSP,

it is very effective in finding the good solutions in a

reasonable computing time.

In future work, more comprehensive tests and comparison

will be carried out to thoroughly verify the effectiveness of

the proposed GA.

REFERENCES

[1] Huai-Kuang, T., et al., An evolutionary algorithm for large traveling

salesman problems. IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), 2004. 34(4): p. 1718-1729.

[2] Gutin, G. and A. Punnen, The traveling salesman problem. Discrete

Optimization, 2006. 3(1): p. 1.

[3] Nguyen, H.D., et al., Implementation of an effective hybrid GA for

large-scale traveling salesman problems. IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics), 2007. 37(1):

p. 92-99.

[4] Avşar, B. and D.E. Aliabadi, Parallelized neural network system for

solving Euclidean traveling salesman problem. Applied Soft

Computing, 2015. 34: p. 862-873.

[5] Wang, Y., An approximate method to compute a sparse graph for

traveling salesman problem. Expert Systems with Applications,

2015. 42(12): p. 5150-5162.

[6] Cadoli, M., et al., NP-SPEC: an executable specification language

for solving all problems in NP. Computer Languages, 2000. 26(2–

4): p. 165-195.

[7] Shapiro, M. and E. Delgado-Eckert, Finding the probability of

infection in an SIR network is NP-Hard. Mathematical Biosciences,

2012. 240(2): p. 77-84.

[8] He, K., W. Huang, and Y. Jin, An efficient deterministic heuristic for

two-dimensional rectangular packing. Computers & Operations

Research, 2012. 39(7): p. 1355-1363.

[9] Paul, P.V., et al., Performance analyses over population seeding

techniques of the permutation-coded genetic algorithm: An

empirical study based on traveling salesman problems. Applied

Soft Computing, 2015. 32: p. 383-402.

[10] Bosch, R. Mona Lisa TSP challenge. 2009; Available from:

http://www.math.uwaterloo.ca/tsp/data/ml/monalisa.html.

[11] Potvin, J.Y., Genetic algorithms for the traveling salesman problem.

Annals of Operations Research, 1996. 63(3): p. 337-370.

[12] Dao, S.D. and R. Marian, Genetic algorithms for integrated

optimisation of precedence-constrained production sequencing and

scheduling, in Electrical Engineering and Intelligent Systems S.-I.

Ao and L. Gelman, Editors. 2013, Springer: New York. p. 65-80.

[13] Dao, S.D. and R. Marian, Modeling and optimisation of precedence-

constrained production sequencing and scheduling using multi-

objective genetic algorithms, in The World Congress on

Engineering 2011: London, UK.

[14] Wang, J., et al., Multi-offspring genetic algorithm and its

application to the traveling salesman problem. Applied Soft

Computing, 2016. 43: p. 415-423.

[15] Nagata, Y. and D. Soler, A new genetic algorithm for the asymmetric

traveling salesman problem. Expert Systems with Applications,

2012. 39(10): p. 8947-8953.

[16] Albayrak, M. and N. Allahverdi, Development a new mutation

operator to solve the traveling salesman problem by aid of genetic

algorithms. Expert Systems with Applications, 2011. 38(3): p. 1313-

1320.

[17] Maity, S., A. Roy, and M. Maiti, A modified genetic algorithm for

solving uncertain constrained solid travelling salesman problems.

Computers & Industrial Engineering, 2015. 83: p. 273-296.

[18] Wang, Y., The hybrid genetic algorithm with two local optimization

strategies for traveling salesman problem. Computers & Industrial

Engineering, 2014. 70: p. 124-133.

[19] Yuan, S., et al., A new crossover approach for solving the multiple

travelling salesmen problem using genetic algorithms. European

Journal of Operational Research, 2013. 228(1): p. 72-82.

[20] Gen, M. and R. Cheng, Genetic algorithms and engineering design

1997, New York John Wiley & Sons.

[21] TSPLIB. Symmetric traveling salesman problem instances. 1995

[viewed: 28 May 2016]; Available from: http://elib.zib.de/pub/mp-

testdata/tsp/tsplib/tsp/index.html.

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol I
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14047-1-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016

http://www.math.uwaterloo.ca/tsp/data/ml/monalisa.html
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

