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Abstract—Traveling salesman problem (TSP) is an 

important optimization problem in many fields such as 

mathematics, computer science, engineering, bioinformatics, 

operations research, etc. In this paper, an effective Genetic 

Algorithm (GA) is developed to solve large-scale TSP. The 

proposed GA with three innovations, i.e. generating good initial 

population by considering the city locations, doing the 

crossover in crossover window and doing the mutation in 

mutation window, can deal with large-scale TSP very 

effectively. Effectiveness of the proposed GA is demonstrated 

through five case studies, ranging from small-scale to large-

scale TSP (up to 13509 cities). 

 
Index Terms—Genetic algorithm, large-scale traveling 

salesman problem, crossover window, mutation window 

I. INTRODUCTION 

RAVELING salesman problem (TSP) is a very well-

known combinatorial optimization problem, which has 

been attracting a lot of attention from researchers in various 

fields such as mathematics, computer science, engineering, 

bioinformatics, supply chain, operations research, etc. [1, 2]. 

In general, TSP can be stated as follows. There is a list of 

cities with a given locations; and a salesman wants to find 

the cheapest tour in terms of distance, time, money, etc. to 

visit all of the cities, each exactly once, and then return to 

the city of origin [3]. An effective solution method for TSP 

has an important application in many areas such as 

transportation, logistics, biology, chemotaxis, computer 

science, engineering, etc. [4]. 

Finding the optimal solution to a small-scale TSP is very 

easy, but for a large-scale TSP, it is very difficult, most of 

the times impossible, due to extremely large search space 

involved. From computational complexity theory point of 

view, TSP is a NP-hard problem [5]. It should be noted that 

NP is a technical term in computational complexity theory in 

computer science and mathematics, which stands for Non-

deterministic Polynomial-time. NP problems are decision 

problems that can be solved by non-deterministic 

polynomial-time bounded Turing machines [6]. In addition, 

NP-hard problems are decision problems which are as hard 

as any NP problem [7]. Moreover, NP-hard problems are 
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algorithmically solvable but computationally intractable [7]. 

There is no exact method that can find the global optimal 

solutions to NP-hard problems in polynomial time, and fast 

meta-heuristics are the popular approaches to search for 

high-quality/practical solutions to the problems [8]. 

Genetic Algorithm (GA) is a popular meta-heuristic 

method, often used to solve complex large-scale 

optimization problems [9]. In this paper, an effective GA 

with innovative chromosome, crossover and mutation is 

developed to solve large-scale TSP. Effectiveness of the 

proposed GA is demonstrated through a number of 

comprehensive case studies.   

II. LITERATURE REVIEW 

TSP is one of the oldest optimization problems in the field 

of operations research; it has been the subject of intensive 

study for more than three decades [4]. A lot of progress in 

solving TSP has been made so far, due to the development of 

new optimization algorithms and computing techniques. 

Nevertheless, solving large-scale TSP is still very 

challenging. According to Robert Bosch [10], finding an 

optimal solution to the 100,000-city Mona Lisa problem 

would set a new world record for TSP. The existing best-

known solution to the problem, with the total distance of 

5,757,191, was found by Yuichi Nagata in July 27, 2012, 

which was achieved after 11.5 CPU years of computing; 

however, it is still not the optimal solution. To help perk up 

interest in searching for a better solution to the 100,000-city 

Mona Lisa problem, Robert Bosch [10] is offering a $1,000 

prize to the first person who finds a solution with the total 

distance shorter than 5,757,191. There is no doubt that 

solving large-scale TSP is still a challenging and open 

problem. 

Like other NP-hard problems, TSP is computationally 

intractable [7]. Solution methods for TSP can be generally 

classified into two groups: exact methods and meta-heuristic 

methods. On one hand, exact methods, e.g. branch and 

bound, dynamic programming, linear and integer 

programming, etc., can find the optimal solution to TSP but 

they are computationally expensive; and therefore, exact 

methods are not always feasible for solving large-scale TSP 

[11]. On the other hand, meta-heuristic methods are not 

capable of guaranteeing the optimal solution to TSP but they 

can find good solutions to any TSP pretty quickly; that is 

why meta-heuristic methods are the preferred choices for 

solving large-scale TSP [11-13]. 

GA is one of the most popular meta-heuristic methods, 

often used to solve large-scale optimization problems [9]. 
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Solving TSP using GA is certainly not new in the literature. 

To date, there have been a significant number of 

publications, in which GA based methods were developed to 

solve many different versions of TSP. Due to space limit, 

only a few, most related and recent publications are reviewed 

herein. In the research of Wang et al. [14], TSP was solved 

by a so called multi-offspring GA, and some small and 

medium-scale TSP instances were used to test the proposed 

algorithm. Nagata & Soler [15] have developed an 

innovative GA for TSP, in which a local search procedure 

was used for generating the initial population, and the 

developed GA was comprehensively tested by a large 

number of small-scale TSP instances. In addition, a GA with 

a new mutation operator named greedy sub tour mutation was 

proposed by Albayrak & Allahverdi [16] and the proposed 

algorithm was tested with a number of small-scale TSP 

instances. In the work of Maity, Roy & Maiti [17], a 

modified GA with new selection and crossover was 

developed and tested with 11 small-scale TSP instances. 

Moreover, a hybrid GA with two local optimization 

strategies [18] and an improved GA with new crossover 

operator called two-part chromosome crossover [19] have 

been developed for TSP, and the developed algorithms were 

tested with small and medium-scale TSP instances. Finally, 

Paul et al. [9] have investigated the effectiveness of different 

population seeding techniques for permutation-coded GA, 

with a number of large-scale TSP instances. 

It can be seen that the research on developing GA to solve 

large-scale TSP is still very limited. Almost all published 

works deal with small and medium-scale TSP (the scale with 

less than or equal to 3038 cities). To the authors’ best 

knowledge, there has been only one research done by Paul et 

al. [9], dealing with large-scale TSP (the scale with up to 

18512 cities). Nevertheless, the research of Paul et al. [9] 

mainly studied several seeding techniques for generating 

initial population of permutation-coded GA; effective 

crossover and mutation strategies of the GA to deal with 

large-scale TSP were not developed there. To overcome 

these limitations, an effective GA with innovative strategies 

for (1) initial population, (2) crossover and (3) mutation is 

developed herein to solve large-scale TSP. Effectiveness of 

the proposed GA is demonstrated through five case studies, 

ranging from small-scale to large-scale TSP (up to 13509 

cities). 

III. PROPOSED GENETIC ALGORITHM 

Like the traditional GA, the proposed GA has five 

components, namely chromosome encoding, crossover, 

mutation, evaluation and selection. The connection of these 

five components, called GA structure, is shown in Fig. 1; 

details of the components are described in the subsequent 

Sections. 

A. Chromosome Encoding 

A string of positive integer numbers as illustrated in Table 

1 is a natural way to encode a solution to TSP. In Table 1, 

the positive integer numbers represent the corresponding 

cities. For example, numbers 4 and 9 represent the cities 4 

and 9, respectively. The sequence of the numbers represents 

the sequence of the cities in the corresponding tour, e.g. the 

illustrated chromosome in Table 1 encodes the following 

tour: 4 → 9 → 2 → 1 → 10 → 14 → 5 → 12 → 8 → 6 → 

15 → 11 → 13 → 7 → 3 → 4. 

Fig. 1: Structure of the proposed GA 

Table 1: Chromosome 

Normally, chromosomes in the first generation of a GA, 

called initial population, are randomly generated. However, 

this approach is not very effective when solving TSP, 

because it does not take advantage of location information of 

the cities. The city location information in TSP is always 

available and it is valuable to generate better chromosomes 

that will serve as starting points of GA search. A good initial 

population plays an important role in performance of a GA, 

especially when solving large-scale TSP. In this paper, an 

innovative approach for generating a good initial population 

is developed. The fundamental idea of the proposed 

approach is generating a chromosome in which two adjacent 

genes should contain two cities that are very close, 

sometimes but not always closest, to each other. The 

proposed approach is implemented by the following steps. 

Step 1: Sort the cities according to the increase of their x 

coordinate (named matrix A). 

Step 2: Sort the cities according to the increase of their y 

coordinate (named matrix B). 

Step 3: Randomly select one city and assign it to the first 

gene of the chromosome. 

Step 4: Assign the selected city as the seed. 

Step 5: Incrementally and symmetrically expand the 

segments starting from the seed in matrices A and 

B as illustrated in Fig. 2, until the two segments 

have at least one city, except the seed, in common. 

4 9 2 1 10 14 5 12 8 6 15 11 13 7 3

Begin

Population (P) 

Evaluation (P + C + M)

Selection (P - E)

Optimal solution

i      N

No

End

Yes

Crossover (C) 
      

Elite (E)

Mutation (M) 
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Step 6: Determine the common city/cities, except the seed, 

in two segments in Step 5. 

Step 7: Assign the common city in Step 6 to the next gene 

of the chromosome. If there is more than one 

common city in Step 6, they are assigned in the 

same manner but in a random order. 

Step 8: Select the city in the last gene, filled so far, of the 

chromosome, for example, city 14 as illustrated in 

Fig. 2. 

Step 9: Remove all common cities (including the seed) in 

two segments in Step 5, but except the selected city 

in Step 8, from matrices A and B. 

Step 10: Assign the selected city in Step 8 as the new seed. 

Step 11: Repeat Steps 5-10 until all cities have been 

assigned to all genes of the chromosome. 
 

4 9 2 1 10 14 5 12 8 6 15 11 13 7 3

   Expanded

7 1 11 15 2 5 13 6 10 3 4 14 9 12 8

6 13 10 5 14 - - - - - - - - - -

10 = 5 14 =

Matrix A:

Matrix B:

Expanded

Legend:

Chromosome:

The common citiesThe seed
 

Fig. 2: Proposed chromosome generating procedure 

It is noted that the segment(s) in Step 5 may not be 

symmetrically expanded when the seed is located at the 

position which is very close to the first or last element of 

matrices A and/or B. In those cases, the segment(s) will be 

asymmetrically expanded and the lengths of the two 

segments must be still the same.  

B. Crossover 

The traditional crossover [20] is not very effective when 

solving large-scale TSP, due to extremely large search space 

of the problem. An innovative crossover is therefore 

proposed herein. The proposed crossover is implemented by 

the following steps.  

Step 1: Randomly select one chromosome called parent. 

Step 2: Randomly select one segment containing a certain 

number of genes, which is called crossover 

window, as illustrated in Fig. 3. 

Step 3: Randomly select one cut point to divide the 

selected crossover window into two pieces as 

highlighted in Fig. 3. 

Step 4: Swap the two pieces as illustrated in Fig. 3. 
 

 Parent: 4 9 2 1 10 14 5 12 8 6 15 11 13 7 3

 Offspring: 4 9 14 5 12 8 6 2 1 10 15 11 13 7 3

Crossover window

Cut point
 

Fig. 3: Proposed crossover 

It is noted that the length of crossover windows, measured 

in term of gene quantity, is a constant selected by the users. 

In addition, each crossover operation has only one input 

(one parent) and one output (one offspring). Finally, the 

offspring chromosome is always feasible and therefore no 

further repair is required. 

C. Mutation 

Like the traditional crossover, the traditional mutation 

[20] is not very effective when dealing with large-scale TSP. 

An innovative mutation is therefore developed herein. The 

developed mutation is described as follows. 

Step 1: Randomly select one chromosome called parent. 

Step 2: Randomly select one segment containing a certain 

number of genes, which is called mutation window, 

as illustrated in Fig. 4. 

Step 3: Randomly select two different genes in the selected 

mutation window, for example, two genes 

containing two cities 1 and 12 as shown in Fig. 4. 

Step 4: Exchange the two selected genes as illustrated in 

Fig. 4. 
 

 Parent: 4 9 2 1 10 14 5 12 8 6 15 11 13 7 3

 Offspring: 4 9 2 12 10 14 5 1 8 6 15 11 13 7 3

Mutation window

 

Fig. 4: Proposed mutation 

It is noted that like crossover windows, mutation windows 

have a constant length, measured in term of gene quantity 

and selected by the users. Each mutation operation has only 

one input (one parent) and one output (one offspring). In 

addition, no further repair is required because the offspring 

chromosome is always feasible. 

D. Evaluation 

The objective function of TSP, to be minimized, is the 

total distance of the travelling tour. The distance between 

two cities is calculated by Eq. 1, where xi, yi, xj and yj are the 

coordinates of cities i and j. Quality of a chromosome is 

evaluated through its total travelling tour distance. A 

chromosome with a better quality is more likely to be 

selected for the next generation. How to do the selection will 

be presented in the next Section.  
 

                                          (1) 

E. Selection 

The Roulette Wheel selection, one of the popular 

selection methods in the literature, is adopted herein. The 

Roulette Wheel method selects a new population based on 

the probability distribution associated with the fitness values 

or qualities of chromosomes [20]. In this paper, the elite 

strategy is also used in the selection process, in which the 

best chromosome in one generation is always guaranteed to 

pass to the next generation. 
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Effectiveness of the proposed GA will be demonstrated 

through five case studies in the next Section. 

IV. CASE STUDIES 

A. Problem Description 

Five TSP instances from an online library named TSPLIB 

[21] are used herein to verify the robustness of the proposed 

GA. The five TSP instances are Ulysses22, Gr202, U2152, 

Pla7397 and Usa13509. Due to space limit, full dataset of 

the instances are not presented in this paper. For the dataset, 

it is advised to refer to the online library at TSPLIB [21]. 

The number of cities in each instance is shown in Table 2. 

To solve these five TSP instances, the proposed GA and the 

traditional GA were applied; performances of the two 

approaches will be reported in the next Section. 

B. Result and Discussion 

Qualities of solutions to the five TSP instances, obtained 

by the proposed GA and the traditional GA in the same 

computing time of 90 minutes, are compared to each other. 

Each algorithm was independently run for 10 times, and its 

solution quality in terms of the best fitness value (called 

Best), average fitness value (called Mean) and standard 

deviation of the fitness values (called Std.deviation) is 

shown in Table 2.  

The traditional GA is exactly the same as the proposed 

GA, except two following aspects. First, the initial 

population of the traditional GA is randomly generated. 

Second, crossover and mutation of the traditional GA do not 

have two strategies developed in this paper, i.e. crossover 

window and mutation window, respectively. Parameters of 

the two algorithms were also set exactly the same, as shown 

in Table 3, where P, C, M and L are population size, number 

of chromosomes to be crossed in each generation, number of 

chromosomes to be mutated in each generation and length of 

crossover/mutation window, respectively. It should be noted 

that L value of the traditional GA is not available as there is 

no crossover/mutation window in the traditional GA. 

Table 3: Parameters of two algorithms 

 

As can be seen from Table 2, for small-scale problem, i.e. 

Ulysses22, fitness values obtained by the proposed GA and 

the traditional GA are about the same. For larger problems, 

the proposed GA outperforms the traditional GA in all three 

measures: Best, Mean and Std.deviation. The Mean values 

achieved by the two algorithms are visualized in Fig. 5. It is 

noted that Logarithmic scale (base: 10) was used to scale 

up/down the vertical axis of Fig. 5, for better visualization. 

As can be seen from Fig. 5, for large-scale problems, the 

proposed GA can provide much better solutions, compared 

to the traditional GA. It can be concluded that although the 

proposed GA, like other meta-heuristics, is not capable of 

guaranteeing the global optimal solution for large-scale TSP, 

it is very effective in finding the good solutions in a 

reasonable computing time. 

 

 

Fig. 5: Mean value of the achieved tour distances  

P C M L

Proposed GA 50 40 10 20

Traditional GA 50 40 10 -

No. Problem (*) No. of cities Computing time (min) Fitness value Traditional GA Proposed GA

1 Ulysses22 22 90 Best 76.1 75.3

Mean 76.9 76.4

Std.deviation 1.1 0.9

2 Gr202 202 90 Best 946.7 582.8

Mean 1014.8 619.7

Std.deviation 46.8 27.5

3 U2152 2152 90 Best 2259986.9 100817.2

Mean 2295021.4 107023.2

Std.deviation 26024.6 3071.7

4 Pla7397 7397 90 Best 2729030057.2 41500787.8

Mean 2740286300.8 44261679.3

Std.deviation 6514995.7 2388918.1

5 Usa13509 13509 90 Best 2123360930.3 37428783.1

Mean 2132622914.5 38516350.3

Std.deviation 5266762.9 503770.4

* Note: The problems are from an online library named TSPLIB [21]

Table 2: Performance comparison
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V. CONCLUSION 

In this paper, an effective GA for solving large-scale TSP 

has been developed. With three novel features, i.e. 

generating good initial population by considering the city 

locations, doing the crossover in crossover window and 

doing the mutation in mutation window, the proposed GA is 

capable of dealing with large-scale TSP. The performances 

of the proposed GA have been compared with that of the 

traditional GA in five case studies, ranging from small-scale 

to large-scale TSP (up to 13509 cities). For small-scale TSP, 

the performances of the proposed GA and the traditional GA 

were about the same. For large-scale TSP, the proposed GA 

could provide much better solutions, compared to the 

traditional GA. There is no doubt that although the proposed 

GA, like other meta-heuristics, is not capable of 

guaranteeing the global optimal solution for large-scale TSP, 

it is very effective in finding the good solutions in a 

reasonable computing time. 

In future work, more comprehensive tests and comparison 

will be carried out to thoroughly verify the effectiveness of 

the proposed GA.   
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