
 

  

Abstract—The research optimizes the detection of Influenza-
A's resistance to Osetamivir (Tamiflu), an antiviral drug, by: 
(a) Determining the best number of Principle Component 
Analysis (PCA) features to generate accurate results. (b) 
Selecting the best classifier for detecting Oseltamivir-resistance, 
when using PCA features, by comparing the performance of  
neural networks (NNs) & decision trees (DTs) (c) Comparing 
findings to previous experiments conducted on detecting 
Adamantane-resistance in the H1N1 strain. (d) Noting the 
performance of using Information Gain (IG) when detecting 
Oseltamivir-resistance. Viral DNA sequences from the NA 
segment, belonging to the 2009 pH1N1 strain, were used; they 
possess a 90% elimination rate by Oseltamivir. Sequences 
understudy were further divided into Oseltamivir-resistant & 
Oseltamivir-susceptible. The performance measures used were 
accuracy, sensitivity, specificity, precision, & time. Using IG 
resulted in classifier overlearning when detecting Oseltamivir-
resistance. NNs outperformed DTs, when using 40 PCA 
features from the NA segment to detect Oseltamivir-resistance, 
with an overall accuracy increase of 5%. In contrast DTs 
showed better performance when detecting Adamantane-
resistance with just 3 PCA features from the M1/M2 (M) 
segment, due to the availability of a larger, more balanced 
training dataset. Using 40 PCA features additionally enhanced 
the detection of Adamantine-resistance on the NA segment by 
5%. The findings can be used later for building a multilabel 
antiviral-resistance detector . 
 

Index Terms—Principle Component Analysis (PCA), 
Influenza-A, machine learning, Adamantane-resistance, 
Oseltamivir-resistance 

I. INTRODUCTION 
nfluenza-A's high mutation rate is the cause for its high 
morbidity/mortality rates during virulent pandemics. 

Antiviral drugs are sparsely used during outbreaks as the 
virus's mutation to an antiviral-resistant strain is 
unpredictable. Antiviral brands having lower success rates at 
eliminating the virus are excluded from consideration 
altogether e.g. Adamantane [1]. As a result numerous 
infected people do not get the required timely treatment. The 
virus additionally develops increasing resistance to drugs it 
is susceptible to via mutation. Thus a drug which was 
effective in solving one pandemic, can become ineffective in 
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future pandemics [1]. Oseltamivir (Tamiflu) is one such 
drug; it targets the H1N1 viral strains. Oseltamivir's 
effectiveness rate was 98% during the 2007-2008 Influenza 
season, but was reduced to 90% during the 2008-2009 
season, due to the virus's mutation. 

 This work will use cDNA/RNA (DNA) for virus analysis. 
Fig. 1. shows a simplified version of Influenza A's most 
important features. Influenza-A's genetic material is encoded 
in 8 RNA segments. The RNA segments eventual mutation 
causes the antiviral drugs to be ineffective against the 
resulting viral proteins . The mutation is further enhanced by 
antigenic shift [2], possibly increasing the virus's drug 
resistance. Currently there are at least 16 hemagglutinine/ 
HA (H) & 9 neuraminidase/ NA (N) known subtypes due to 
Influenza-A's rapid mutation rate [3]. Viral strains are coded 
using these subtypes. E.g. H1N1. By improving the 
classification of antiviral drug resistance using viral RNA, 
these mutations can be spotted early.  

 

 
Fig. 1. Summary of Influenza-A's structure. 
 

In some cases, the viral strains may mutate gaining 
resistance to both Oseltamivir & Adamantane respectively 
[4]. Improving the classification of Oseltamivir-resistance 
via machine learning can thus allow the prediction of the 
aforementioned scenario more rapidly. Previous studies on 
machine learning were conducted to classify virus's 
resistance to Adamantane. However, no studies were 
conducted yet on improving the classification of 
Oseltamivir-resistance. The 2008-2009 H1N1 strains were 
10% susceptible to Oseltamivir. Thus more research is 
needed to account for Oseltamivir's biased training data 
compared to Adamantane's somewhat balanced viral dataset. 

Principle Component Analysis (PCA) was chosen as a 
preprocessing technique, pre-evaluation of classifiers, due to 
its ability to compress data while retaining the most variable 
information. It is also predicted to prevent overlearning 
when using DNA sequences as follows. Influenza-A's 
aligned DNA sequences reach an average of 1500 
nucleotides per sequence. With smaller datasets, the number 
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training instances can be smaller than the number of 
nucleotide per sequence used for training the classifier. The 
classifier can overlearn as a result. Compressing DNA 
sequences with PCA is predicted to solve this problem when 
detecting Oseltamivir-resistance. 

The remainder of the paper is structured as follows: 
Section II discusses the related works; Section III describes 
the research aim. Section IV & Section V summarize the 
PCA algorithm & methodology. Lastly, Section VI & VII 
contain the experimental results & conclusion. 

II. RELATED WORKS 
To render machine learning efficient, feature selection is 

usually applied to Bioinformatics datasets having high 
dimensionality. Ref. [5] describes the pros & cons of three 
features selection techniques & their application to 
Bioinformatics problems: filter, embedded & wrapper 
methods. They point out that univariate filter methods are 
preferred for high dimensionality data analysis due to their 
speed, scalability & classifier independence. PCA is a filter 
technique which suits the high dimensionality of Influenza-
A's data. Ref. [6] utilized PCA to select features prior to 
classifying Adamantane-resistance. The technique was not 
explored when detecting Oseltamivir-resistance. 

Leung describes another filter method known as 
Information Gain (IG) when identifying the RNA 
biomarkers in the Hepatitis-B virus [7]. The biomarkers 
determined if the virus has the ability to cause hepatic 
cancer. IG selected the most informative nucleotide 
positions in the sequence that could differentiate two or 
more classes. Ref. [8] also applied IG to Influenza-A's 
cDNA sequences to classify hosts. Although classification 
performance was improved, the IG algorithm generated up 
to 100 features & the process of selecting features was 
relatively time consuming. Ref. [9] used IG to further reduce  
DNA sequence to 10 units, but the results varied on the viral 
subtype; the H1 subtype yielded more accurate results. In [6] 
a speedier feature selection technique using PCA was 
devised but it was only optimized for detecting Adamantane-
resistance.  

 In order for DNA & protein sequences to be used in 
machine learning, they must be encoded in a format 
recognizable by the utilized classifiers. Attaluri contrasted 
the effect of different neural network (NN) encoding 
schemes on Influenza-A classification performance [10]. He 
shows that including the multiple sequence alignment 
(MSA) gaps in direct encoding schemes increased 
classification accuracy. He additionally determined the k-
tuple frequencies that generated optimal results when using 
indirect encoding schemes for NNs. This work encodes 
DNA sequences directly with the former method prior to 
using PCA; the MSA gap is included to increase accuracy. 

The following key researches on the use of machine 
learning for Influenza-A analysis were conducted by 
Attaluri, ElHefnawi et al. & Shaltout et al [6,8-12]. Ref. [11] 
used hidden Markov Models (HMMs) to classify Influenza-
A based on hosts & subtypes. Protein sequences from the 
HA segment pertaining to subtypes H1, H2, H3, H4 & H5 
were used for subtype classification. The virus sequences 

were further divided into human & nonhuman hosts. The 
research yielded an overall subtype classification accuracy 
of 100%, whereas the host classification accuracy ranged 
from 50% to 100%, depending on the viral subtype. 

 Ref. [12] compared the use of HMMs & decision trees 
(DTs) on extracted host associated protein signatures, which 
aided in increasing host identification accuracy. The 
experiments were conducted on the HA protein of various 
subtypes. DTs yielded higher host classification accuracies, 
ranging from 92%-100%, compared to HMMs. Both works 
[11, 12] did not explore classification performance at the 
RNA/ cDNA level. 

Attaluri analyzed the use of various classifiers, namingly, 
NNs, DTs & support vector machines (SVMs) for 
identifying Influenza-A hosts & subtypes [10]. The 
experiments were conducted using both cDNA & Protein 
sequences. A subset of virus sequences belonging to the 
H1N1 strain was used for identifying hosts. Sequences 
belonging to the H1, H2, H3, N1, & N2 subtypes were used 
for subtype classification analysis. The overall classification 
accuracies, for both subtype & host classification were 
96.5%, 96.2% & 95.1% when using DTs, SVMs & NNs 
respectively. Attaluri additionally integrated DTs & HMMs 
in a hybrid model to identify Influenza-A hosts & subtypes 
[10]. He used DTs to extract informative positions from the 
cDNA sequences then converted them into their 
corresponding protein sequences. The acquired protein 
sequences were then used as input to the HMM classifier. 
Both viral host & subtype classification were analyzed. The 
technique yielded an overall accuracy of 97%.  

Although the research showed promising results, it still 
suffered from  a few drawbacks: There was no unified 
method for comparing classifiers; classifier analysis was 
conducted on both DNA & protein data, so a standardized 
comparison of classification techniques could not be 
conducted. Feature selection was carried out using protein 
data but not fully explored with DNA data. The efficiency of 
the classification process was also unmeasured.  

These problems were later addressed in [6,8,9]. Refs. [8, 
9] studied the effect of using IG in terms of efficiency & 
speed on DNA classification of Influenza-A hosts. The 
classification performance improved despite IG being time 
consuming. Ref. [6] addressed some of the performance 
issues in [8,9] by analyzing the effect of using PCA 
compared to using IG on Adamantane-resistance 
determination. PCA proved to be more efficient than IG 
however its effect on detecting Influenza-A's resistance to 
Oseltamivir was not explored. The effect of using IG for 
preprocessing was also untested on smaller DNA datasets.  

This paper seeks to improve detection of Oseltamivir-
resistance by using PCA as a feature selection technique: As 
Oseltamivir has a biased dataset, its classification will be 
improved by: (a) reevaluating the performance of PCA 
features on two of the most common classification 
techniques: DTs & NNs; (b) comparing the results with 
those achieved with detecting Adamantane-resistance in [6]. 
The effect of using IG on detecting Oseltamivir-resistance 
will also be briefly analyzed.  
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III. RESEARCH AIM 
The research seeks to improve the detection of 

Oseltamivir-resistance by creating features that will not 
cause overlearning. The system will be implemented by 
compressing the DNA features using PCA, then feeding the 
PCA features to two of the most commonly used 
classifier(s): DTs & NNs. This is done without protein 
conversion to enhance RNA/cDNA virus analysis & detect 
RNA mutations.  

Using PCA is expected to reduce the features without 
deteriorating classifier performance, as shown with detecting 
Adamantine-resistance in [6]. However the optimal number 
of features for detecting Oseltamivir-resistance is not 
expected to be  the same as Adamantane, due to its skewed 
dataset: only 10% of the dataset shows Oseltamivir-
resistance. The PCA features required will be determined as 
follows:  

--Running the experiment on the most important viral 
segment(s) belonging to the H1N1 strain & labeled with 
Oseltamivir-Resistance. 

--Using PCA to extract the cDNA features showing the 
greatest variation.  

--Feeding the extracted features directly to a NN & 
determining the least possible number of PCA features that 
will increase performance. 

--Testing the performance of the optimal number of PCA 
features, from the previous step, on a DT. 

--Comparing the classification performance of DTs & 
NNs in detecting Oseltamivir-resistance, when using PCA. 

--Comparing the classification performance of 
Oseltamivir-resistance when using PCA features to that of 
Adamantane-resistance as in [6].  

IV. APPLYING PCA TO DNA SEQUENCES 
The PCA is a compression method that reduces high 

dimensionality data by projecting it unto vectors in the 
direction of highest variability of the data. It was selected for 
the following reasons: Firstly, previous research on detecting 
Adamantane-resistance showed that Influenza-A sequences 
can be reduced from around 1500 to 3 features while 
maintaining classification accuracy & speed [6]. Secondly, 
the DNA has only 4 differentiable units: "A", "G", "C", & 
"T".  Since we are analyzing viruses of the same strain & 
species, the difference between the DNA sequences is not 
easily recognizable without preprocessing. Using PCA will 
help detect subtle differences among the DNA sequences 
while reducing the features significantly. 

Third, PCA is predicted to prevent potential overlearning 
on the unbalanced Oseltamivir dataset. Without feature 
selection, the number of sequences per DNA far exceeds the 
number of training instances, and may result in poor 
classification. The repetition of the four nucleotide values, in 
addition to the biased dataset can cause classifier overfitting. 
This may also hold true even for feature selection techniques 
such as IG which simply selects the sequences' informative 
positions. Lastly, the feature reduction can also aid later in 
expanding  the system to a multilabel classifier. 

By using PCA features for classifying Oseltamivir-
resistance we hope to: 

--Find subtle differences in DNA that are otherwise hard 
to detect, since we are differentiating between viruses of the 
same strain & species. 

--Find the optimal number of reduced features for 
detecting Oseltamivir-resistance that neither causes reduced 
performance nor overlearning. 

--Measure which classifier achieves better performance 
with the optimal number of PCA features determined. 

--Compare the classification performance of Oseltamivir-
resistance to Adamantane-resistance when using PCA. 

The derivation of the PCA algorithm is detailed in [13]. 
To apply the PCA algorithm to a dataset, the following steps 
must be performed:  

1) After numerically encoding the DNA sequences, 
convert the dataset to mean centered points by subtracting 
the dataset values, x, from the mean, m. The mean attained  
is a row vector containing the mean per nucleotide position. 

2) Calculate the scatter/covariance matrix, S, of the 
sequence using (1), where (x-m) represents the mean 
centered sequences.  

3) Determine the eigenvectors, e, arranged using highest 
eigenvalues, λ, of the resulting scatter matrix, S, as  in (2). 

4) After selecting best n-eigenvectors with highest 
eigenvalues, reduce the data to n-dimensions by multiplying 
the resulting eigenvectors, each individually represented by 
e, with the mean projected sequences as shown in (3). This is 
done once per sequence; each sequence will then be 
represented by n-features instead of  roughly 1500 features.  

∑ −−= ))'*(( mxmxS  (1) 

eSe λ=  (2) 

)( mxea k
T

k −=  (3) 

V. METHODOLOGY 
The following chapter explains the experimentation steps. 

The main steps are: data collection, sequence alignment, 
feature selection, classifier construction, classifier 
evaluation,  & classifier comparison. 

--Data Collection: Collect DNA data from online 
Influenza databases (http://www.fludb.org). Select 
Oseltamivir sequences structurally resembling the H1N1 
2009 pandemic sequences. Select only sequences known to 
infect humans; sequences  infecting Avian & Swine hosts are 
excluded due to insufficient data. Non-annotated sequences 
& duplicate sequences are deleted. 

When analyzing Oseltamivir-resistance, the initial 
experiments were conducted on the NA segment as it is the 
target of Oseltamivir [14].  When comparing with studies on 
Adamantane-resistance in [6], the results of classifying the 
M1/M2 segment are used; The M1/M2 segment it is the 
target of Adamantane [15]. Additional experiments 
involving the use of the NA segment to detect Adamantine-
resistance were conducted. This is to observe if the NA 
segment can be used in future work to construct a multilabel 
classifier for detecting both Oseltamivir & Adamantane 
resistance.  

--Data Alignment: The PCA algorithm is only applicable  
to datasets containing features of equal lengths; DNA 
sequences are stored with variable lengths online. Align the 
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data with multiple sequence alignment (MSA) to unify the 
sequences' length. MSA was performed using Mafft, due to 
its ability to swiftly align high dimensionality data using fast 
Fourier transform. It is faster than classical MSA programs 
that take hours to align DNA sequences.  

--Data Preprocessing: 
(a) Separate the two datasets of  DNA sequences using the 

annotation in the header files to two classes: Antiviral-
Resistant & Antiviral-Susceptible. The Oseltamivir dataset is 
skewed, with the Oseltmivir-Susceptible data being much 
larger than Oseltamivir-Resistant data. To account for this, 
after sequence randomization, a smaller sample of cDNA 
sequences was selected from the Oseltamivir-Susceptible 
dataset, equivalent to the size of the Oseltamivir-Resistant 
dataset. 

(b) Encode the viral sequences prior to classification. 
PCA is a statistical  method, whereas the nucleotide values 
of DNA are nominal: "A","C", "G", & "T". The sequences 
are converted to numerical values using the encoding 
scheme in Table-I. The gaps, "-", introduced by MSA, are 
included to increase classification accuracy as described in 
[10]. The same encoding scheme was used for classifying 
Adamantane-resistance in [6] & showed promising results. 

(c) Divide the Oseltamivir dataset into 70% training & 
30% testing  data. 

 
TABLE I 

DNA ENCODING SCHEME PRIOR TO USING PCA 
Nucleotide Value Numerical Encoding 

"A" -20 
"G" -10 
"-" 0 
"T" 10 
"C" 20 

 
--Feature Selection: Apply the PCA algorithm to each 

dataset as follows: 
 For the training dataset:  
(a) Find the mean of the training dataset for both classes , 

across all nucleotide positions. The mean vector will have a 
rough size of 1500 post alignment. Obtain the mean-centered 
points by subtracting the mean from all the sequences.  

(b) Apply the PCA algorithm to the dataset by finding the 
scatter matrix of the mean centered points. Then, obtaining 
the best n-eigenvectors corresponding to the highest n-
eigenvalues from the scatter matrix. Finally, project  the 
mean normalized data by multiplying it by each of the 
eigenvectors to get the new feature space.  

For the testing dataset:  
(a) For each class, obtain the mean-centered points by 

subtracting the mean  vector of the training dataset from the 
encoded sequences of the testing dataset.  

(b) Multiply the mean-centered points by the eigenvalues 
attained in the training step. 

--Classifiers Construction:  
For each antiviral under study: build, train & test the 

binary classifiers differentiating between antiviral-resistant 
strains & antiviral-susceptible strains. This is implemented 
using  both NNs & DTs.  

NNs were selected as they are robust to changes & 
missing data. Their ability to classify H1N1 based on 

antiviral resistance on Adamantane was already analyzed in 
previous experiments with PCA [6]. However their use on 
determining Oseltamivir-resistance was unexplored. The 
Oseltamivir dataset is also uneven with 90% of the viral 
sequences being susceptible to the antiviral. The effect of the 
uneven dataset might cause the NN to overlearn, so using 
PCA to counteract that will be analyzed.  

DTs will also be analyzed as they produced promising 
results when detecting Adamantane-resistance [6]. Their 
performance with the skewed Oseltamivir dataset should be 
compared to NNs to select the better classifier for detecting 
Oseltamivir-resistance. PCA is a numerical method thus DTs 
that can process numerical attributes will be utilized. 

For the Oseltamivir dataset, a similar NN structure to that 
in [6] was used. The NN was constructed as follows: 

(a) A three layered feed forward NN was used.  
(b) The network inputs are the n-compressed points 

attained by applying the PCA algorithm on the DNA 
sequences . In [6] using 3 PCA features for detecting  
Adamantane-resistance showed satisfactory results. However 
when analyzing Oseltamivir-resistance, the PCA features' 
dimensionality will be tested at 5 to 10 increment intervals, 
starting at 3 PCA features, so as to find the optimal number 
of features that enhance classification.  More features might 
be needed to improve classification & decrease the data bias 
in the Oseltamivir dataset. The experiment will be stopped 
when accurate classification is achieved. A NN trained with 
DNA sequences sans feature selection will also evaluated on 
the NA segment to observe if overlearning will occur; It uses 
the encoding scheme in Table-I prior to classification. NNs 
using varying number of features generated by IG will 
additionally be tested. 

(c) The default of ten hidden neurons was utilized. 
(d) A binary target output of 0 was used for representing 

antiviral-resistance, whereas a value of 1 was used to 
represent antiviral-susceptibility. 

(e) The nprtool in Matlab was used to build, train & test 
the NN. The scaled conjugate graduate was set as the default 
NN training algorithm. The mean squared error was used as 
the default NN evaluation algorithm. 

(f) To prevent overfitting, the sequences in the training set 
were further divided into 70% training, 15% testing & 15% 
validation sets. The validation set will stop the training when 
its accuracy decreases below that of the training/ testing set.  

The DT was constructed as follows: 
(a) A Reduced Error Pruning (REP) DT is used to 

perform the classification as it can handle numerical values. 
The method uses reduced error pruning which increases the 
speed of building & training the classifier . IG is also used to 
split on the nodes or features, thus concentrating on the more 
important features. 

(b) To prevent overfitting, the DT was trained using ten-
fold validation .  

(c) The Weka tool is used to train & test the REP-DT. The 
default Weka setting of the REP-DT are used. 

DTs are built when the minimum number of PCA features 
producing satisfactory results is determined via NNs. This is 
done for both viral datasets: Oseltamivir & Adamantane. 
The target viral segment of each drug  is used to build the 
DT. 
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--Classifier Evaluation: After each experiment, evaluate 
the results on the testing set using confusion matrices & 
ROC curves. Measure the time taken to train the classifier. 
Observe the effect of PCA on specificity or the true negative 
rate since Oseltamivir-resistance is the negative class. 

--Classifier Comparison: Compare the performance of 
PCA features on NNs to DTs when detecting Oseltamivir-
resistance. Compare the results to those attained when 
determining Adamantane-resistance in [6]. Compare the use 
of IG to PCA when determining Oseltamivir-resistance.  

VI. EXPERIMENTAL RESULTS 
Table-II summarizes the number of sequences/training 

instances used for training the classifiers. The aligned length 
of the sequence before feature selection is also shown. The 
number of nucleotides in the NA segment far exceeds the 
number of classifier training instances used for detecting 
Oseltamivir-resistance if PCA isn't applied. 

 
TABLE II 

NUMBER OF TRAINING INSTANCES VS. NUMBER OF INPUTS 
Attribute of Interest  Training  

Instances 
 Nucleotides in 
(M) Segment  

Nucleotides in 
(NA) Segment  

Oseltamivir-resistance 957 1030 1635 
Adamantan-resistance 3825 1030 1635 

 
In [6], training NNs & DTs with PCA features to detect 

Adamantane-resistance, yielded the following results on the 
testing dataset summarized in Table-III. The experiments 
were conducted on the M1/M2 (M) segment. The time in 
seconds represents the time used to build the classifier prior 
to testing.  

 
TABLE III 

THE EFFECT OF PCA ON DETECTING ADAMANTINE RESISTANCE . 
Class 
-ifier 

Seg-
ment 

No. of 
features 

Tim
e(s) 

Acc-
uracy 

Sens-
itivity 

Spec-
itivity 

Prec-
ision 

DT M 100 (IG) 0.3  98.2%  98%  98.6% 98.4% 
 DT M 3 (PCA) 0.06 98.5% 97.9% 99.3% 99.5% 
NN M 3 (PCA) 5 96.5% 99.3% 94.4% 92.9% 

The first entry shows the performance of information gain (IG). 
 

When using PCA features to detect Adamantane-
resistance, Table-III shows that DTs outperform NNs in both 
overall classification accuracy & efficiency. The accuracy, 
specificity & precision were increased by 2%,  5%, & 7% 
respectively. Only 3 PCA features were needed to achieve 
this. Ref. [6] shows that the performance of PCA features is 
comparable to using informative positions (IG) to detect 
Adamantane-resistance. PCA is also more time efficient.  

Training the NNs & DTs to detect Oseltamivir-resistance, 
after feature compression with PCA, yielded the results 
summarized in Table-IV. The NA segment was used. The 
time in seconds represents the time used to build the 
classifier prior to testing. Unlike with Adamantane, using 3 
PCA features did not yield optimal results. The sample size 
of the dataset used for determining Oseltamivir-resistance 
was smaller, leading to the deterioration of classification 
performance with smaller numbers of PCA features.  

Additionally, Table-IV shows that training the NN with 
the raw DNA sequences, without applying PCA, results in an 
overfit classifier. The performance measure values were at a 
100% indicating a classifier that cannot generalize. A NN 

was also trained by using information gain (IG) to select the 
most informative RNA/cDNA positions as described in [8]. 
Using IG as a preprocessing step similarly yielded an overfit 
classifier, even when varying the number of features from 3 
to 100. The IG algorithm needs a large amount of data to 
build a classifier that generalizes. This is due to DNA 
sequences possessing only 4 possible values per nucleotide 
position. PCA solves this problem by numerically encoding 
the sequences & projecting the dataset in the direction of 
highest variability, thus creating far more than 4 possible 
values per nucleotide position.  

Table-IV also shows that using 40 PCA features achieved 
satisfactory classification results when using NNs. Only the 
number of features generating optimum results on the NN 
are tested on the REP-DT, thus the DT performance using 
40 PCA features was measured & recorded in Table-IV.  
  

TABLE IV 
THE EFFECT OF PCA ON DETECTING OSELTAMIVIR RESISTANCE  

Class-
ifier 

No. of  
features 

Time 
(s) 

Acc-
uracy 

Sens-
itivity 

Spec-
ificity 

Prec-
ision 

 IG/raw 3 100% 100% 100% 100% 
 3 2 87.5% 95.1% 79.9% 82.6% 
 10 2 87.5% 94.1% 80.9% 83.1% 

NNs 20 2 88.5% 92.6% 84.3% 85.5% 
 30 2 96.1% 95.6% 96.6% 96.5% 
 35 2 98% 99% 97.1% 97.1% 
 40 5 98.3% 98% 98.5% 98.5% 

DT 40 0.42 92.9% 94.6% 91.2% 91.5% 
The first entry shows the results without PCA. IG and raw DNA data had 

the same results. 
 

When using PCA features from the NA segment to detect 
Oseltamivir-resistance, the results show that NNs outperform 
DTs in overall classification accuracy. However this was 
done with 40 PCA features which is greater than the number 
of PCA features needed to detect Adamantane-resistance. 
The accuracy, specificity & precision were increased by 
5.4%, 7.3%, & 7%. The results also show that training NNs 
with the right amount of PCA features, prevents NN 
overlearning from smaller viral datasets. The ROC curves in 
Fig. 2 summarize the performances of DT & NN when PCA 
features are used  in detecting antiviral-resistance. 

Additional tests were conducted to see if training a NN 
with more PCA features can improve the detection of 
Adamantane-resistance in both the M1/M2(M) & NA 
segments. The results are shown in Table-V. The 
performance on both segments improved. Compared to 
using 3 PCA features, using 40 PCA features significantly 
increased the accuracy of detecting  Adamantane-resistance 
on the NA segment. The specificity increased by 7.8%. 

 
 TABLE V 

THE EFFECT OF INCREASING PCA FEATURES ON ADAMANTINE 
RESISTANCE DETECTION WHEN USING NNS 

Class 
-ifier 

Seg-
ment 

No. of 
features 

Tim
e (s) 

Acc-
uracy 

Sens-
itivity 

Spec-
itivity 

Prec-
ision 

NN M 40 5 97.8% 98.7% 97.1% 96.2% 
NN NA 40 41 96.9% 96.1% 97.4% 95.7% 
NN NA 3 25 91.8% 95.3% 89.6% 84.9% 

 
Using the above findings building a multilabel classifier 

that can classify both Oseltamivir & Adamantane-resistance 
may be possible with the use of the NA segment & enough 
PCA features as a future expansion to the project. 
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Fig. 2. shows the ROC curves generated with the testing set of the (a) NN. (b) DT, after using 3 PCA features from the M1/M2 segment; 
Adamantine-resistance was being analyzed. It also shows the ROC curves generated with the testing set of the (c) NN. (d) DT, after using 
40 PCA from the NA segment; Oseltamivir-resistance was being analyzed. The x-axis & y-axis  are the false positive & true positive rates. 
 

VII. CONCLUSION 
The research  shows the ability of PCA  to prevent 

overfitting with biased data when classifying Oseltamivir- 
resistance using NNs. The bias is caused by the number of 
inputs exceeding the training instances. PCA decreases the 
complexity of the NN created, by decreasing the number of 
inputs & improving NN generalization. It also allows the 
sequences to have more than 4 possible values via projection 
while compressing the data. This renders detecting subtle 
differences in biased & smaller datasets possible. 

DTs trained with PCA features performed more accurately 
when detecting Adamantane-resistance compared to NNs. 
Contrarily, NNs achieved better results when detecting 
Oseltamivir-resistance; the NNs were trained with a smaller, 
unbalanced dataset. Thus NNs can be used with PCA for 
classifying smaller or unbalanced viral datasets, & DTs can 
be used with PCA for larger & more balanced datasets, to 
achieve optimal results. 

Determining the resistance of Influenza-A to antivirals 
using laboratory techniques can be time consuming. The 
techniques above can be used to predict the resistance or 
susceptibility of a virus to Adamantane or Oseltamivir. This 
can be used to predict whether the drugs should be utilized 
or avoided during outbreaks. By using PCA in combination 
with DTs or NNs, an educated guess can be taken swiftly 
during emergencies while Influenza-A antiviral resistance is 
determined manually in research labs. 

Both Adamantane & Oseltamivir resistance were detected 
separately in the previous experiments. In some cases an 
antiviral strain can be resistant to both drugs [4]. In future 
work, a multilabel classifier that can detect both 
Adamantane & Oseltamivir resistance can be built to 
account for this. The binary classifiers for each antiviral 
drug, trained on their target viral segment, can be combined 
to achieve this as in [16]. Alternatively, the NA segment can 
be used to train a BPMLL, a multilabel backprogation NN as 
shown in [17] to achieve this. The multilabel classifier can 
be expanded further to a multi-output classifier that 
measures the viral strain's virulence. This way outbreaks 
with high morbidity & mortality rate can be detected while 
determining the antiviral drug to eliminate it if possible. 
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