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Abstract—Dual graphs have been applied to model RNA
secondary structures with pseudoknots, or intertwined base
pairs. In this paper we present a linear-time algorithm to
partition dual graphs into topological components called blocks
and determine whether each block contains a pseudoknot or
not. We show that a block contains a pseudoknot if and only if
the block has a vertex of degree 3 or more; this characterization
allows us to efficiently isolate smaller RNA fragments and
classify them as pseudoknotted or pseudoknot-free regions,
while keeping these sub-structures intact. Applications to RNA
design can be envisioned since modular building blocks with
intact pseudoknots can be combined to form new constructs.

Index Terms—RNAs secondary structures, pseudoknots,
graph theory.

I. INTRODUCTION

GRaph theory is a field of mathematics with applications
to many research areas where the objects can be

represented as discrete structures called graphs.
In mathematical terms, an undirected graph G = (V,E) is

a discrete object described by a finite set of vertices V and a
set E of unordered pair of vertices called edges, where each
edge represents a connection between two vertices.

Waterman [18] was one of the first researchers to represent
RNAs as graphs. The graph representations discussed in
this paper, called dual graphs, were introduced in 2003 by
Gan et. al [7], and were applied to model RNA secondary
structures (2D). The 2D elements of RNA molecules consist
of double-stranded (stem) regions defined by base pairing
such as Adenine-Uracil, Guanine-Cytosine, Guanine-Uracil,
and single stranded loops; stems and loops are mapped to
the vertices and edges of the corresponding dual graph,
respectively (later we present an alternative definition of dual
graphs). Dual graphs are needed to represent pseudoknots
(PKs), structures involving an intertwining of two-base-
paired regions of the RNA. These are common elements in
many biologically important RNAs.

Let the degree of a vertex u ∈ V be the number of
edges incident at u in G. In this paper we introduce a
partitioning algorithm for dual graph representations of RNA
2D structures to recognize PKs. Our algorithm partitions a
dual graph into graph-theoretic components called blocks and
then determines whether each block contains a pseudoknot;
a block contains a pseudoknot if and only if the block
has a vertex of degree 3 or more. Thus our procedure
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provides a systematic approach to partition an RNA 2D
structure, modeled as a dual graph, into smaller RNA regions
containing pseudoknots, while providing a new topological
perspective for the analysis of RNAs.

Pseudoknots can be classified into two main groups:
standard and recursive pseudoknots [5], [19]. The latter is
distinguished from the former by having nested pseudoknots
within a pseudoknot. While our partitioning algorithm can
detect general pseudoknots, it cannot classify them. Exten-
sions, however, may be possible to analyze and treat standard
and the more complex recursive pseudoknots structures fur-
ther, as needed for specific biological applications.

In the next section, we present background material rel-
evant to this paper, as well as notation and mathematical
definitions of RNA primary, secondary, and of pseudoknot
structures. In Section III we describe our partitioning ap-
proach of a dual graph G into components G′ ⊆ G called
blocks. In Section IV, we characterize these blocks, as either
pseudoknotted or pseudoknot-free. In Section V and Sec-
tion VI we illustrate algorithmic tests performed on different
motifs. We summarize the findings and outline new directions
in Section VI. An Appendix section includes definitions,
mathematical proofs, and supporting material.

II. BACKGROUND AND DEFINITIONS
In 2003, Gan et. al introduced tree and dual graph-

theoretic representations of RNA 2D motifs in a frame-
work called RAG (RNA-As-Graphs) [6], [7], [8], [11]. Dual
graphs can represent complex RNA secondary structures with
pseudonots; a pseudoknot is an intertwining of two-based-
paired regions (stems) of an RNA (see Figure 1).

The structural configuration of pseudoknots does not lend
itself well to computational detection due to its overlapping
nature. The base pairing in PKs is not well-nested, making
the presence of PKs in RNA sequences more difficult to
predict by the dynamic programming [3], [4] and context-free
grammars standard methods [2]. Our methodology, based on
topological properties of dual graphs, suggest a new way to
look at the problem of detection and classification of PKs
and of general RNAs.

Following (Kravchenko, 2009 [12]), we define our biolog-
ical variables as follows.

Definition 1: General terms:
a. RNA primary structure: a sequence of linearly ordered

bases x1, x2, . . . , xr, where xi ∈ {A,U, C,G}.
b. canonical base pair: a base pair (xi, xj) ∈

{(A,U), (U,A), (C,G), (G,C), (G,U), (U,G)}.
c. RNA secondary structure without pseudoknot - or reg-

ular structure, encapsulated in the region (i0, . . . , k0):
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Fig. 1. Graphical and dual graph representations of an RNA 2D
structure. (a) graphical representation of a pseudoknot-free RNA primary
sequence and embedded stems or base pairs; (a′) corresponding dual graph
representation. (b) graphical representation of a pseudoknotted RNA 2D
structure; (b′) corresponding dual graph.

an RNA 2D structure in which no two base pairs
(xi, xj), (xl, xm), satisfy i0 ≤ i < l < j < m ≤ m0

(i.e., no two base pairs intertwined).
d. a base pair stem: a tuple

(xi, xi+1, . . . , xi+r, xi+(r+1), . . . , xj−1, xj) in which
(xi, xj), (xi+1, xj−1), . . . , (xi+r, xi+(r+1)) form base
pairs.

e. loop region: a tuple (x1, x2, . . . , xr) in which
∀i≤j≤r(xi, xj) does not form a base pair.

f. a pseudoknot encapsulated in the region (i0, . . . , k0):
if ∃l,m, (i0 < l < m < k0) such that (xi0 , xm) and
(xl, xk0) are base pairs.

A graphical representation is an intuitive and natural way to
depict an RNA 2D structure (see Figure 1-(a),(b)), in which
the x-axis is labeled according to the primary linearly ordered
sequence of bases (Definition 1-a), and a stem (Definition 1-
d) is represented by arcs connecting base pairs. A region on
the x-axis between the end-points of the arcs representing
stems is called a segment.

A dual graph can be equivalently defined from the graph-
ical representation of an RNA 2D structure as follows
(Figure 1).

Definition 2: The dual graph is defined by mapping stems
and the segments between stems (x-axis), of the graphical
representation of an RNA 2D structure, to the vertices and
edges of the dual graph, respectively.

In the next section we propose our partitioning approach
of a dual graph G, into subgraphs G′ ⊆ G, called blocks.

III. GRAPH PARTITIONING ALGORITHM

Our graph-theoretic partitioning methodology is based on
identifying articulation points in the dual graph representa-
tion of an RNA secondary structure. An articulation point
partitions a graphs into connected components, that is, its
deletion disconnects a graph.

We need to define the following.
Definition 3: Connectivity

a. A vertex-set X ⊆ V is a vertex-disconnecting set if
deletion of X from G, denoted by G−X , results in a

disconnected graph.
b. A vertex v is an articulation point or cut-vertex if

G− v results in a disconnected graph (i.e., at least two
components remain).

c. The vertex-connectivity, κ(G), is the minimum number
of vertices whose removal from G results in a discon-
nected graph or in a isolated vertex. If G is a single
edge, then κ(G) = 1.

d. A connected component is non-separable if it does not
have an articulation point (or cut-vertex). Please note
that single edges or isolated points are non-separable.

e. A block is a maximal (edge-wise) non-separable graph.
Indeed, identification of articulation points allow us to iden-
tify blocks (see Fig. 2). Since a block is a maximally non-
separable component, a pseudoknot cannot be then contained
in two different blocks. Thus identification of blocks allows
us to isolate pseudoknots (as well as pseudoknot-free blocks),
without breaking their structural properties.

��
��
��
��

��

�
�
�
�

��

��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

������������������������
�
�
�

�
�
�

�
�
�
�

�
�
�
�

PDB01069

block 1

Articulation points

a)

b)

c)

4 blocks (maximal non-separable graphs) yielded by articulation points

block 2

block 3

block 4

0
1

2

3 4
5

6

7

0 1

3
3 4

4

5

6

7

1 2

Fig. 2. Identification of articulation points and partitioning of the dual
graph corresponding to PDB01069 RNA 2D (Catalytic Ribozyme RNA) into
blocks.

Our partitioning algorithm is based on the classical result
for identifying block components in a connected undirected
graph introduced to John Hopcroft and Robert Tarjan (1973)
[10]) that runs in linear computational time.

Classification of blocks as either pseudoknotted or
pseudoknot-free are discussed in the next section.

IV. CLASSIFICATION OF BLOCKS AND PARTITIONING
ALGORITHM

The mathematical proofs of the lemmas stated in this
section, are shown in Appendix B.

In preparation to the main results of this chapter, we first
define the following.

Definition 4: For any graph G, blocks can be partitioned
into three classes,

a. Single edges.
b. Cycles.
c. Blocks containing a vertex v of degree at least 3.
From Definition 1-c, an RNA 2D structure is regular

(pseudoknot-free) and encapsulated in a region (i0, . . . , k0),
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if no two base pairs (xi, xj), (xl, xm), satisfy i < l < j < m,
i0 ≤ i, j, l,m ≤ m0. Under the assumption that self-loops
are deleted, this definition yields the following lemma.

Lemma 1: Each block in the dual graph representation of
a regular RNA 2D structure is either a bridge or a cycle of
length l, l ≥ 2.

Conversely we show the following.
Lemma 2: If an RNA 2D structure contains a pseudoknot,

then its corresponding dual graph contains a block having a
vertex of degree 3 or more.

Lemma 1 and Lemma 2 yield our main result as follows.
Corollary 3: Given a dual graph representation of RNA

2D structure, a block represents a pseudoknot if and only if
the block has a vertex of degree 3 or more.

To summarize our partitioning algorithm, we perform the
following steps.

1. Partition the dual graph into blocks by application of
Hopcroft and Tarjan’s algorithm.

2. Analyze each block to determine whether contains a ver-
tex of degree at least 3. If that is the case then the block
contains a pseudoknot, according to Corollary 3. If not
then the block represents a pseudoknot-free structure.

V. ILLUSTRATIVE EXAMPLES OF THE PARTITIONING
ALGORITHM

0

1
2

3

4

5

6

PKB236

block 1

dual graph representation of PKB236 2D

Fig. 3. Partition of the dual graph corresponding to motif PKB236
(Regulatory Pseudoknot of the Interferon-gamma gene 5′-UTR).

We illustrate our partitioning algorithm on the dual graph
representations of two RNA 2D structures, based on the
New York University’s RAG database [11]. Our partitioning
algorithm was implemented in C++ and runs on a Hewlett-
Packard Pavilion Dv6 (2.4 GHz) notebook; the time taken for
each partitioning is insignificant because of the linear com-
putational complexity of Hopcroft and Tarjan’s algorithm.

Consider the PDB01069 RNA 2D structure, Post-Cleavage
State of the Thermoanaerobacter Tengcongenis GlmS Ri-
bozyme, known to be the only catalytic RNA to require a
small-molecule activator for catalysis (see Klein et al. [15]).
Its dual graph is decomposed into 4 blocks as illustrated
in Figure 2. According to Corollary 3, block 1 and block
3, a cycle and an edge, respectively, correspond to regular
regions, while blocks 2 and 4, correspond to pseudoknots.
We next consider the dual graph representation of PKB236
(see Fig. 3), Regulatory Pseudoknot of the Interferon-gamma

Gene 5′-UTR, thought to be involved in regulatory translation
(see Ben-Asouli et al. [1]); in this case the only block is the
dual graph itself. As this block contains a vertex of degree
3 or more, this block is a pseudoknot.

In the next section we depict the output generated by
the partitioning algorithm when tests were performed on the
aforementioned RNA structures.

VI. C++ ALGORITHMIC TESTS PERFORMED ON RNA
MOTIFS

In this section (a, b) represents an edge of a dual graph
with end-vertices a and b.

The following is the output yielded by our partitioning
program when tests were performed on motifs PDB01069
and PKB236.

——————— Motif :PDB01069 ———
========= New Block =========
(7,5) - (7,4) - (6,7) - (5,6) - (4,5) - (4,5) -
degree of 7 is 3
degree of 4 is 3
degree of 5 is 4
—- this block represents a pseudoknot —-
========= New Block =========
(3,4) -
—- this block represents a regular-region —-

========= New Block =========
(3,1) - (2,3) - (2,3) - (1,2) -
degree of 3 is 3
degree of 2 is 3
—- this block represents a pseudoknot —-
========= New Block =========
(0,1) - (0,1) -
—- this block represents a regular-region —-

———– Summary information for Motif :PDB01069 —
———– Total number of blocks: 4
———– number of PK blocks: 2
———– number of regular blocks : 2
——————————————————-
——————— Motif :PKB236 ———–
======== New Block ==========
(6,0) - (5,6) - (5,6) - (4,5) - (4,5) - (3,4) - (3,4) - (2,3) -
(2,3) - (1,2) - (1,2) - (0,1) - (0,1) -
degree of 6 is 3
degree of 5 is 4
degree of 4 is 4
degree of 3 is 4
degree of 2 is 4
degree of 0 is 3
degree of 1 is 4
—- this block represents a pseudoknot —-

———– Summary information for Motif :PKB236 —-
———– Total number of blocks: 1
———– number of PK blocks: 1
———– number of regular blocks : 0
——————————————————-
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VII. CONCLUSIONS AND FUTURE WORK

We have presented a partitioning approach of the dual
graph representation of RNA 2D structures into maximal
non-separable components called blocks. Partitioning of a
graph into blocks can be efficiently accomplished by ap-
plication of Hopcroft and Tarjan’s algorithm to identify
articulation points. From mathematical definitions of RNA
2D structures and of pseudoknots, we proved that an RNA
2D structure contains a pseudoknot if and only if the dual
graph representation has a block in which one of the vertices
is of degree 3 or more, providing a systematic way to
classify different RNAs regions. Ultimately partitioning and
classification of dual graphs could guide the discovery of
modular regions of RNA and thus be exploited for design of
novel RNAs constructed from these building blocks.

APPENDIX A
GRAPH THEORY FORMULATIONS AND DEFINITIONS

Let G = (V,E) be a graph with vertex-set V and edge-
set E. We next present general graph-theoretic definitions
following Harary [9].

Definition 5: General graph-theoretic terms:
a. Let H1.x.H2 represent the graph composed of two

graphs, H1, and H2, sharing the same vertex x.
b. A walk between two vertices u and v in graph G =

(V,E), is an alternating sequence of vertices and edges
< vo = u, e1, v1, . . . , ek, vk = v > such that ei =
(vi−1, vi) is an edge of G.

c. A trail between two vertices u and v in graph G =
(V,E), is a walk between u and v with no repetition
of edges.

d. A path between two vertices u and v in graph G =
(V,E), is a walk (or trail) between u and v with no
repetition of vertices.

f. A graph is Eulerian if there exist a trail from a vertex
v0 of G, ending at vertex vk, covering all the edges
of the topology, and if v0 = vk then the graph is an
Eulerian cycle.

Dual graph representations of RNAs, and of PKs, can
be easily shown to be Eulerian graphs from Definition 2.
By starting from the origin on the x-axis of the graphical
representation and traversing to the right, a unique trail in
its dual graph can be described, where all edges are covered.
Also it is easy to show the degree of any vertex in a dual
graph is at most 4 as its corresponding stem in the graphical
representation can be adjacent to at most 4 other stems.

Claim 4: The dual graph representations of RNA 2D
structures and of PKs are Eulerian. In addition the degree
of a vertex v is at most 4.

APPENDIX B
PROOF OF LEMMAS STATED IN SECTION III

From Definition 1-c, an RNA 2D structure is regular
(pseudoknot-free) and encapsulated in a region (i0, . . . , k0),
if no two base pairs (xi, xj), (xl, xm), satisfy i < l < j < m,
i0 ≤ i, j, l,m ≤ m0. Under the previous assumption that
self-loops are deleted, this definition yields the following
lemma,
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Fig. 4. Classification of PK-free regions and graphical/dual/block represen-
tations. (a) graphical, dual, and block representations of r nested-stems - (b)
graphical, dual, and block representations of r adjacent stems - (c) graphical,
dual, and block representations of a stem containing r − 1 adjacent stems.

Lemma 1: Each block in the dual graph representation of
a regular RNA 2D structure is either a bridge or a cycle of
length l, l ≥ 2.
Proof. Consider the graphical representation of a regular
RNA 2D structure; we will proceed by construction. A
regular (pseudoknot-free) region can be recursively defined
as follows (see Fig. 4): (a) a region composed of r nested-
stems; (b) r adjacent stems, (c) a stem containing a sequence
of r− 1 adjacent stems; (d) a single stem (represented as an
isolated vertex in its dual graph, not illustrated in Fig. 4).
In a transformation, a set of stems identified by properties
a, b, and c in the graphical representation, are reduced
(converted) into a single stem, while its corresponding dual
graph is generated (see Definition 2). The blocks obtained
from the dual graph representations of these properties, are
either cycles of length 2, single edges, a cycle of length r,
or an isolated vertex, respectively. Consider a sequence of
transformations of dual graphs G1 ⇒ G2 ⇒ . . . ⇒ Gn,
where the dual graph Gi+1 is obtained from dual graph Gi

by following the precedence rules in which, first, internal
stems of the ones identified by properties (a) through (c)
of the graphical representation are reduced into a single
stem, while the corresponding dual graph is generated; in
the dual graph we distinguish the vertex corresponding to
the outer-stem. Because only distinguished vertices could be
later made adjacent to other vertices in a transformation, the
blocks generated by the sequence of transformations from G1

through Gn−1 will remain blocks in Gn, with the possible
addition of blocks composed of single edges. ⊓⊔

To illustrate Lemma 1, consider Figure 5 depicting the
graphical representation of a pseudoknot-free region. The
stems S0, S1, and S2, identified by property (a), with corre-
sponding dual graph with distinguished vertex S0, are then
reduced into a single stem in the graphical representation.
Similarly, by property (a), we reduce the pairs of nested-
stems S3, S4, and S5, S6, to two single stems with distin-
guished vertices S3 and S5, in the dual graph, respectively.
As the stem S9 contains a sequence of 3 (reduced) stems,
by application of property (c), it can be reduced to a single
stem with dual graph composed of a cycle on 4 vertices, and
distinguished vertex S9. Finally, by property (b), we connect
the sequence of 3 (reduced) stems (i.e., S0, S9, and S8) by
single edges in the dual graph.
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Fig. 5. An example illustrating Lemma 1.

Conversely we show the following.
Lemma 2: If an RNA 2D structure contains a pseudoknot,

then its corresponding dual graph contains a block having a
vertex of degree 3 or more.
Proof. By Definition 1-f, if an RNA 2D structure contains
a pseudoknot, there exist a stem crossing (interweaving)
another stem. Let us denominate these interweaving stems, in
the graphical representation, S1 and S2, respectively. There
exist then three independent paths, X1, X2, and X3, from
S1 to S2 (see Figure 6-(a)), following the primary sequence
of the graphical representation; these three paths correspond
to trails in the dual graph representation (see Definition 5-
c). We first note that X2 ∪X3 forms an Eulerian cycle G1

in the dual graph representation (see Definition 5-e, and
Claim 4), beginning and ending at S2, having S1 as one
of its vertices. Because an Eulerian cycle is the union of
simple cycles ([9], pg. 64) (Figure 6-(b)), then the articulation
points of G1 have maximum possible degree 4 (Claim 4);
when we add then the trail X1, from S1 to S2 to G1,
X1 cannot touch (include) any of the articulation points of
G1. Let G2 = B1.a.B2.b.B3.c.B4 . . . Br (see Definition 5-
a) be a subgraph of G1 describing a sequence of blocks
B1, B2, . . . , Br, S1 is a vertex of B1, and S2 is a vertex of
Br, in which the set Ã = {a, b, c.....} is the set of articulation
points connecting the blocks of G2. Let G∗ be the graph
obtained by adding the trail X1 to G2. Clearly κ(G∗) (see
Definition 3-c) is at least 2 as deleting a single articulation
point in Ã won’t disconnect G∗ as X1 does not have a vertex
in Ã, thus G∗ is a non-separable graph (Definition 3-d). As
both S1 and S2 have degree at least 3 in G∗, then there is
a block containing G∗ (possibly itself) having a vertex of
degree 3 or more. ⊓⊔
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