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Abstract—Despite the immense technology advancement in
the surgeries the criteria of assessing the surgical skills still
remains based on subjective standards. With the advent of
robotic-assisted minimally invasive surgery (RMIS), new op-
portunities for objective and autonomous skill assessment is
introduced. Previous works in this area are mostly based
on structured-based method such as Hidden Markov Model
(HMM) which need enormous pre-processing. In this study, in
contrast with them, we develop a new shaped-based framework
for automatically skill assessment and personalized surgical
training with minimum parameter tuning. Our work has
addressed main aspects of skill evaluation; develop gesture
recognition model directly on temporal kinematic signal of
robotic-assisted surgery, and build automated personalized
RMIS gesture training framework which . We showed that our
method, with an average accuracy of 82% for suturing, 70%
for needle passing and 85% for knot tying, performs better or
equal than the state-of-the-art methods, while simultaneously
needs minimum pre-processing, parameter tuning and provides
surgeons with online feedback for their performance during
training.

Index Terms—Robotic Surgery, Gesture classification, Sur-
gical skill assessment, Time series classification, Dynamic time
warping.

I. INTRODUCTION

THE hospital operating room is a challenging work
environment where surgical skills have been learned

there with direct supervision of expert surgeons for many
years [1]. This procedure is very time-consuming and sub-
jective that cause surgeon’s skill evaluation be non-robust
and unreliable [2]. Different surgical gestures have different
levels of complexity and the skill level of surgeon varies and
can be enhanced with teaching and training [3, 4]. Hence,
it is important to find underlying signatures of surgeon for
each surgical gesture to be able to asses and evaluate the
quality of the skills that were learned. The aim of this study
is to build a personalized surgical training framework and
skill assessment through a quantitative methods.

With the new technology innovations, such as minimally
invasive surgery and more advanced, robotic minimally inva-
sive surgery (RMIS), the need for non-subjective based skill
evaluation have been arisen [5]. Although these technologies
introduce new challenges in skill assessment due to the
steep learning curve but on the other hand, they open
a new opportunities for objective and automated surgical
assessment which was not available before [6]. Current
systems like da Vinci (Intuitive Surgical, Sunnyvale, CA)
[7] record motion and video data, enabling development of
computational models to recognize and analyze surgeon’s
skills and performance through data-driven approaches.
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The key step for autonomous skill evaluation of surgeons
is to develop techniques that are capable of accurately
recognizing surgical gestures [8]. These can then frame the
premise for creating quantitative measures of surgical skills
and consequently automatically annotate those gestures that
needs more training [9]. A range of techniques have been
developed to assess surgical skills of junior surgeon [10].
Most of the prior work extracts features from kinematic
and video data and build gesture classification models using
Hidden Markov Models (HMMs) based approaches [11–13]
and descriptive curve coding (DCC) [14]. However, these
methods are very time-consuming, interactive and subjective
which result in lack of consistency, reliability and efficiency
in real-time feedback [15, 16].

In order to address these drawbacks, one natural approach
is to develop shaped-based time series classification meth-
ods directly on temporal kinematic signal, captured during
surgeries [17]. In this paper, we extend our previous work
[18] to investigate the feasibility of building personalized
gesture training and skill assessment framework. In this
framework, the similarity of two time series determines by
comparing their individual Dynamic Time Warping (DTW)
point values [19]. Dynamic Time Warping (DTW) is a well-
known technique for time series classification [17]. The
similarity that has been derived from DTW, can be used as an
input to the k-Nearest Neighbors algorithm (kNN), a popular
classification method, to classify a new data based on its
similarity to other sample data [20]. Our work has addressed
two main aspects of skill evaluation; develop gesture recogni-
tion model directly on temporal kinematic signal of robotic-
assisted surgery, and build automated personalized RMIS
gesture training framework which provide online augmented
feedback using the model trained in classification step. Using
the proposed framework, one can also evaluate skill between
novice and expert surgeons.

II. METHOD

The aim of our work is to build a personalized frame-
work for surgical task training. Thus, the skill evaluation
framework that developed in this study, contains of two
key components as shown in Fig 1. The first component is
to measure the similarity between surgemes performed by
different surgeons and recognize them based on the k-Nearest
Neighbor approach. Then, based on the classification result
we can evaluate the performance of surgeon for doing each
gesture. Consequently, gestures that needs more training can
be identified.

A. Similarity Measures and Gesture Recognition

The first component of the framework is to measure the
similarity between motion time series signals of surgemes
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Fig. 1: Personalized skill evaluation and assessment framework for robotic minimally invasive surgery.

performed by surgeons. Time series data are one example for
longitudinal data [21], which different method can be used
to measure similarity of data. We applied distance between
two time series as a similarity measure [22]. Shaped-based
similarity measure techniques are among the well-developed
methods in this area where determine the similarity of the
overall shape of two time series by directly comparing their
individual point values [23]. It is in contrast with feature-
based and structure-based where first features need to be
extracted in order to find higher-level structures of the series.

One of the simplest ways to estimate the distance between
two time series is to use any Ln norm. Given two time series
A and B, their Ln distance can be determined by comparing
local point values as

dLn(A,B) =

( N∑
i=1

(ai − bi)n
)1/n

(1)

where n is a positive integer, N is the length of the time
series, ai and bi are the ith element of time series A and
B, respectively. If n=2 the Eq.(1) defines the Euclidean
distance, the most common distance measure for time series.
Despite the simplicity and efficiency of Euclidean distance
which makes it the most popular distance measure, its major
drawback add a limitation to this method. It requires that both
input sequences be of the same length, and it is sensitive to
distortions, e.g. shifting, noise, outlier. In order to handle this
problem warping distances such as Dynamic Time Warping
(DTW) proposed to search for the best alignment between
two time series [19].

Consider Ap = (a1, a2, ..., am) and Bq = (b1, b2, ..., bm)
where A and B have p×m and q×m dimension respectively,
the two sequences can be arranged as p × q matrix like
the sides of a grid in which the distance between every
possible combination of time instances ai and bj is stored. To
find the best match between two sequences, a path through
the grid that minimizes the overall distance is needed. This
path can be efficiently found using dynamic programming.
If cumulative distance γ(i, j) as distance for current cell and
the minimum of cumulative distance of adjacent elements,
the distance defines as

γ(i, j) = d(ai, bj)+min{γ(i−1, j−1), γ(i, j−1), γ(i−1, j)}
(2)

where d(ai, bj) can be calculated using Eg. (1) for n=2.
The second component of the framework is classifica-

tion algorithm based on the k-Nearest Neighbors (kNN)
approach. The kNN is a supervised distance-based clas-
sification method. In time series classification domain, k-
Nearest Neighbor shows promising result [24]. Despite its

simplicity, k-Nearest Neighbors has been very successful in
classification problems [20]. kNN classifier is instance-based
learning where instead of constructing a general model, it
simply stores instances of training data. During the classi-
fication phase majority vote of the k nearest neighbor for
each point is computed. Thus, the label for the query point is
assigned based on the most representatives within the nearest
neighbors of the points.

B. Gesture Performance Evaluation

Once we get the classification result for each individual
surgeon we are able to find the gesture that need more
training or practice. For this purpose, first we need the
tabulated results of gesture classifications for each surgeon
into a corresponding confusion matrix (Table I). Basically,
true positives (TP) is the number of correctly classified
instances and true negatives (TN) are the number of correctly
classified instances that do not belong to the gesture. If a
gesture is incorrectly assigned to the gesture, it is a false
positive (FP) and if it is not classified as gesture instances it
is a false negative (FN).

TABLE I: Illustration of confusion matrix for Gesture X.
Predicted

Gesture X Not Gesture X

Actual Gesture X TP FN
Not Gesture X FP TN

Based on the values in the confusion matrix, the overall
accuracy for gesture classification can be defined as

Accuracy =
TP + TN

TP + FN + FP + TN
(3)

Gestures that needs more training can be identified using
recall which also called sensitivity and is defined as

Recall =
TP

TP + FN
(4)

Finally, gestures that needs more robust definition can be
identified using Precision

Precision =
TP

TP + FP
(5)

as it a measure of result relevancy.

III. EXPERIMENTAL SETUP

As briefly explained in introduction, we are using data
presented in [25]. This is comprised of data for different
fundamental surgical tasks performed by eight right-handed
surgeons with different skill levels (expert, intermediate and
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novice). Each user performed around 5 trails of the task. For
each of the task, we analyze kinematic data captured using
the API of the da Vinci at 30 Hz. The data includes 76 motion
variables which consist of 19 features for each robotic arms,
left and right master side, and the left and right patient side.
In this paper we build a personalized training framework for
suturing, needle passing and knot tying (Figure 2). The three
surgical tasks are defined as follow:

• Suturing (SU): the surgeon picks up needle then proceeds
to the incision and passes through tissue. Then after the
needle pass, the surgeon extracts the needle out of the
tissue.

• Needle-Passing (NP): the surgeon picks up the needle and
passes it through four small metal hoops from right to left.

• Knot-Tying (KT): the surgeon picks up one end of a suture
tied to flexible tube attached at its ends to the surface of
the bench-top model, and ties a single loop knot.

(a) Suturing (b) Needle Passing (c) Knot Tying

Fig. 2: Three fundamental RMIS tasks [25]

The surgical activity annotation is provided manually [25].
Table II shows the 14 gestures that describe all these three
tasks.

In order to compare the accuracy of our proposed ges-
ture recognition framework with other methods [13, 26],
we used Leave-one-user-out (LOUO) setup in dataset. In
LOUO, eight folds are created, each for one surgeon with
50 iterations. The LOUO shows the robustness of a method
when a subject is not previously seen in the training data.
Thus, it helps us to personalize skill assessment for each
individual surgeon.
TABLE II: Gesture description for Suturing Needle Passing and
Knot Tying

Gesture Index and Description
SU/NP/KT G1: Reaching for needle with right hand

SU/NP

G2: Positioning needle
G3: Pushing needle through tissue
G4: Transferring needle from left to right
G5: Moving to center with needle in grip
G6: Pulling suture with left hand
G8: Orienting needle

SU G9: Using right hand to help tighten suture
G10: Loosening more suture

SU/NP/KT G11: Dropping suture at end and moving to end points

KT

G12: Reaching for needle with left hand
G13: Making C loop around right hand
G14: Reaching for suture with right hand
G15: Pulling suture with both hands

IV. RESULTS AND DISCUSSION

In this section, we report the experimental results of
gesture recognition using the proposed classification method.
Then, we will discuss the personalized skill evaluation frame-
work that provides assessment to surgeons during their RMIS
training.

A. Distance-based Skill Evaluation

First we start with different surgical gesture frequency
analysis during RMIS tasks. Figure 3 presents the average
number of surgical gesture occurrence for one surgery trial.
It shows that, there are some surgical gestures that are
very infrequent (such as G9 and G10 in suturing) and are
mostly done by novice surgeons. This suggests that, those
gestures are intermediate or correction positioning moves.
Thus, they cannot be a good indicator when the performance
of classifiers are measured. Figure 3 also indicates that the
difference between number of each surgical gesture per-
formed by novices in needle passing is significant compare
to experts while for suturing and knot tying this is almost the
same. Hence, one can conclude that novice surgeons might
need more training for needle passing task.

In order to have a better understanding about experts’ and
novices’ pattern during RMIS tasks, we compute the pairwise
DTW distance within group of expert surgeons and compare
it with DTW distance between novices and experts. Figure
4 presents the boxplot for different RMIS tasks. It shows
that expert surgeons do the tasks in a more similar pattern
compare to novices. This conclusion is also valid for each
surgical gestures separately as it shows in Figure 5. It also
indicates the feasibility of using DTW distance measure as
a skill evaluation metric. These results align with intuition
behind the DTW distance approach that proposed in this
paper for gesture classification and skill assessment.

E/E E/N E/E E/N E/E E/N

 Suturing                         Needle Passing                     Knot Tying
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Fig. 4: Boxplot of DTW distance within expert surgeons (E/E)
versus expert and novice (E/N) for three RMIS tasks.

B. Surgical Gesture Classification

Table III shows the accuracy of the proposed method
obtained for each surgeon doing different tasks. From the
Table, it can be observed that knot tying has the minimum
overall standard deviation which suggests that this task is
possibly perform in more similar pattern between surgeons.
On the other hand, such a difference among surgeons for
needle passing and suturing suggests that the experts and
novices can be separated more distinctly than knot tying.

C. Personalized Skill Assessment

Finally, we examine the proposed personalized skill as-
sessment framework for RMIS tasks. First, the result in
Table III should be expanded for each surgical gesture. Thus,
we need to tabulated gesture classifications outcomes into
a corresponding confusion matrix. Tables IV-VI show the
confusion matrix for these three tasks. The diagonal shows
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Fig. 3: Frequency of surgical gestures for experts and novices during different RMIS tasks.

TABLE III: Accuracy of proposed method for different surgeons
along with standard deviation.

Suturing Needle Passing Knot Tying

S1 82.82 66.95 78.24
S2 83.72 73.86 82.79
S3 68.52 63.98 83.10
S4 74.37 53.52 95.84
S5 88.93 75.94 83.12
S6 77.05 - 81.69
S7 86.69 79.90 89.14
S8 84.78 77.73 79.17

Avg. 80.49 70.12 85.14
Std. 6.47 8.65 5.35

the correctly classified surgical gestures. Results in Table IV
and V show that for suturing and needle passing, gestures
G5 and G8 have both low recall and precision. This suggests
that these two surgical gestures might need more training or
on the other hand, they might not be defined properly. It is
good to mention that G1 and G11 can be considered as an
idle position for both suturing and and needle passing. For
knot tying, Table VI suggests more training for gesture G12
and more G1 and G11 for more precise definition for this
task.
TABLE IV: Confusion Matrix for Suturing when the experiment
was performed on multiple surgeons (LOUO).

G1 G2 G3 G4 G5 G6 G8 G11 Recall
G1 1240 75 0 0 0 0 0 0 0.94
G2 571 6452 130 2 94 0 0 0 0.89
G3 37 596 5775 11 1038 17 66 34 0.76
G4 177 29 0 4453 47 287 509 2 0.79
G5 244 512 0 0 909 0 33 0 0.53
G6 433 213 1 245 0 6577 54 3 0.78
G8 241 223 73 681 63 168 725 0 0.33

G11 237 238 67 172 25 32 25 999 0.55
Precision 0.39 0.77 0.95 0.80 0.42 0.93 0.51 0.96

TABLE V: Confusion Matrix for Needle Passing when the exper-
iment was performed on multiple surgeons (LOUO).

G1 G2 G3 G4 G5 G6 G8 G11 Recall
G1 1237 0 51 35 49 34 40 0 0.86
G2 0 2116 2669 268 236 146 199 0 0.37
G3 13 78 4695 295 4 197 3 0 0.89
G4 0 0 317 2943 0 621 157 0 0.73
G5 23 20 566 177 566 38 60 50 0.38
G6 17 75 384 1458 24 3263 163 0 0.61
G8 0 47 62 700 150 146 245 0 0.18

G11 250 0 0 21 0 11 0 914 0.76
Precision 0.80 0.91 0.54 0.51 0.55 73.23 0.28 0.95

In order to have a personalized skill assessment system that
is capable of providing online feedback to surgeon during

TABLE VI: Confusion Matrix for Knot Tying when the experiment
was performed on multiple surgeons (LOUO).

G1 G11 G12 G13 G14 G15 Recall
G1 674 0 53 93 130 0 0.71
G11 0 1560 0 14 136 0 0.91
G12 282 340 1704 667 291 0 0.52
G13 3 155 270 2939 167 0 0.83
G14 127 252 111 206 3927 61 0.84
G15 81 354 158 297 312 2250 0.65

Precision 0.58 0.59 0.74 0.69 0.79 0.97

training, one should find for each surgeon, which surgical
gesture does not have the same pattern as expert surgeon.
In other words, which surgical gesture does not recognize
correctly. In this regard, detail confusion matrix in the form
of heatmap for an expert and a novice surgeon shows in
Figures 6. From this Figure, as an example, we can observed
that compare to expert, a novice surgeon who do suturing
might need more training for gesture G4, G6 and G3. One
can also conclude that Needle passing is the most challenging
task and the novice surgeon needs more training for almost
all gesture except G3. On the other hand, Knot tying seems
to be the most straight forward task and the results would
suggest more training for G12 for the novice surgeon.

V. CONCLUSION

Despite the tremendous enhancements in adequacy of
surgical treatments in the recent years, the criteria of as-
sessing surgeon’s surgical skill remains subjective. With the
advent of robotic surgery, the need for trained surgeons in-
crease. Consequently, there is a huge demand for objectively
evaluation of surgical skill and improve surgical training
efficiency. On the other hand, the importance of recognizing
gestures during surgery is self-evident by the fact that many
applications deal with motion and gesture signal. In this
paper, we proposed a personalized skill assessment and
training framework based on time series similarity measure
algorithm. We developed surgical gesture recognition model
on temporal kinematic signal of robotic-assisted surgery.
Based on the proposed framework, we built automated per-
sonalized RMIS gesture training system which provide online
augmented feedback. Despite the simplicity of the proposed
method, it have been shown in literature that it is difficult
to beat [27]. The performance of the proposed framework
based on the experimental results are encouraging with the
accuracy of approximately 80% for suturing, 70% for needle
passing and 85% for knot tying. These results establish the
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Fig. 5: Average DTW distance for each surgical gesture within Experts surgeons and Experts versus Novices for three RMIS tasks.

feasibility of applying time series classification methods on
RMIS temporal kinematic signal data to recognize different
surgical gestures during robotic minimally invasive surgery.
A key advantage of our approach is its simplicity by using
directly on the temporal kinematic signal of robotic-assisted
surgery. However, there may be utility in extending our work
by adding noise or other tasks (beside those in the training
set) to the data in order to build a more robust gesture
recognition method.

It should be noted that, from the results in this paper
one can conclude that the global surgical gesture dictionary
and their definition (Table II) need modification in order to
have a universal language of surgery. More importantly, the
accuracy and the robustness of any supervised classification
method relies on a priori labels which are the ground truth in
any machine learning methods. In this experiment, the labels
are given by expert surgeons. This implies a subjective based
annotation for surgical gesture labelling system. Though,
imprecise labels result in significantly different classification
accuracy. Furthermore, reliable classification is possible in
light of the fact that the model learn its parameters from the
precise training data with less human involvement. One way
to overcome to this challenge is to build an unsupervised
classification model to automatically decompose task to its
gestures [8].

This paper present a step toward automatic recognition of
surgical gesture also provide an insight about online feedback
during training. Thus, perhaps most excitingly, the proposed
framework can lay the groundwork towards development of
semi-autonomous robot behaviors, such as automatic camera
control during robotic-assisted surgery by online recognizing
the surgical gestures that is being performed [18]. Addition-
ally, human factor study should be developed to have better
understanding of this aspect in surgical training [28, 29].
Our intuitive approach for finding similarities between two
time series queries is based on DTW distance which directly
applied on the temporal kinematic signal data. Despite the
promising result in this paper, a future technical challenge
will be to build a more generalized models that are capable
of capturing abnormal pattern of surgeon during surgery by
applying rare event classification approaches.
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