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Abstract— We present a mathematical model which describes 

the development of coinfection with HBV (Hepatitis B virus) and 
HCV (Hepatitis C virus), in a patient in a “congested” 
environment. We assume that, while susceptible patients 
become infected with HBV and/or HCV through physical 
contact (sexual, sharing needles, and so on), coinfection occurs 
simply because they live in close proximity to each other, a 
situation which is true in densely populated situations like 
penitentiaries, refugee camps, etc., and sometimes in 
overpopulated countries. A similar assumption about 
coinfection with HCV and HIV (human immunodeficiency 
virus) has also been made by other researchers. We shall, 
accordingly, assume that a certain percentage of people who are 
infected with HBV in a densely populated environment are also 
co-infected with HCV, and vice versa. We give several examples 
to illustrate the behavior of the model.  

Index Terms—basic reproduction ratio, co-infection, 
congested environment, Hepatitis B virus, Hepatitis C virus, 
mathematical modeling 

I. INTRODUCTION 
NE hundred and seventy million people are infected with 
HCV (Hepatitis C virus) worldwide [1, 2]. In North 

America, more than five million people are estimated to be 
living with HCV [2, 3]. Approximately 30,000 new cases are 
diagnosed each year, and this situation is projected to get 
worse as the number of people infected with HCV from blood 
transfusions before 1990 come to be newly diagnosed [2]. 
This is because, before 1990, there was no screening of blood 
against HCV (HCV was discovered in 1989), so that millions 
of patients must have been infected through blood 
transfusions. These cases are now coming to light because the 
disease can stay asymptomatic for 20 years and more.  
Historically, the disease is speculated to have been brought 
into the United States from West Africa at the time of the 
slave trade [2]. Today, it kills more people than HIV (human 
immunodeficiency virus) every year in that country.  In some 
countries in Africa, like in Egypt, the virus affects almost one 
in every five adults. If untreated, HCV results in generally 
fatal liver failure. If treated, the treatment is unsuccessful in 
over half of the patients. Like HIV, HCV can stay dormant 
for years while attacking the liver all this time. HCV mutates 
easily which makes for a large number of mutant viruses (and 
makes the development of a vaccine that much more 
difficult). There are six known genotypes (numbered 1 
through 6) and more than 50 subtypes (e.g., 1a, 1b, 2a ...). 
These genotypes and their subtypes are present in different 
proportions in different countries.  As an example, genotype 
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1 is the dominant type in the United States, while in India, 
genotype 3 seems to be more prevalent [4]. 

The history of HBV (Hepatitis B virus) goes back to the 
1950' s when a Dr. Baruch Blumberg was taking samples 
from the blood of aborigines in Australia. Dr. Blumberg was 
interested in polymorphism and he wanted to see whether 
inherited traits could make different people more or less 
susceptible to infection by certain viruses. During these trials, 
he tested the blood of several hemophiliacs because these 
people were routinely exposed to different kinds of blood 
through blood transfusions, and the immune system of the 
recipient should produce antibodies against the antigens in 
the donors’ blood. In 1963, Dr. Blumberg identified an 
antigen that detected the presence of Hepatitis in the blood 
samples. That virus was officially recognized as HBV in 1967 
and a vaccine for the virus was discovered in 1969 [5]. Today, 
more than 240 million people are chronically infected with 
the virus [6], mainly because, in many countries, vaccination 
is not followed thoroughly enough.   In Southeast Asian 
countries for example, approximately 5 - 10% of the 
population are carriers of HBV, while in North America and 
Europe, this figure is about 0.5 % because of better 
vaccination practices. In Canada, the incidence of reported 
HBV infection has dropped dramatically after 1995. It was 
estimated at 2.3/100,000 in 1998 [7].  Dr. Blumberg received 
a Nobel Prize for his work in 1876. 

 While HCV infection can be cured, and the virus can re-
infect, chronic HBV generally ends up in hepatocellular 
carcinoma (liver cancer).  Almost 90 percent of babies and 
about 5 - 10% of adults who contract HBV develop the 
chronic form of it and may need liver transplant [7]. 
However, the chance of the virus being reactivated after liver 
transplant is also quite high. Overall, we may say that a 
certain percentage of people who get infected with HCV or 
HBV and get cured, get sick again with the same infection. 

In many developing countries, with very high population 
densities, co-infection with both HBV and HCV is fairly 
common [8, 9, 10, 11].    According to one writer, “HCV 
superinfection in patients with chronic HBV infection was the 
most common clinical feature of coinfection in Asia–Pacific 
countries” [10]. This is perhaps because of over population in 
these countries. In such situations, people live in close 
proximity and generally, are not well cared for.  Medical 
facilities are minimal, and these facilities are generally 
availed of only when the patients are seriously sick, which in 
the context of this paper, means when they are co-infected. 
Also, people who are already infected with HBV or HCV, are 
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likely to have similar "risky" behavior (risk factors for both 
HBV and HCV are the same), so that contacts are fairly 
common (social, sexual, sharing needles and other), which 
facilitates coinfection.  Considering all this, one may assume 
that a certain fraction of people, living in “congested 
situations” and suffering from HBV are also suffering from 
HCV and vice versa. Such considerations (about congestion) 
are applicable in many situations like penitentiaries, refugee 
camps, slums in big cities (Dharavi in Mumbai?) and so on. 

We   present   a   mathematical   model which describes the 
development of coinfection with HBV and HCV, in a patient 
in a congested environment. We assume that, while patients 
become infected with HBV and/or HCV through physical 
contact (sexual, sharing needles, and so on) coinfection 
occurs simply because they live in close proximity to each 
other, a situation which is true in densely populated situations 
like penitentiaries, refugee camps, etc. A similar assumption 
about coinfection with HCV and HIV has also been made by 
other researchers [12].  We shall, therefore, assume that a 
certain percentage of people who are infected with HBV in a 
densely populated environment are also co-infected with 
HCV, and vice versa. We give several examples to illustrate 
the behavior of the model. However, these examples are not 
specific to HBV/HCV coinfection but simply to illustrate 
how the model behaves under such conditions.  

II. THE MODEL 
A. Set Up 
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All the parameters ,..., 21 AA  etc. are supposed to be non-

negative. 
In these equations, 321 ,, xxx and 4x refer to the number of 

susceptible people, people infected with HBV, those infected 
with HCV, and those who are co-infected, respectively. 
Susceptible people become infected with HBV and/or HCV 
when they come into contact with similarly infected people 
according to the terms 213 xxA and .314 xxA  If a susceptible 
person )( 1x comes into contact with a co-infected person 

)( 4x , then he/she becomes infected with either HBV or HCV 
(but not both) according to the terms 4151 xxA and   41511 xxA , so that a certain percentage of people (0 < 1
< 1) become infected with HBV and others with HCV (but 
not both). Also, a certain percentage of people who are 
infected with HBV (or HCV) also get co-infected (according 

to the terms ,28 xA and )39 xA because of congested 
environments, and also because the risk factors for both 
infections are the same.  Some of these co-infected people 

),( 412411 xAxA get cured, mostly through medical 
intervention, of either HBV or HCV (but not both) and 
become candidates for reinfection by that virus. We ignore 
the very small number of co-infected people who get cured of 
both the infections, and rejoin the 1x class. 

B. Positivity of the Solution 
It is clear that, in the beginning, when the disease strikes, 

1x is close to its equilibrium value of 1A / 2A ,  2x and 3x  are 
close to one, and 4x is zero, so that we are starting in the non-
negative space, namely in ,0,0,0 321  xxx  and .04 x  
Now we write  .,,, 4321 xxxxx   Now notice that we can 
write our equations as )()(' xVxFx  where )(xF and 

)(xV are appropriate vector functions. The function )(xF  
stands for all the 'positive' terms and )(xV for all the 'negative' 
ones in (1a) to (1d), so that  
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,{)(
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xAAAxAxA
xxAxxAxxAxAxV
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and )(xF represents all the remaining terms. Now if the 
"particle" "x" starts in the non-negative space 

,0,0,0( 321  xxx  and ),04 x and follows the path 
),()(' xVxFx  then it cannot go into the negative space 

because of )(xF (because all these terms are positive and we 
started in the positive space). Also if xi = 0 {i = 1, 2, 3, 4}, 
then the corresponding component of )(xV  is also zero, and 

)(xV is a polynomial, so that this particle cannot go into 
negative space because of )(xV either. Since the initial 
conditions placed the particle  4321 ,,, xxxxx  in the non-
negative space, it is bound to stay in that space.  

This proves the invariance of the non-negative space for 
the solutions of our model. In light of this result, (and since 
the initial conditions in our investigations will always be in 
the non - negative space), if there are any solutions of our 
equations (numerical or otherwise) with negative 
components, we shall call them irrelevant (or unviable, or 
non-reachable) solutions.  In what follows, we shall prove the 
important result that there is at most one viable solution of 
our equations other than the disease free one. 

C. Boundedness of the Solution 
We have  

.
)'(

410
393728261214321

xA
xAxAxAxAxAAxxxx


  

 
Since A7 > A9 and A6 > A8 (A6x2 and A7x3 represent the 

number of people who get co-infected, plus those who die), 
the right hand side is clearly negative for A2x1 + A6x2 - A8x2 + 
A7x3 - A9x3 + A10x4 > A1. Also this quantity is clearly positive 
for A2x1 + A6x2 - A8x2 + A7x3 - A9x3 + A10x4  < A1.  It follows that 
a particle starting in {x1, x2, x3, x4} ≥ {0, 0, 0, 0} will approach 
the (bounded) region A2x1 + A6x2 - A8x2 + A7x3 - A9x3 + A10x4 =  
A1 and stay there. All the equilibrium points of the system 

 (1a) 
 
 (1b) 
 
 (1c) 
 
 (1d) 
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Fi[x1, x2, x3, x4] = 0, i = 1, 2, 3, 4  must be located in this region. 
The point {x1, x2, x3, x4} = {A1/A2, 0, 0, 0} is an example (the 
reader may verify for other solutions in this paper).  

D. Equilibrium Points 
 The equilibrium points of our system can best be found by 

eliminating x1, x2, x3, and/or x4 successively from the 
equations. Eliminating x2 from F1 = F2 = F3 = F4 = 0, for 
example, we get L2 = 0, where, apart from the root x2 = 0, L2 
= 0 is a second degree equation like ݔܣଶଶ + ଶݔܤ +  ,0 = ܥ
where the terms A, B, and C are too long to reproduce here. 
This equation has two roots. We shall call them x21 and x22.  
Similarly for (x11 and x12), (x31 and x32) and (x41 and x42). We 
find 

 
(x21x22) / (x41x42) = {A11(A10 + A11 + A12)A4 + A11A5A9 + 

A5[A10A7 + (A11 + A12) (A7 - A9)]θ1} / [(A4A6 
- A3A7)A8]; 

 
(x31 x32) / (x41 x42) = -{1/[(A4A6 - A3A7)A9]}{A10A12A3 + 

A11A12A3 + (A12)2A3 + A10A5A6 + A11A5A6 + 
A12A5A6 - A11A5A8 - A5[A10A6 + (A11 + A12) 
(A6 - A8)]θ1},  

 
and  
 
(x21 x22) / (x31 x32) = {-A11A9[(A10 + A11 + A12)A4 + A5A9] 

+ A5A9[-(A10+A11+A12)A7 + (A11 + A12)A9]θ1} 
/ {A8[A10A12A3+A11A12A3+(A12)2A3 + A10A5A6 
+ A11A5A6 + A12A5A6 - A11A5A8 - A5(A10 A6 + 
{A11 + A12}{A6 - A8})θ1]}. 

  
Under the assumptions that A6 > A8 and A7 > A9 (notice that 

A6 and A7 represent the number of people who get co-infected 
plus those who die), it is easily seen that the quantity (x21x22) 
/ (x31x32) is negative. This says that either x21x22 is negative 
(which requires either x21 or x22 to be negative) or that x31x32 is 
negative, while the other number is positive.  In either case, 
we must discard one of the two solutions, (x11, x21, x31, x41) if 
x21 is negative and (x12, x22, x32, x42) if x22 is negative. Similarly 
for x31x32. We are now left with only one viable solution (other 
than the disease free one) of our equations.  

E. Basic Reproduction Ratio 
The basic reproduction ratio of such a dynamic is a 

measure that indicates whether the disease will grow or die 
out. This number has been termed "the most significant 
contribution of Mathematics to Epidemiology" [13].  If, when 
ALL the people are susceptible, i.e. in the beginning when the 
disease strikes, one infected person infects MORE THAN 
ONE person in his/her (infectious) lifetime, then obviously 
the disease will spread (because one becomes two, two 
becomes four and so on), while if one person infects LESS 
THAN ONE person, then the disease will die out (because 
now four becomes two, two becomes one and so on). An 
elementary example for illustration of this idea is the equation 
x' = ax - bx, where x = 0 is the uninfected state. If in the 
beginning when x = ε > 0 (the disease strikes) then, if a > b, 
the x values go to infinity, while if a < b, the x values go to 
zero. Since x = 0 is the point of equilibrium in this case, it 
follows that this point of equilibrium is stable if a / b < 1 and 

is unstable if a / b > 1. In the latter case, the disease spreads 
while in the former caser, it dies out. The terms ax and bx may 
be called the incoming and outgoing terms (to x') 
respectively.  The Basic Reproduction Ratio R in this case is 
a / b. The disease spreads if R > 1 and dies out if R < 1. In the 
above analogy (x' = F(x) - V(x)), we have F(x) = ax and V(x) 
= bx. If F '(x) / V'(x) > 1, the disease spreads, and the x values 
increase, i.e. the equilibrium value (x = 0) is unstable, while 
if F '(x) / V '(x) < 1, the equilibrium value (x = 0) is stable and 
the disease dies out. The quantity F '(x) / V '(x) is the BASIC 
REPRODUCTION RATIO (R0) of this dynamic. If the 
number of equations in the dynamic is more than one, this 
ratio is replaced by a (very similar looking) ratio. Now F(x) 
and V(x) become appropriate matrices (of incoming and 
outgoing terms respectively), x represents an appropriate 
vector, F '[x] and V '[x] are matrices with components Fi (xj) and Vi (xj), and the basic reproduction number (which is a 
ratio) is the (largest) eigenvalue of the matrix, F '[x] / [V '[x]], 
(or, more appropriate in this setting, of F '[x]*[V '[x]]-1). This 
ratio is calculated at the point where the state of the system is 
uninfected (see [14,15] for details). 

 
It is not clear as to how we should calculate this number in 

the case of co-infection/re-infection.  Generally, the way to 
calculate R0 is that "Once an individual is diagnosed, his/her 
contacts are traced and tested. R0 is then computed by 
averaging over the number of secondary cases of many 
diagnosed individuals" [16]. So, what is a secondary case?  If 
the susceptible people are infected and then get co-infected 
with HBV and/or HCV, and get re-infected (or reactivated) 
after getting cured, how should we count as to how many 
infected people a susceptible person originally produces? 
What are F(x) and V(x) for this situation?  Is there a unique 
R0 in this case? If this reinfection and/or coinfection did not 
occur, would it not affect the total number of infected people 
and consequently, the basic reproduction ratio?  It has been 
shown in the context of a different ailment (TB) that re-
infection does change the Basic Reproduction Ratio [17]. Our 
results in this paper indicate that if R0 is computed by 
"averaging over the number of secondary cases of many 
secondary individuals" which are co-infected or re-infected, 
then you are likely to "underestimate" the true value of R0 in 
the important case when the disease is endemic.   

 
If {x2, x3, x4} = {0, 0, 0} is the uninfected state, should we 

take all entries into this state as the incoming terms or only 
those that involve x1? We try to answer this question for our 
model below by considering various cases. In our examples, 
we take {x2, x3, x4} = {0, 0, 0} as the uninfected state. 

 
1) Case One: 

From (1b) – (1d), we take the incoming and outgoing terms 
as 

 
F(x) = {{A3x1x2 + 1A5x1x4}, {A4x1x3 + (1-1)A5x1x4}, {0}}; 
 
V(x) = {{A6x2 - A11x4}, {A7x3 - A12x4}, {A10x4 + A11x4 + A12x4 

- A8x2 - A9x3}}. 
 
Then,  
 

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol II 
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14048-2-4 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016



 

F’(x) = {{A3x1,0,1A5x1}, {0,A4x1,(1-1)A5x1}, {0,0,0}}; 
 
V’(x) = {{A6,0,-A11}, {0,A7,-A12}, {-A8,-A9, A10+A11+A12}}. 
 
The basic reproduction ratio, R0, is the spectral radius of 

F’(x)*[V’(x)]-1 [9].  However, this matrix has three 
eigenvalues, let us call them R0, R00, and R000.  The largest of 
these eigenvalues is R0 where 

 
R0 = {A10A4A6x1 + A11A4A6x1 + A12A4A6x1 + A10A3A7x1 + 

A11A3A7x1 + A12A3A7x1 - A11A4A8x1 - A12A3A9x1 + 
A5A6A9x1 + A5A7A8x11 - A5A6A9x11 + sqrt[(-A10A4A6x1 - A11A4A6x1 - A12A4A6x1 - A10A3A7x1 - A11A3A7x1 - 
A12A3A7x1 + A11A4A8x1 + A12A3A9x1 - A5A6A9x1 - 
A5A7A8x11 + A5A6A9x11)2 – 4*(A10A6A7 + A11A6A7 + 
A12A6A7 - A11A7A8 - A12A6A9)(A10A3A4x12 + A11A3A4x12 
+ A12A3A4x12 + A3A5A9x12 + A4A5A8x121 - 
A3A5A9x121)]} / [2*(A10A6A7 + A11A6A7 + A12A6A7 - A11A7A8 - A12A6A9)]. 

 
Note: It should be noticed that if {x11, x21, x31, x41} is the 

(only) viable solution, then the basic reproduction ratio of our 
dynamic may also be written as A1 / (A2x11). This is because, 
at the point of equilibrium, each newly infected person must 
exactly replace him/herself, i.e. produce one new infected 
person in his/her (infectious) lifetime, (this is what 
equilibrium should mean). The   number of infected persons 
that one infected person produces (in his/her infectious 
lifetime) clearly depends upon the number of susceptible 
persons that the infected person interacts with.  If an infected 
person interacts with 100 people and produces one infected 
person say, then if that person interacts with 200 people, s/he 
will produce two infected persons (on the average). So, if the 
susceptible number of persons is A1 / A2 in the beginning and 
interaction with these people produces R infected people say, 
then the susceptible number of persons at the point of 
equilibrium (when one infected person produces exactly one 
infected person), must be 1/R times the original number of 
persons.  It follows that  

 
            x11 = A1 / (A2R) or R = A1 / (A2x11)                                        (2) 
 
It is now clear that, if we have an independent expression 

for x11 in our model we can get another expression for R (we 
shall call this expression R1). Such an expression for x11 can 
be obtained by eliminating x2, x3 and x4 from the equations in 
our model.  The result of this elimination is [x1 - (A1 / A2)] L1 
= 0 where L1 is a second degree polynomial of the type Ax12 
+ Bx1 + C. The smaller of the two roots of L1 turns out to be 
x11 (corresponding to the larger value of R), while the larger 
of these two roots corresponds to the other smaller 
eigenvalue. (The root x1 = A1 / A2 of the original equation 
corresponds to the infection free equilibrium value of x1). We 
get 

x11 = {A10A4A6 + A11A4A6 + A12A4A6 + A10A3A7 + A11A3A7 + 
A12A3A7 - A11A4A8 - A12A3A9 + A5A6A9 + A5A7A81 - 
A5A6A91 - sqrt[-4*(A10A6A7 + A11A6A7 + A12A6A7 - 
A11A7A8 - A12A6A9)(A10A3A4 + A11A3A4 + A12A3A4 + 
A3A5A9 + A4A5A81 - A3A5A91) + (-A10A4A6 - A11A4A6 
- A12A4A6 - A10A3A7 - A11A3A7 - A12A3A7 + A11A4A8 + 

A12A3A9 - A5A6A9 - A5A7A81 + A5A6A91)2]} / 
[2*(A10A3A4 + A11A3A4 + A12A3A4 + A3A5A9 + A4A5A81 
- A3A5A91)], 

 
and then R1 = A1 / A2x11.    As we pointed out above, the basic 
reproduction ratio is also the spectral radius of an appropriate 
matrix.  Each eigenvalue of this matrix corresponds to an 
equilibrium value (stable or otherwise) of x1. Since the 
spectral radius refers to the (numerically) largest eigenvalue 
of a matrix, the corresponding value of x11 should be the 
minimum of all such values. This explains the minus sign 
before the square root sign in the above expression. 

a) Example 1 
As an example, we show the values of R0 and R1 = A1 / A2x11 

for some values of the parameters. Notice that they are 
coincident (there is a continuous line under the dots in Fig. 
1). We take A1 = 1; A2 = A1/15,000; A4 = 0.9A3; A5 = 0.9A3; 1 
= 0.5; 2 = 1 - 1; A6 = 1/2000; A7 = 0.5A6; A9 = 0.0002; A8 = 
A9; A10 = 0.01; A11 = 0.1A10; A12 = A11; x1 = A1/A2,  

 
and calculate the values of these two quantities for some 
values of A3: 

 

 
      

Fig. 1. Values of Basic Reproduction Ratio (as Ro and R1) against values of 
A3, calculated two different ways (1) as A1/A2x11 and (2) as the largest 
eigenvalue of an appropriate matrix. Notice that they are coincident. (Notice 
the continuous line under the dots). 

b) Example 2 
As another example, we take A1 = 1; A2 = A1/10,000; A3 = 

0.0000001; A4 = 0.5A3; A5 = 0.5A3; 1 = 0.9; 2 = 1 - 1; A6 = 
1/2000; A7 = A6; A9 = 0.0002; A8 = A9; A10 = 0.001; A11 = 0.3A10; A12 = A11. 

At x1 = A1/A2 we get  
 
{R00, R0} = {1.07713, 2.33463}, 
 

where R00 is another eigenvalue of our matrix.    The spectral 
radius turns out to be 2.33463 and we should get one (and 
only one) viable solution. Solving (1a) – (1d) in the software 
Mathematica we get: 

 
{x1, x2, x3, x4} = {10,000, 0, 0, 0}, {9283.92, -35.288, 

203.776, 21.061} or {4283.33, 1156.03, 
189.069, 168.137}. 

 
The last one is the viable solution. Notice that although two 

           2 x 10-8    4 x 10-8     6 x 10-8        8 x 10-8      2 x 10-7 

 R0, R1 
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values of R are greater than one, there is only one viable 
solution as our analysis argues.  Notice this value corresponds 
with the smaller of the two equilibrium values of x1.  Also 
notice that A1 / A2*4283.33 = 2.33463, and A1 / A2*9283.92 = 
1.07713, which is the other value R. 

Every eigenvalue of the matrix F’(x)*[V’(x)]-1 corresponds 
to an equilibrium value of x1 (stable or otherwise) in our 
solution, the largest eigenvalue corresponding to the only 
viable solution. Numerically graphing the solution using 
Mathematica, we see the distribution of HCV and HBV 
infected people in the population in Figs. 2 and 3. It should 
be noted that the number of HCV infected people is between 
approximately 3% and 20% of those who are HBV infected 
(approximate slopes of the two bounding straight lines in Fig. 
2). The number of co-infected people (x4) amongst the HCV 
infected ones (x3) is given in Fig. 3. This number is close to 
70% (slope of the straight line). 

 

                    10,000      20,000      30,000      40,000     50,000       60,000      70,000                   x2 
 Fig. 2. Number of HBV infected people (x2, along the horizontal axis) as 
against the co-infected ones (x4) in this example. This number of co-infected 
ones falls between approximately 3% and 20% of HBV infected ones 
(approximate slopes of the two bounding straight lines). In surveys, these 
rates vary from 9% to 30% [18]. The number of co-infected people rises in 
the beginning but soon recoils back, so that any time you take a sample, this 
ratio will be close to 10%.  

  
Fig. 3. Number of co-infected people (x4) amongst the HCV infected ones 
(x3) in this example. The number of HCV infected people rises in the 
beginning but soon recoils back, so that any time you take a sample, this ratio 
will be close to 70% (slope of the straight line). 

 
Note: It may happen that x21 and x22 (or x31 and x32) are both 

negative, (for x21x22 or x31x32 to be positive). In this case both 
the solutions {x11, x21, x31, x41} and {x12, x22, x32, x42} must be 
discarded and we are left with NO viable solution. Similarly 
for x31x32. This should happen when the basic reproduction 

ratio is less than one, as in the following example.  
c) Example 3 

We take A1 = 1; A2 = A1/1000; A3 = 0.0000001; A4 = 0.9A3; 
A5 = 0.5A3; 1= 0.5; 2 = 1 - 1; A6 = 1/2000; A7 = A6; A9 = 
0.0002; A8 = A9; A10 = 0.001; A11 = 0.5A10; A12 = 0.5A11. 

Solving (1a)-1(d), we get: 
 

{x1, x2, x3, x4} = {5385.92, 19,896.9, -30,483.6, -1209.91} or 
{1000, 0, 0, 0} or {4030.24, 5178.52, -2135.87, -835.929}. 

 
Notice that there is no viable solution other than the 

disease-free one. Also, in this case at x1 = A1/A2 we get 
 
{R00, R0} = A1/A2x1= {0.185669, 0.248124}, 
 

which says that both roots are less than one. 
 

Basic Reproduction Ratio Again: We stated above that 
"If an infected person interacts with 100 susceptible people 
and produces one infected person say, then, if that person 
interacts with 200 susceptible people, s/he will produce two 
infected persons (on the average)." It is not clear whether such 
a linear relationship will be true if the infected people recover 
from their ailment and start getting infected again.  In the case 
of ODE models in epidemiology, it is particularly difficult to 
calculate this number (the basic reproduction ratio) from the 
model [19]. In the case of the model mentioned above, 
namely x'(t) = ax - bx, if we write the same equation as x'(t) = 
(a + n)x - (b + n)x, for any number n > 0, would the new 
estimate of this ratio be (a + n) / (b + n), which is different 
from a / b? The obvious conclusion is that we cannot estimate 
this ratio from the mathematical model itself.  However, 
notice that both these numbers a / b and (a + n) / (b + n) 
correctly predict the regime where the (infected) population 
will grow or will shrink, i.e.  if a / b > 1, a / b = 1, or a / b < 
1, then so is (a + n) / (b + n) for any positive number n. A 
similar conclusion has been reached by other researchers in 
the field [19]. We shall now give a number of scenarios where 
an approximate ratio (R) for our model is calculated 
differently each time. 

 
2) Case two 

In analogy with the above example about ((a+n)/(b+n)), we 
shall take various forms of the incoming and outgoing 
functions F(x) and V(x) and calculate the corresponding R. In 
our model, we take {x2, x3, x4} = {0, 0, 0} as the uninfected 
state and write, from (1b) – (1d): 

 
F(x) = {{A3x1x2 + 1A5x1x4 + A11x4}, {A4x1x3 + (1-1)A5x1x4 + 

A12x4}, {0}}; 
 

V(x) = {{A6x2}, {A7x3}, {A10x4 + A11x4 + A12x4 - A8x2 - A9x3}}; 
 

 F’(x)= {{A3x1, 0, 1A5x1+A11}, {0, A4x1, (1-1) A5x1 + A12}, 
{0,0,0}}; 

 
V’(x) = {{A6,0,0}, {0,A7,0}, {-A8,-A9, A10+A11+A12}}. 

 
This gives the eigenvalues of F’(x)*[V’(x)]-1. (We suppress 

the long answer). 
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The basic reproduction ratio (which we write as R2) turns 
out to be 

 
R2 = {A11A7A8 + A12A6A9 + A10A4A6x1 + A11A4A6x1 + A12A4A6x1 + 

A10A3A7x1 + A11A3A7x1 + A12A3A7x1 + A5A6A9x1 + 
A5A7A8x11 - A5A6A9x11 + sqrt[(- A11A7A8 - A12A6A9 - 
A10A4A6x1 - A11A4A6x1 - A12A4A6x1 - A10A3A7x1 - A11A3A7x1 - 
A12A3A7x1 - A5A6A9x1 - A5A7A8x11 + A5A6A9x11)2 – 
4*(A10A6A7 + A11A6A7 + A12A6A7)(A11A4A8x1 + A12A3A9x1 + 
A10A3A4x12 + A11A3A4x12 + A12A3A4x12 + A3A5A9x12 + 
A4A5A8x121 - A3A5A9x121)]} / [2*(A10A6A7 + A11A6A7 + 
A12A6A7)]. 

 
3) Case Three 

On the other hand, if we take (including the co-infected as 
newly infected) 

 
F(x) = {{A3x1x2 + 1A5x1x4}, {A4x1x3 + (1-1)A5x1x4}, {A8x2 + 

A9x3}}; 
 

V(x) = {{A6x2 - A11x4}, {A7x3 - A12x4}, {A10x4 + A11x4 + A12x4}}; 
 
F’(x) = {{A3x1,0,1A5x1}, {0, A4x1,(1-1)A5x1}, {A8, A9,0}}; 

 
V’(x) = {{A6, 0, -A11}, {0, A7, -A12}, {0,0, A10+A11+A12}}, 

 
we get 
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and R3 = the maximum absolute eigenvalue of the above matrix. 
(We suppress the long answer). In this case, R3 is the numerically 
largest eigenvalue of a cubic equation and cannot be specified any 
further. 
 

4) Case Four 
Again, we may write (including the cured ones as new 

candidates for infection) 
 

F(x) = {{A3x1x2 + 1A5x1x4 + A11x4}, {A4x1x3 + (1-1)A5x1x4 +  
A12x4}, {A8x2 + A9x3}}; 

 
V(x) = {{A6x2}, {A7x3}, {A10x4 + A11x4 + A12x4}}; 
 
F’(x) = {{A3x1, 0, 1A5x1 + A11}, {0, A4x1, (1-1)A5x1+A12}, {A8, 

A9,0}}; 
 

V’(x) = {{A6,0,0}, {0,A7,0}, {0,0, A10+A11+A12}}. 
 
Then R4 is the spectral radius of F’(x)*[V’(x)]-1 where 
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Once again, R4 is the (numerically) largest eigenvalue of a 

cubic equation and cannot be specified any further. We omit 
the details. 

III. CONCLUSION 
Finally, the various values of R (R0, R1, R2, R3 and R4) are 

compared in Figs. 4 and 5 for two particular cases, one for 
"small" values of coinfection and another one for not so small 
ones. For intermediate values of coinfection, we expect these 
values to fall between these two. Notice that they all intersect 
at R = 1 so that they imply the endemicity or eradication of 
the disease for the same values of the parameters. In both 
these diagrams, the values of R0 coincide with those of R1. 

 

                               2 x 10-8             4 x 10-8             6 x 10-8            8 x 10-8              1 x 10-7 
 Fig. 4. Values of R0, R1, R2, R3, and R4 for different values of A3 (R0 and R1 at 

the top, R2 and R3 below that (notice the large and small dashes), and R4, the 
lowest) for {0.00000001 ≤ A3 ≤ 0.0000001} along with the horizontal line y 
= 1. Values of other parameters are A1 = 1; A2 = A1 / 15,000; A4 = 0.9A3; A5 = 
0.9A3; 1 = 0.5; 2 = 1 - 1; A6 = 1 / 2000; A7 = 0.5A6; A9 = 0.0002; A8 = A9; A10= 0.01; A11 = 0.1A10; A12 = A11; x1 = A1/A2.  

 

                               2 x 10-8             4 x 10-8             6 x 10-8             8 x 10-8             1 x 10-7 
 Fig. 5. Once again, values of R0, R1, R2, R3, and R4 for different values of A3 (R0 and R1, at the top, R2 and R3 below that (notice the large and small dashes), 

and R4, the lowest) for {0.00000001 ≤ A3 ≤ 0.0000001} along with the 
horizontal line y = 1. Other variables are A1 = 1; A2 = A1 / 15,000; A4 = 0.5A3; 
A5 = 0.5A3; 1 = 0.9; 2 = 1 - 1; A6 = 1 / 2000; A7 = 0.5A6; A9 = 0.0002; A8 = 
A9; A10= 0.05; A11 = 0.5A10; A12 = A11; x1 = A1/A2. 

 R2, R3 

 R0, R1 

 R4 

 R0, R1 

 R2, R3 

 R4 
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It is to be noticed that all these different expressions for R 
predict the instability of the equilibrium point {x2, x3, x4} = 
{0,0,0} for the same value of A3 and that only the expression 
R0 satisfies condition (2). However, this is not of much use, 
since x11 is almost never known in an epidemic, and R0 is to 
be estimated using initial data. The article clarifies that only 
the contacts of initially infected susceptibles should be 
included in calculating the basic reproduction ratio. Our 
results also indicate that including the results of coinfection 
(as incoming terms) tends to lower the value of R if the 
disease is endemic. This corroborates our results in a previous 
paper [20]. It also corroborates the fact that R0 of H1N1 when 
it came back in 2009 was much less than the R0 of HIN1 when 
it first appeared in 1918, because the second time around, 
everybody was not susceptible to H1N1 [21]. Since the ratio 
of people who must be immunized to stop the spread of such 
a disease is (1-1/R), this argues on the side of caution. 
Coinfection complicates treatment of both HCV and HBV 
infections. Considering that billions of people worldwide live 
in "congested" environment, the problem of coinfection is 
both widespread and urgent. The values of R in different cases 
considered here differ by about 5% in Fig. 4 and by about 
10% in Fig.5, so that, in general, more people (about 5-10%) 
should be immunized in these circumstances to control the 
infection than a calculated R (reproduction ratio) warrants. As 
has been pointed out in the literature, if "HIV has an R0 of 3” 
and “SARS has an R0 of 5, unless they were calculated using 
the same method, we don't know if SARS is worse than HIV. 
All we know is that both will persist” [22]. 
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