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Abstract—Many simulation scenarios attempt to seek a
balance between model fidelity and computational efficiency.
Unfortunately, scenario realism and model level of detail are
often reduced due to the complexity of experimental design
and corresponding limitations of computational power. Such
simplifications can produce misleading results. For example if
the Radar Cross Section (RCS) effects in response to time-
varying target aspect angle are ignored.

A hybrid, high-fidelity sensor model can be achieved by
using a Time-Step (TS) approach with precomputed atemporal
response factors (such as RCS) each situated on active entities
that interact within an overall Discrete Event Simulation (DES)
framework. This paper further applies regression analysis to
the cumulative results of 100 replications times 255 scenarios
to provide additional insight. This new methodology adapts the
best aspects of each simulation paradigm to integrate multiple
high-fidelity physically based models in a variety of tactical
scenarios with tractable computational complexity.

Index Terms—Discrete Even Simulation (DES), regression
model, Nearly Orthogonal Latin Hyper Cube (NOLH), Radar
Range Equation, Hybrid sensor model.

I. INTRODUCTION

THERE is always a dilemma for simulation developers
and users. On the one hand, modelers want the simu-

lation to contain as many details as possible, so the results
could be closer to the real world, and on the other hand, a
simulation needs to be executed efficiently and smoothly. In
this dilemma, “better is the enemy of good enough.” As the
models get more complicated, the computational complexity
and cumbersome system are the price paid, especially when
dealing with a high complexity physical model, like a radar
system, in simulation. Better levels of detail create high com-
putational complexity which negatively impacts efficiency.

A search radar-targets simulation scenario, seeking for
radar’s time-to-detect targets, contains numerous factors that
contribute to model performance, such as target’s distance,
antenna sweeping period, aspect angle of targets and target
speed etc. Some parameters are sensitive to the performance
of the whole system and the computation is nearly too
complex to accomplish in a real time simulation, such as
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Radar Cross Sections (RCS) of targets from different aspect
angles.

Wang et al., in their study of constructing radar system
simulations, propose a universal program framework that
considers the radar-target scenario using an object template
The template divides the simulation into three subsystems
classified by functions. These functions include: 1) Scene
target echo generation system, 2) Radar information process
system, 3) Radar control, display and estimation system [1].

A reoccurring problem in approaches to dynamic target-
sensor scenarios, when a sensor’s detection algorithm is
based on the range between sensor and target [2], or sensor
detectable perimeters [3] this neglects the factor of aspect
angle of targets. The change of aspect angle can lead to dras-
tic variation in RCS response. So the maximum detectable
range of sensor derived from radar range equation [Eq. (1)]
also fluctuates along with aspect angle. RCS can have a
huge influence on received signal power at the receiver, and
has been recommended as a topic of future work in Radar
Modeling and Simulation (M&S) research by Inggs et al. [4].

Wang et al.’s study has incorporated RCS values into
modeling by a ground clusters numerical Weibull model in
a Radar M&S focusing on Terrain Environment effects [5].
The cluster backscatter RCS is the function of terrain range
and aspect angle relative to the sensor in the Weibull model
that has been previously measured and built in prior research.

However, when integrating a non-parameterized RCS
model generated from an arbitrary target, a simulation ap-
plication might produce incoherent responses due to consid-
erable computational latency from generating target RCS.

To fill in these gaps in target-sensor scenarios at run
time, this research integrates modeling structure from three
categories with a multi-stage approach as shown in Figure.1.
The three catagories are: 1) Atemperal construction, 2) Dis-
crete event simulation construction, 3) Time step costruction.
There are two major contributions of this structure approach:

1) Integrating a high-fidelity physical radar range equa-
tion, which considers dynamic position between sen-
sors and targets through simulation, into a comprehen-
sive detection algorithm. This work constructs a hybrid
model with three modeling constructs that mitigate
the disparate simulation time mechanisms of each
paradigm.

• Atemporal models, i.e. models that cannot be
interactive in real time simulation scenario due
to its tremendous computational latency, such as
target’s RCS response .

• Discrete Event Simulation (DES) structure for
precise and efficient event execution.
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Fig. 5. Radar Range Equation Parameters only Configured by Sensors

follow:

Ru =
C

2 · prf
(2)

The detectable range of targets from the sensor has to
satisfy both equations (1) and (2) i.e. the threshold range
Rdetect in which the sensor will detect targets needs to meet
these two criteria: Rdetect < Ru and Rdetect < Rmax.

The parameters, applied in radar range equation, have
been classified into two categories in this study: 1) the
parameters that can only be configured by the radar system.
The parameters are listed in Figure.5 and they can be set up
as modeler’s attempt. 2) the rest of the parameters that have
interactive relationship with other factors in the scenarios are
set up accordingly.

A. Radar Cross Section σT

RCS is the property of a scattering object that represent
the magnitude of the echo signal returned to the radar by the
target [7]. RCS fluctuates as a function of radar aspect angle
and frequency. When the signal operational wavelength is
much smaller than the target extent, this condition is referred
to as the optics region. The optics region is applied in the
scenario in this research. A further question, does target
physical size indicate RCS size? Comparing an illustrative
RCS example of two different geometry objects:

• The RCS of a flat plate at broadside, A2 is the area of
plate

σPlate =
4πA2

λ

∣∣∣∣
λ=0.1m,f=3GHz,A=1m2

= 1000(m2)

Fig. 6. F-16 Falcon Fighter Model RCS Measure in [0◦, 360◦)

• The RCS of a Cone-Sphere, a is the radius of the sphere
with 30◦ cone angle

σCone =
2πa

λ

∣∣∣∣
λ=0.1m,f=3GHz,a=0.564m

= 0.001(m2)

There is a million-to-one difference in the RCS of two targets
even if each of them has the same projected area. RCS is
deadly, a critical factor.

The RCS of complex targets such as aircraft, missiles,
vessels and terrain can also be vary considerably depending
on the view aspect and radio frequency. In this paper, the
RCS values are computed [0◦ ∼ 360◦) from a F-16 falcon
fighter 3D model in full-scaled size using signal frequency
10 (GHz) by a high-fidelity electron magnetic simulation
software, CST Studio [8]. Computing one angle of RCS from
the target takes about 3 minutes. A whole 360◦ range of RCS
values of the target with 0.5◦ resolution may take days or
weeks to accomplish by a PC. This computation delay can
cause huge computational latency in simulation if we do not
isolate this atemporal factor from others.

B. Pulse Integration Improvement Factor NInt
The pulse integration improvement factor is determined

by the number of pulses returned from a point target [7]
during a scan of radar with a pulse repetition rate prf(Hz),
an antenna 3dB beamwidth θ3dB (we only consider azimuth
angle effect in this study), and antenna revolutions per minute
(rpm).
First, the effective radar signal illumination time on target
(ToT) per revolution is calculated as follow:

ToT =
60s

rpm× 360◦
× θ3dB AZ (second)

then the number of effective pulses provided to the integra-
tion improvement factor is

NInt = ToT × prf

A mono-static radar is assumed in this scenario, which
means the transmitting and receiving signal are from the
same source at the same station. A coherent integration
improvement factor can be applied in this system.
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C. Target Fluctuation: Swerling III model χ2
df=4

Target detection algorithm utilizing the square law detector
assumes a constant RCS. This work was extended by Peter
Swerling to four distinct cases of target RCS fluctuation
[9]. We apply Swerling III, a chi-square probability density
function with four degree of freedom, in this study. This
factor models the fluctuation loss from targets between
each antenna scan. The RCS is assumed to be constant
within a scan and independent from scan to scan [10]; these
conditions are the same as those in this simulation scenario.
The sensor model generates stochastic time-to-detect results
due to this fluctuation loss model which is represented by a
Chi-Squared random variable with degree of freedom = 4.

IV. DESIGN OF EXPERIMENTS AND DATA ANALYSIS

Regression analysis is a statistical method that investigates
the relationship between two or more variables related in a
non-deterministic manner [11]. The relationship is expressed
in the form of an equation or more explanatory predictor vari-
ables. To learn the system behavior or predict the outcome,
associated with the input parameters of the system, requires
sufficient experiment data that cover as many detail levels in
parameters as possible. Tallavajhula [12] applies data-driven
methods to learn the relationship between input parameters
and system state and construct a high fidelity model for a
planar range sensor.
There are two crucial considerations for design of experiment
(DoE):

• The number of available experiments must be statisti-
cally significant for designer and analyzer. Nevertheless,
because of realistic constraints such as budget, time
or available exercise space to conduct experiments,
experimenters are usually unable to get unlimited ex-
perimental results for analysis. Efficiently designing
experiments is important.

• How well the space is filled reflecting the system
parameters from the DoE is also important. The more
detailed levels are included in the DoE, the more the
relationship between system and parameters will be
captured by the analysis. This need for detail must be
balanced with the need for efficiency. A well-covered
and succinct DoE is necessary.

A. Design of Experiment (DoE) by Nearly Orthogonal Latin
Hypercube (NOLH)

To analyze the interactive relationship between all input
parameters in the model, a DoE that efficiently fills space in
the range of parameters is crucial to reveal the relationship
between parameters and system state. In full factorial design,
if applying five factors with 250 levels of each factor, the
number of design points = 2505 ' 9.7 × 1011. For each
design point executing 100 repetitions, the total simulation
execution amount will be up to ' 9.7×1013. Even though in
this computer based simulation, the number of experiments
that can be conducted is not restricted, this execution amount
is still unbearable.

The Nearly Orthogonal Latin Hypercube presented by
Cioppa at. el [6] provides an efficient space filling DoE that
allows view of 255 levels of up to 29 factors in 255 design
points. With 100 repetitions, the total number of simulation to

Fig. 7. DoE for simulation by Nearly Orthogonal Latin Hypercube (NOLH)

TABLE IV
FACTORS LEVEL RANGE AND DECIMALS SETTING BY NOLH DOE

factor
name

Way
point
(km)

Speed
(km/hr)

Sweeping
integer(sec)

prf(Hz) θ3dB
(degree)

low level -57.7 200 1 375 3
high level 57.7 1200 8 1500 6
decimals 2 2 1 1 1

process is 25, 500. This makes three billion-to-one difference
on simulation executing. In Figure.7 shows that the design
points of each factors fill in the DoE space quite evenly with
only minor overlapping correlation to each other.

Even though the parameters listed above are set up in
conventional units of radar applications, it is important to
have all parameter units consistently applied in the simu-
lation to avoid misrepresenting quantity of parameters. In
the simulation, the unit of the antenna “Sweeping Integer”
parameter is converted from seconds to hours in order to
match the length unit within the “Target Speed” parameter
in TABLE IV.

B. Linear Regression Estimation of time-to-detect (TTD)

Executing the DoEs through the hybrid sensor model
simulation, yields time-to-detect-target data, which is asso-
ciated with 255 design points. Next, a meta-model is formed
by linear regression analysis for predicting the response
variable “time-to-detect” the target by the sensor. For a good
meta-model, the goal is to make the difference between
meta-model and baseline hybrid simulation model small.
An simple linear regression model that describes the rela-
tionship between response variable Y and predictor variables
X1, X2, · · · , Xp is defined as follow [13]:

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε

where β0, β1 · · · , βp, called the regression coefficients and
ε is assumed to be a normal random error to represent the
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Fig. 8. Residual Plot by Predicted Time to Detect of Fit Model

failure of the model to fit the data exactly. It is represented
as follow:

ε ∼ N(0, σ2)

These values are unknown constants to be determined from
the simulation-output data. Backward elimination of Least-
Squares estimation is applied to form the regression meta-
model. It is a commonly used technique to fit the model
with minimum sum of squared errors between meta-model
and sample data. Mean squared error (MSE) is defined as the
error between fit model and sample data. It is represented as
follow:

σ2 =
SSE

n− I
=MSE = 0.00001

where sum of squared errors is SSE, the total number of data
samples is n=6878 and the number of data sample groups is
I = 39 in this meta-model. Applying the predictor parameters
up to four degrees of factorial and polynomial terms in fit
model should allow for capture of some curvatures in the
sample data distribution. The meta-model has R-Square =
0.9947. R-Square is a statistical measure of how close the
data are fitted to the regression line. R-Square is [0, 1]. A
higher R-Square value indicates more response data around
the baseline model mean.
Figure.8 shows the residual of fit model by predicted “time-
to-detect.” Certain heteroscedasticity can be observed in
residual distribution, which means unequal variance across
treatments that is not the ideal assumption for forming a
meta-model by linear regression. However, “all models are
wrong, but some are useful,” as observed by George Box.
Thus the fidelity of this fit model is evaluated further.

C. Logistic Regression of Probability of Detection (Pd)

For a dichotomous dependent variable, such as if the
target is detected, the numerical value of the variable is not
intrinsically interesting. The key point to focus on is whether
the classification of cases into one or another categories of
the dependent variable can be predicted by the independent
predictor variables [14]. The probability of an event happen-
ing is denoted as P (Y = 1). If the probability of an event
happening is known, then the probability of an event not

and the range of parameters set up is listed in Table IV

Fig. 9. TTD t-test between Meta and Hybrid Sensor Model

happening is also known: P (Y = 0) = 1−P (Y = 1). Logis-
tic regression analysis models the ratio between P (Y = 1)
and P (Y = 0) with a natural logarithm of the ratio. This
expression is called logit of Y:

ln

{
P (Y = 1)

[1− P (Y = 1)]

}
= logit(Y )

= α+ β1X1 + β2X2 + · · ·+ βpXp

then we can convert the logit(Y ) back to the probability that
(Y=1) with predictor variables in such equation:

Probability(Y = 1) = P (Y = 1)

=
1

1 + e−(α+β1X1+β2X2+···+βpXp)

A logistic regression analysis is run of the probability of
detection (Pd) by a sensor of targets, using predictor param-
eters of up to a degree of two polynomial and factorial terms.
This logistic regression analysis has an RSquare = 0.843. The
logistic meta-model determines if the target is detected by the
sensor in this DoE with a predicted probability. If the target
detection is determined true by comparing the Pd with a
uniform random variable [0,1], then time-to-detect the target
con be estimated by the linear regression model described in
Section IV-B.

D. Meta-Model Validation

The validation of the meta-model was verified by examin-
ing the mean (first moment) and variance (second moment)
of predicted results. Testing the first moment and second
moment between predicted results and baseline data can
indicate how well the meta-model represents the hybrid
model.

• Two-sample t-test.
Processing a two sample t-test on TTD from both meta
and hybrid models with 100 repetitions in one design
point [Figure.9]. Because the t-Ratio = -0.7687 it retains
the null hypothesis of equal mean assumption at a 95%
confidenc inteval. In other words, the mean of predicted
TTDs are statistically the same as the hybrid sensor
model.

• O’Brien unequal variance test.
The p-value of this unequal variance test was less then
0.0001. It rejects the null hypothesis of equal variance
assumption. The test indicates the variance of predicted
TTDs is different from the hybrid model in Figure.10.
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Fig. 10. TTD Variance test between Meta and Hybrid Sensor Model

V. CONCLUSIONS

This work demonstrates a hybrid structure sensor model
that successfully integrates high fidelity radar range equations
with dynamic RCS response from targets. Based on computa-
tionally efficient DES structure with isolated atemporal RCS
model, the hybrid model not only introduced angle varying
RCS factor into the dynamic sensor-target scenario, but also
keep the computational complexity of whole scenario down
to reasonable level. A typical desktop PC is capable of
executing 250,500 DoE scenario repetitions in a matter of
minutes.

Even with these benefits of a DES-based structure for the
hybrid model, the embedded TS mechanism for emulating
antenna sweeping period is still a key latency for a compre-
hensive model. Additionally, the model also needs to include
maximum detectable range table for the target. These factors
still make the model bulky in some sense. This research also
utilizes efficient NOLH DoEs which provides a well-filled
space of parameters with significantly fewer design points
compared with full factorial design.

Finally, a meta-model is fit from the experimental data
executed by the DoEs with Least-Squares estimation. The
meta-model does present the hybrid model characteristics
in certain sense with much more concise structure, even if
the fit model showed some heteroscedasticity in prediction
results. This difference in variance might result from high
order factorial and polynomial terms that had been included
in the meta-model. Further data analysis and regression
methodologies can also be applied in future work to form
a better meta-models of interest.
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