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Abstract—The goal of this work is to present a better under-
standing of the behavior of dynamic programming operating
policies applied to the resolution of medium-term operational
planning problem. Hydro plants located in different regions in
Brazil will be considered for the analysis. The randomness of
inflows will be treated and considered in the resolution of the
problem using Dynamic Programming approaches. Then these
results will be simulated from series of inflows.

Index Terms—hydro plants, hydrothermal scheduling, inflow
uncertainty, dynamic programming, simulation

I. INTRODUCTION

The medium term hydrothermal scheduling (MTHS) prob-
lem is quite complex due to some of its characteristics,
specially the randomness of inflows. The MTHS aims to
determine, for each stage (month) of the planning period
(years), the amount of generation at each hydro and thermal
plant which attends the load demand and minimizes the
expected operation cost along the planning period.

Stochastic dynamic programming (SDP) has been the most
suggested technique to solve the MTHS problem since it
can adequately cope with the uncertainty of inflows and the
nonlinear relations among variables. Although efficient in
the treatment of river inflows as random variables described
by probability distributions, the SDP technique is limited
by the so-called ”curse of dimensionality” since its com-
putational burden increases exponentially with the number
of hydro plants. In order to overcome this difficulty one
common solution adopted is to represent the hydro system
by an aggregate model, as it is the case in the Brazilian
power system. Alternatives to stochastic models for MTHS
can be developed through operational policies based on
deterministic models. The advantage of such approaches is
their ability to handle multiple reservoir systems without
the need of any modeling manipulation. Although some
work has been done in the comparison between deterministic
and stochastic approaches for MTHS, the discussion about
the best approach to the problem is far from ending. The
purpose of this paper is to present a discussion about different
policies based on Dynamic Programming to solve MTHS.
Hydro plants located in different regions of Brazil will be
considered as case studies. The uncertainty of inflows will
be modelled and the Box-Cox transformation will be used.
One determinist model and three other stochastic models
will be considered for solving the problem and finally these
results will be simulated using inflows series. This paper is
organized as follows: Section 1 presents the formulation of
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the MTHS problem, section 2 shows four different Dynamic
Programming approaches that will be analysed in this paper.
Section 3 reports the numerical results for the case studies
and discusses the features and sensitivities of the different
models. Section 4 summarizes the conclusions.

II. MTHS FORMULATION

The MTHS problem, in systems composed of a single
hydro plant, considering the uncertainty of inflows, can be
formulated as a nonlinear stochastic programming problem
seeking the minimization of the expected operational cost
and is given by:

min Ey

{
λt

T−1∑
t=1

ψt(dt − pt)

}
+ αT (xT ) (1)

subject to:

xmed
t =

xt + xt+1

2
(2)

pt = k [φ(xmed
t )− θ(ut)− δ(qt)] qt, ∀ t (3)

xt = xt−1 + (yt − qt)β, ∀ t (4)

ut = qt + st, ∀ t (5)

xt ∈ Xt (6)

vt ∈ Vt (7)

st ≥ 0 (8)

x0 given (9)

In the above equations Ey: represents the expected value
of the inflows ; T is the planning period; t is the index of
the planning stages; λt: is a discount rate to convert cost for
present; ψt(.) is the thermal cost function at stage t; gt is
the thermal generation at stage t; dt is the energy demand
at stage t; pt is the hydro generation at stage t, which is
the product of a constant k, the water head given by the
difference of forebay elevation φ(xt) and tailrace elevation
θ(ut), and the water discharged at stage t; yt represents the
inflow at stage t; xt is the reservoir storage at the end of
stage t; vt is the water released at stage t; st is the water
spilled at stage t; β is a constant factor that converts flow
into volume; Xt and Vt are feasible sets representing bounds
for the variables xt and vt.
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III. DYNAMIC PROGRAMMING MODELS FOR MTHS

For solving the problem (1)-(8) by SDP, the optimization
problem is divided into stages and at each stage the optimal
control variable is chosen in order to minimize the expected
cost for each state of the system. The optimization process is
based on a previous knowledge of the future possibilities and
its consequences, satisfying the Bellman optimality principle,
[2]. Thus the total operation cost from stage until the end of
the planning period is obtained with the sum of the present
cost at stage t with the optimal future cost of the following
stages, which were previously determined. Since the problem
is a stochastic one, the optimal control at each stage is
obtained based on the probability distribution of the inflow at
that stage, [3], [4], [7]. The dynamic programming recursive
equation is given by:

Ft(xt) = min
qt,st
{ψt(dt − pt) + Ft+1(xt+1)} (10)

The recursive equation (10) is solved for each stage t subject
to equations (2) -(8).

The four policies based on dynamic programming models
considered in this work will be detailed bellow.

A. Deterministic Dynamic Programming

In the Deterministic Dynamic Programming (DDP) the
inflow for each month m is known previously and calculated
based on the historical values of each hydro plant. In this
approach the long term average, ym, provides the inflow
arithmetical mean for each month for all N years of the
historical.

ym =
1

N

N∑
r=1

yr,m (11)

DDP can be considered as a particular case of SDP where
the probability is assumed one if the inflow long term average
for a certain month occurs.

The recursive equation for this particular case, where Qt

is the decision search space, can be written as:

αt−1(xt−1) = minqt∈Qt{ψt(dt − pt) + αt(xt)} (12)

where:

xt = xt−1 + (yt − qt)β (13)

B. Independent Stochastic Dynamic Programming

If one solves dynamic programming considering the in-
flows monthly independent, the recursive equation will be
similar to DDP and the only difference is the future cost
that will be weighted by their probabilities pi considering
the inflow discretization divided in Ny parts.

Thus, the recursive equation of ISDP is given by:

αt−1(xt−1) = minqt∈Qt

Ny∑
i=1

{
ψt(dt − pit) + αt(x

i
t)
}
.pi

(14)
where:

xit = xt−1 + (yit − qt)β (15)

and

pit = k [φ(
xit + xt+1

2
)− θ(qt)− δ(qt)] qt (16)

C. Stochastic Dual Dynamic Programming

In the Stochastic Dual Dynamic Programming (SDDP) one
supposes that in the beginning of each month the inflow that
will occur is known. Each final month state is represented
by a pair (stored volume at the end of the month; inflow
of this month) [7]. The inflow distribution is represented by
a inflow set and its probabilities. Each inflow is analysed
separetely, resulting in different optimal individual decisions.
For each combination of storage level and inflow, according
to its discretization, an optimal decision is found. For a given
storage level, each optimal decision takes to a total cost of
operation. Thus, an expected cost is calculated with these
different costs.

For this approach one considers the following recursive
equation:

αt−1(xt−1) =

Ny∑
j=1

pj

{
minqt∈Qt

[ψt(dt − pjt ) + αt−1(x
j
t )]
}

(17)

xjt = xt−1 + (yjt − q
j
t )β (18)

pjt = k [φ(
xjt + xt−1

2
)− θ(qt)− δ(qt)] qt (19)

D. Dependent Stochastic Dynamic Programming

When the inflows uncertainty is considered through a
Markov chain, [6], leading to the dependent SDP (DSDP),
the state variable changes to include the inflow of the
previous stage, the probabilities are now calculated from
the conditional probability density function and the recursive
equation is modified to:

Ft(xt) = min
qt,st
{ψ(gt) + Eqt|qt−1

{Ft+1(xt+1)}} (20)

Again, one solves the recursive equation (20) for each stage
t according to equations (2)-(8).

In this work one represents the inflow uncertainty of the
hydro plants by a Normal probability density function with
Box-Cox transformation.

IV. CASE STUDIES

Two hydro plants were considered for the case studies:
Serra da Mesa in the Tocantins River in northern region of
Brazil, Furnas in the São Francisco River, located in the
southeastern region of Brazil. In order to get equilibrated
hydrothermal systems, the thermal plant capacity, in MW,
was considered equal to the installed capacity of the hydro
plants and the load demand was assumed constant.

The cost function associated with non-hydraulic comple-
mentary generation was given by the following quadratic
function:

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol II 
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14048-2-4 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016



TABLE I
STATISTICAL OF NATURAL INFLOWS OF HYDRO PLANTS.

Hydro plant Serra da Mesa Sobradinho Furnas
Minimal inflow 97.0 570.0 204.0
Maximal inflow 6163.0 15676.0 3757.0

Average 775.5 2668.4 918.5
Deviation 700.5 1984.4 615.7

TABLE II
HYDRO PLANTS FEATURES

Installed Capacity Reservoir Discharge
Hydro plant ( MW-Month) (hm3) (m3/s)

Serra da Mesa 1200 43250 98/1165.9
Furnas 1312 22950 196/1692

ψt = 0.02(dt − pt)2 (21)

The control policies were implemented and simulated in
a monthly basis throughout the inflow historical sequence,
which in this case begins in 1931.

Table 1 shows some relevant statistical data of the hydro
plants inflows. This information was used for modeling the
inflow with the probability density function.

In the optimization process the planning period T con-
sidered for the recursive equation solution was equal to 120
with terminal cost null, αT (xT ) = 0, ∀ xT .

For all DP policies, the discretization adopted for state
variable was 100, and for the stochastic ones, the inflow
variable was discretized into 10 possible values. A normal
probability density function with Box-Cox transformation
was adopted for modeling the inflows and the optimal param-
eters were found by the likelihood test. The optimal values
for Serra da Mesa and Furnas reservoir were λ∗ = −0.318
and λ∗ = −0.539, respectively.

Cubic splines were used in the the interpolation of future
costs.

Table 2 shows some operative data of the hydro plants
selected for the case studies.

The forebay and tailrace elevations, φ(xt) and θ(qt),
were calculated by 4th degree polynomial functions. The
coefficient values of these polynomial function are shown
in Table 3. These data will be used in the calculus of PD
policies.

The DDP, ISDP, and DSDP were simulated through his-
torical records since 1931 and the NFN-SDP was simulated
using an inflow forecast given by neural fuzzy network

TABLE III
FOREBAY AND TAILRACE ELEVATIONS POLYNOMIAL COEFFICIENTS OF

HYDRO PLANTS

Coefficients Serra da Mesa Furnas
φ(xt) a0 3.877328E+02 7.361261E+02

a1 3.487404E-03 3.193892E-03
a2 -8.567909E-08 -1.608703E-07
a3 1.233703E-12 5.076109E-12
a4 -7.135002E-18 -6.504317E-17

θ(qt) b0 3.327979E+02 6.716328E+02
b1 1.342970E-03 1.017380E-03
b2 8.819558E-08 -1.799719E-07
b3 -1.627669E-11 2.513280E-11
b4 0.000000E+00 0.000000E+00

TABLE IV
SERRA DA MESA SIMULATION RESULTS

Policy Generation (MW ) Cost ($)
Average Deviation Average

AO 840.3 132.7 4135
DPP 815.7 177.9 4839.4
ISDP 818.1 165.3 4712.4

NFN-SDP 817.5 165.0 4724.3
DSDP 816.0 161.2 4726.5

TABLE V
FURNAS SIMULATION RESULTS

Policy Generation (MW) Cost ($)
Average Deviation Average

AO 727.8 148.3 7271.1
DDP 709.2 198.1 8029.0
ISDP 704.6 183.8 8037.7

NFN-SDP 707.9 209.2 8158.2
DSDP 708.1 192.9 8016.4

model. In this case, the forecast were based on neural
networks and fuzzy logical [1]. An absolute optimal solution
was considered as an upper bound for the operative policies
analysed. This approach considers the total knowledge of the
inflows.

Tables 4 and 5 show the simulation results for all policies
investigated: the hydrothermal generation average and its
deviation and the operation cost for Serra da Mesa and
Furnas, respectively.

The discharged water trajectories for the DP policies: DDP
(red), ISDP (green), SDP (black) and DSDP (blue) can be
visualized in Figure 1 and Figure 3 for Serra da Mesa and
Furnas hydro plants, respectively.

The behavior of stored volumes for the DP policies includ-
ing the optimal absolute solution (full line in black): DDP
(red), ISDP (blue), NFN-SDP (green) and DSDP (pink) can
be visualized in Figure 2 and Figure 4 for Serra da Mesa
and Furnas hydro plants, respectively.

According to the obtained simulation results for Serra
da Mesa hydro plant the lower mean cost ($ 4712.4) was
associted to ISDP policy. The higher mean generation, that
was equal to 818.1 MW , was also provided by ISDP. DDP
was the policy with worse performance, presenting the higher
mean cost equal to $ 4839.4.

The difference between stochastical approaches, ISDP and
DSDP, was equal to 0.29%. Analysing ISDP versus NFN-
SDP there was a cost gain of 0.25% over ISDP. Comparing
DDP versus DSDP the difference was 2.3%. The perfor-
mance difference between the best and worse policy was
at about 2.7%.

Thus, one concludes that due to the fact that DSDP
explores the mensal correlation between the months of the
year, there is no guarantee of this policy presents the best
result.

The comparison of the obtained results for Serra da Mesa
hydro plant are shown in Figure 1, that shows the discharged
water, and Figure 2, that shows the stored water behavior for
all policies investigated.

Figures 3 and 4 show the discharged water trajectories and
the stored volume behavior for all DP policies investigated.

According to the results presented in Table V, comparing
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Fig. 1. Discharged water (m3/s) of Serra da Mesa hydro plant for january.
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Fig. 2. Trajectory of stored volumes (%v.u.) of Serra da Mesa.
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Fig. 3. Discharged water (m3/s) of Furnas hydro plant for january.
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Fig. 4. Trajectory of stored volumes (%v.u.) of Furnas.

the average costs of DDP and DSDP, DDP generates 1.1 MW
(0.15%) more, however, its average cost is 0.16% worse.

DDP presented higher average generation equal to 709.2
MW and this can be explained due to the fact that DDP
has presented the higher spillaged water and took advantage
of this water released that could be stored or spilled. The
worse performance was associated to NFN-SDP policy with
average cost equal to $ 8158.2.

V. CONCLUSION AND REMARKS

This work has compared deterministic and stochastic
models for medium term hydrothermal scheduling for two
Brazilian hydro plants located in different regions. Optimal
policies for the medium term hydrothermal scheduling were
obtained considering four dynamic programming policies ac-
cording to inflow modelling. The normal probability density
function with Box-Cox transformation was considered for
inflow modelling. Finally the optimal policies results were
simulated through historical inflow records.
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Based on the simulation results it is possible to affirm that
the policies performance were similar. The differences of
average costs between the best and worse policy was nearly,
2.7% and 1.7% for Serra da Mesa and Furnas hydro plants,
respectively.

Another conclusion is that the better performance not al-
ways was associated to the most sophisticated inflow model.
For instance, the better result for Serra da Mesa was given
by ISDP that does not consider the inflow time correlation.

Another important conclusion of the numerical results was
that DDP presented surprisingly a good performance, only
2.7%, and 0.15% worse that the better SDP policy for Serra
da Mesa and Furnas, respectively.

The simulation results have shown that both deterministic
approaches have provided quite similar performance, spe-
cially regarding the operational cost.
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