
 

 

Abstract—The paper contains  an analysis of different 

approaches in numerical calculations of reinforced concrete 

walls using FEM programs for linear and non-linear models. 

The general introduction includes the most important issues 

regarding the basics of structural design. There are shown and 

described various ways of walls modeling which are treated as 

a homogenized material. The objective of this paper is a 

comparison of numerical analysis when using different 

numerical FEM programs. Depending on the capabilities of the 

software, it has taken into account the propagation of cracks in 

concrete with its impact on the whole structure. Numerical 

analysis shows the differences in the surface of the required 

reinforcement between models that take into account the 

minimum deflection and the acceptable width of the crack. 

 
Index Terms—RC Wall, FEM analysis, Cracks 

I. INTRODUCTION 

The aim of this paper is a numerical study of concrete 

walls by using different FEM programs. The analyzed  

structure was implemented to the following structural 

programs: Autodesk Robot Structural Analysis Professional 

and  ABC Tarcza. Required reinforcement with restriction of 

minimum cracks were calculated in these programs. 

Depending on the possibilities of the used software, the 

analysis was performed in both a linear elastic and nonlinear 

range [1], [2]. As a summary, the results gained from all the 

programs were compared with each other and analyzed. 

When describing relationships between internal forces and 

stress in concrete and rebar steel, it is assumed that the 

cross-section of an RC member may be in one of the three 

phases. If the stresses only appear  in concrete (compressive 

or tensile), which does not exceed compression and tensile 

strength, it is assumed that the element (and all of its cross-

sections) is not cracked – the member is in phase I. If the 

member is cracked (and the ultimate limit state is not 

exceeded in concrete), the cracks can be observed in the 

cross-sections - in phase II. If the ultimate limit state was 

reached (internal forces reached values, which must not be 

exceeded) in the cross-sections of the element, it is assumed 

that the cross-section is in phase III. Phase I theory is used 

in the calculations of stresses and deflections in prestressed 

members and for checking stresses in some structure that are 
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not prestressed (e.g. dynamically loaded structures). Based 

on phase II theory, the width of cracks and the deflections of 

RC members are calculated. These members are generally 

cracked under live load. Formerly, linear theory was used for 

reinforcement calculations, which were determined based on 

the requirement that the stresses in the reinforcement and  

concrete do not exceed admissible stresses. Nowadays 

reinforcement is generally determined based on requirements 

due to the ultimate limit state. Regarding the quantity of 

reinforcement, one of two possibilities may occur. If the 

amount of reinforcement in tension is moderate, the ultimate 

limit state of the yield strength in reinforcement is reached 

(failure is caused by steel). If very strong reinforcement is 

applied, then the failure will be caused by concrete. The 

yield strength in reinforcement will not be reached because, 

even at lower stresses, the concrete will be crushed sooner in 

compressed area. In the members, where a very small 

amount of reinforcement is applied, a situation may occur in 

which stresses in the reinforcement will reach yield strength 

directly after cracking– phase II is absent. 

II. LINEAR AND NON-LINEAR ANALYSIS 

OF  A CONCRETE STRUCTURE 

According to EC2 [3], linear elastic analysis of elements 

based on the theory of elasticity may be used for both the 

serviceability and ultimate limit states. For the determination 

of the action effects, linear analysis may be carried out 

assuming:  

a) uncracked cross sections,  

b) a linear stress-strain relationship,  

c) mean values of the elastic modulus.  

According to [4], [5], linear analysis methods are based 

on classical linear elastic solutions from the scope of 

material strength. The main assumptions associated with the 

application of this method can be mentioned:  

 linear relations 𝜎−𝜀 in concrete and reinforcement steel,  

 homogeneity and isotropy of materials creating a 

structure,  

 Bernoulli’s rule of plane cross sections,  

 tension stiffening as a base of the theory of first order and 

the linearity of geometrical relationships.  

Adaptation of the linear elastic analysis method is very 

easy due to the possibility of using the superposition 

principle which exactly adds up the static effects in 

combinations of loads systems. This principle is that 

independent calculations of structure due to every kind of 

effect, are performed and then as a result of those effects, all 
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internal forces are added. Linear elastic analysis is also a 

principle of the classic approach in the Finite Element 

Method (FEM) and is currently commonly used in 

conventional engineering software for the static analysis of 

load bearing structures. In this method the influence of the 

cross section area of the reinforcement for the moment of 

inertia of a whole cross section is neglected. Assuming that a 

plane stress state element is made of isotropic, linear elastic 

material, the distribution of stresses depends mainly on the 

geometrical dimensions of this member. Its static scheme 

also includes the type of supports and the way of loading. 

According to EC2 [3], nonlinear methods of analysis may be 

used for both ultimate and serviceability limit states, 

provided that equilibrium and compatibility are satisfied and 

an adequate non-linear behavior for materials is assumed, 

(Figure 1). The analysis takes into account action  with and 

without consideration of the effect of structural 

deformations, including geometric imperfections (analysis of 

first or second order). Nonlinear analysis allows  a  more 

actual distribution of the internal forces and displacement of 

the structure to be received, and also a better estimation of 

its safety than the linear one. This type of analysis can be 

used both for structures under external static loading and 

structures under support settlement, influence of temperature 

or any other extortion of static displacement. In the 

structural analysis, in which the most significant is the static 

loading, the influence of previous loadings and unloadings 

may be neglected and monotonic increase of the considered 

loading can be assumed. 

 

 
Figure 1 Schematic representation of the stress-strain relations for 

structural analysis [EC2]. 

III. BASICS OF NUMERICAL ANALYSIS 

Elaboration of the solution method requires extensive 

research in the range of static processes analysis of 

reinforced concrete element deformations. A reinforced 

concrete member is treated as a composition of materials 

consisting of a spatial concrete matrix with reinforcement of 

limp steel bars distributed in a discrete way in the material of 

the matrix. Structural analysis is elaborated with  the use of 

finite element principles. Three methods of reinforcing steel 

finite element modeling in a concrete matrix are known:  

 a discrete model,  

 an embedded bar model,  

 a smeared model.  

In the discrete model, the trajectory of reinforcement bars 

coincides with the concrete mesh. The concrete mesh and 

reinforcement mesh have common nodal points, so concrete 

is located in the same areas as the reinforcement. Some 

inaccuracy of the model is a result of the fact, that the 

concrete mesh is limited by the location of the reinforcement 

and its small volume is not subtracted from the volume of 

concrete.  

In the embedded bar model, the reinforcement crosses 

the grid of concrete elements, and the stiffness of steel is 

determined separately in the finite element of the concrete 

matrix. The method of building the model consists of 

separate analyze of the displacements in the steel bar and  

the concrete elements surrounding it. This technique of 

modelling is beneficial for structures with a complex system 

of reinforcement.  

In the smeared model, layered reinforcement is assumed. 

This reinforcement is uniformly distributed in the finite areas 

of concrete matrix elements. This technique has an 

application in oversized models of plate and shell structures 

with an insignificant influence of the reinforcement on the 

resistance of the structure. 

Due to the behavior of a reinforced concrete structure, 

cooperation between concrete and reinforcing steel is 

especially important. Reinforcement bars mainly carry forces 

parallel to their axis. Those forces are transferred from 

concrete thanks to its bonding with steel. The main reasons 

for the forming of adhesiveness are:  

 friction in the contact plane between steel and concrete,  

 chemical adhesion,  

 shrinkage of concrete,  

  in the case of ribbed reinforcement mechanical interaction 

between the ribbing of the bar and concrete.  

On the section between cracks the significant part of 

tensile stresses is carried by concrete, and the formed 

phenomenon is called the tension stiffening of concrete. In a 

situation when reinforcement bars carry forces perpendicular 

to their axis, and in a location where cracks resulting from 

the acting of  transversal forces occur in concrete, dowel 

action effect can be observed. 

The problem with transferring forces on reinforcement 

bars which are parallel to their axis is strictly related to the 

method of representing reinforcement during discretization 

of the structure by using finite elements. The reinforcement 

is modelled as a discrete one and  uses bar elements 

connected in nodes with a concrete element mesh. 

Displacements which occur in a complex stress state in the 

bonding stress zone are then described as the deformations 

of concrete elements surrounded with nodes containing 

reinforcement. As a result of bonding at sections between 

cracks, reinforcement bars transfer a significant part of the 

tensile stresses on concrete. This phenomenon results in a 

global increase of reinforced concrete structures. A 

commonly used method of including this tensioning effect is 

the assumption of a gradual decrease of the tensile strength 

of a structure due to concrete failure. The characteristics of 

what the function of concrete degradation in the tensile zone 

should have are yet to be agreed upon. It seems to be 

reasonable that the solution to this problem requires 
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calibration of the model and a comparison of the numerical 

analysis results with experimental research results. 

In most cases encountered in practice in a structure’s 

mechanical range, the Newton-Raphson method is used to 

solve the systems of equations [1],[2]. 

.} {=}]{[ aFuK  (1) 

Where:  

[𝐾] −the matrix of the system coefficients,  

{u} – the wanted vector of generalized displacement in three 

perpendicular directions,  

{Fa}– the known vector of generalized loading. 

The equation (1) is non-linear, because the matrix of the 

system coefficients [𝐾] is a function or derivative of the 

searched values of generalized displacements in three 

perpendicular directions. The Newton-Raphson method is an 

iterative process of solving  nonlinear equations in the 

forms: 

[𝐾𝑖
𝑇]{∆𝑢𝑖} = {𝐹𝑎} − {𝐹𝑖

𝑛𝑟}, (2) 

{𝑢𝑖+1} = {𝑢𝑖} + {∆𝑢𝑖}, (3)  

where: 

[Ki
T]– the matrix of tangent stiffness,  

i– the index corresponding with number of incremental step, 

{Fi
nr} – the vector of internal nodal forces corresponding 

with the stress state occurring in a discretizing system. 

This method works perfectly for materials with linear-

elastic characteristics. However, according to non-linear 

materials, after the cracking and crushing application, it is 

not as effective. Its disadvantage is the necessity of reversing 

the new stiffness matrix during every iteration stage and 

what is even more important, the lack of possibility to 

describe the mechanism of material failure, because the 

solution is not converged at the moment of zeroing out the 

stiffness matrix. The reflection of eventual structure 

degradation, visible on a load-displacement curve as sharp 

drops of loading, is only possible with the use of far more 

complex iteration methods in comparison to the Newton-

Raphson method. In order to achieve a complete path of 

load-deformation showing both local and global degradation 

of a structure and a description of failure mechanism, two 

effective methods can be used:  

 the modified Newton-Raphson method,  

 the arc-length Crisfield’s method.  

The modified Newton-Raphson method consists of changing 

the solution path near the limit point and moving backwards 

along the secant until a fast numerical solution convergence 

achieved [1]. The stiffness matrix in comparison to Newton-

Raphson (eq. 1) is described as a sum of two matrixes: 

[𝐾𝑖
𝑇] = 𝜉[𝐾𝑠] + (1 − 𝜉)[𝐾𝑇], (4) 

where: 

[𝐾𝑠]– the matrix of secant stiffness, 

[𝐾𝑇]– the matrix of tangent stiffness, 

 ξ  – the parameter of adaptation decrease. 

This method consists of coordination of the adaptation of the 

decrease parameter 𝜉 during the equilibrium iteration. The 

matrix of secant stiffness is generated in the numerical 

method as a result of solving nonlinear issues according to:  

 yielding of the material,  

 stiffness of the structure with big displacements,  

 crushing the concrete with relaxation stresses after 

cracking taken into account.  

In the numerical arc-length (Crisfield’s) method, equation is 

dependent on the loading of parameter 𝜆: 

[𝐾𝑖
𝑇]{𝑢𝑖} = 𝜆{𝐹𝑎} − {𝐹𝑖

𝑛𝑟}. (5) 

In this method, variable loading parameter 𝜆 searched in 

equilibrium equations is from the range 〈−1,1〉.  
 

The equation in the intermediate step of loading is in the 

form: 

[𝐾𝑖
𝑇]{Δui} − Δ𝜆{𝐹𝑎} = (𝜆0 + Δ𝜆𝑖){𝐹𝑎} − {𝐹𝑖

𝑛𝑟}, (6) 

where: 

Δ𝜆 - the parameter of loading increment. 

Based on equation (6), the searched vector of displacement 

increment {Δui} composed of two components is described 

as: 

{𝑢𝑖} = Δ𝜆{𝑢𝑖
𝐼} + {𝑢𝑖

𝐼𝐼}, (7) 

where: 

{ui
I} – the vector of displacement increment induced be 

unitary parameter of loading, 

{ui
II} – the vector of displacement increment in Newton-

Raphson method. 

IV. NUMERICAL ANALYSIS 

In order to compare the results receiving from different 

software using FEM, an identical model of the wall was 

implemented in all programs, (Figure 2). The model is a 

simply supported deep-beam with two symmetrical openings 

implemented. It was modeled as a shell structure working as 

a plane stress state element in a two dimensional coordinate 

system. All loads act only in the plane of the wall. In the 

nearest surrounding of the connection between the wall and 

a support, an accumulation of stresses can occur. This is the 

reason why finite elements should be placed in such places.  

In numerical analysis the following was assumed: 

Dimensions: height of the whole element: 3.0m, length of 

the whole element: 7.0m, length of the supported columns: 

0.7m, length of the span: 5.6m, dimensions of the openings: 

1.0 m x 1.2m; constant thickness of the wall: 0.25m.  

Materials: concrete: C25/30, reinforcing steel: AIIIN 

(B500SP).  

Loads:  

the self-weight, uniformly distributed load applied along the 

top of the deep- beam, the magnitude of the load: 300kN/m. 

 

Figure 2  Basic dimensions and finite elements mesh 
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1. Numerical analysis by means of Robot Structural  

Analysis Professional 2015 

There are two available methods for the reinforcement of a 

wall determined in Robot software: 

 

The Analytical method 

If the reinforcement values 𝐴𝑥 and 𝐴𝑦(corresponding to 

two perpendicular directions 𝑥 and 𝑦) are given, an 

equivalent reinforcement in any other direction (𝑛) is 

calculated according to the following formula: 

𝐴𝑛 = 𝐴𝑥𝑐𝑜𝑠2(𝛼) + 𝐴𝑦𝑠𝑖𝑛2(𝛼), (8) 

where:  

𝛼 - the angle included between direction 𝑥 and  direction 𝑛. 

 

The values of sectional forces (membrane forces) 𝑁𝑛 may be 

obtained from the following transformational formula:  

𝑁𝑛 = 𝑁𝑥𝑐𝑜𝑠2(𝛼) + 𝑁𝑦𝑠𝑖𝑛2(𝛼) − 𝑁𝑥𝑦𝑠𝑖𝑛2(2𝛼). (9) 

Thus, the below-presented inequality formulates the 

condition of correct reinforcement. The reinforcement that is 

able to carry the internal forces in an arbitrary section:  

𝐴𝑥𝑐𝑜𝑠2(𝛼) + 𝐴𝑦𝑠𝑖𝑛2(𝛼) ≥ Φ(𝑁𝑛), (10) 

where:  

 Φ(Nn)- refers to the value of reinforcement required to 

carry the forces calculated for the direction ' 𝑛 ' -  Φ(Nn). 

 

This determines on the plane  (𝐴𝑥, 𝐴𝑦) the area of 

'admissible' values of reinforcement Ax and Ay (half-plane). 

If such an area is determined for a sufficiently "dense" set of 

directions 𝑛 (control is performed every 10), one obtains the 

area of admissible values Ax and Ay. The adopted 

reinforcement is the minimal reinforcement which yields the 

minimal sum of surfaces Ax + Ay. 

The Wood&Armer method 

Design forces are calculated according to the method by 

Wood and Armer from the formulas given below for a plane 

stress structure or for the activated option of panel design for 

compression/ tension in a shell structure. For the selected 

directions 𝑥 and 𝑦, two types of design forces 𝑁* are 

calculated:  

 the tensile (positive, causing main tension in a section),  

 the compressive (negative, causing section compression).  

The general procedure takes the following form: 

 

Calculation of 'tensile' forces Nxr,
* Nyr

*  

𝑁𝑥𝑟
∗ = 𝑁𝑥 + |𝑁𝑥𝑦|, (11) 

𝑁𝑦𝑟
∗ = 𝑁𝑦 + |𝑁𝑥𝑦|. (12) 

However if Nx < -|Nxy| (i.e. calculated Nxr
* < 0), 

𝑁𝑥𝑟
∗ = 0, (13) 

𝑁𝑦𝑟
∗ = 𝑁𝑦 + |𝑁𝑥𝑦 ∙

𝑁𝑥𝑦

𝑁𝑥
|. (14) 

Similarly, if Ny < -|Nxy |(i.e. calculated Nyr
* < 0), 

𝑁𝑦𝑟
∗ = 0, (15)  

𝑁𝑥𝑟
∗ = 𝑁𝑥 + |𝑁𝑥𝑦 ∙

𝑁𝑥𝑦

𝑁𝑥
|. (16) 

If any of the obtained forces Nxr
* , Nyr

*  are less than zero, 

one should assume a zero value (forces determined when 

designing a section by  reinforcement compression are 

determined further on). 

Calculation of 'compressive' forces Nxs,
* Nys

*  

𝑁𝑥𝑠
∗ = 𝑁𝑥 − |𝑁𝑥𝑦|, (17) 

𝑁𝑦𝑠
∗ = 𝑁𝑦 − |𝑁𝑥𝑦|. (18) 

However, if  Nx > |Nxy|(i.e. calculated Nxs
* > 0), 

𝑁𝑥𝑠
∗ = 0, (19) 

𝑁𝑦𝑠
∗ = 𝑁𝑦 − |𝑁𝑥𝑦 ∙

𝑁𝑥𝑦

𝑁𝑥
|. (20) 

Similarly, if Ny > |Nxy|(i.e. calculated Nys
* > 0), 

𝑁𝑦𝑠
∗ = 0, (21) 

𝑁𝑥𝑠
∗ = 𝑁𝑥 − |𝑁𝑥𝑦 ∙

𝑁𝑥𝑦

𝑁𝑦
|. (22) 

If any of the obtained forces 𝑁𝑥𝑠
∗ , 𝑁𝑦𝑠

∗  is greater than zero, 

one should assume a zero value (such forces are determined 

when designing a section by reinforcement tension, which is 

already guaranteed by the tensile forces 𝑁𝑥𝑟
∗ , 𝑁𝑦𝑟 

∗ calculated 

earlier). 

 
Figure 3 Required area of reinforcement in XX direction with a restriction 

of minimum crack width (0,2 mm) ROBOT) [mm2/m] 

 
Figure 4 Required area of reinforcement in YY direction with a restriction 

of minimum crack width (0,2 mm) (ROBOT) [mm2/m] 

 

The width of cracking is calculated independently for two 

directions. They are defined by axes of reinforcement. The 

algorithm of calculations is based on the formulas enabling 

calculation of the cracking width for beam elements. 

Calculations are carried out on the cross-section with 

reinforcement resulting from the Ultimate Limit State. 

Moments recognized in calculations of the Serviceability 

Limit State are equivalent moments calculated according to 

the selected calculation method: Analytical or Wood 

&Armer. When reinforcement adjustment is selected for 

calculations, the area of reinforcement undergoing tension 

increases, reducing the cracking width. When it is not 

possible to fulfil the user-defined condition of the maximum 

cracking width, the table of results will highlight the result 

cell in red. There are no non-code limits set on the 

reinforcement ratio, so attention should be paid to the 

economic aspect of the solution provided. 
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2. Numerical analysis using ABC Tarcza 

According to the algorithm presented in EC2 [3] is assumed 

that cracks may appear in plane stress state element 

locations. All existing tensile and shearing forces in the 

plane stress state element must be carried by the 

reinforcement. Concrete only carries the compressive 

stresses. In every point of the plane stress state element, σx, 

σy and τxy should be determined. It is assumed, that tensile 

stresses are treated as positive. For positive values of 𝑓𝑡𝑑𝑥 

and 𝑓𝑡𝑑𝑦, the required reinforcement is determined from 

following equations:  

 horizontal: 

Asx =
ftdx

fyd
h , (23) 

 vertical:  

Asy =
ftdy

fyd
h , (24) 

where:  

ℎ – the thickness of the wall, 

𝐴𝑠𝑥 - the cross section area of rebars in a horizontal 

direction, 

𝐴𝑠𝑦 - the cross section area of rebars in a vertical direction. 

 

 
Figure 5 Required area of reinforcement in XX direction with a restriction 

of minimum crack width (0,2 mm)(ABC Tarcza) [mm2/m] 

 

 
Figure 6 Required area of reinforcement in XX direction with a restriction 

of minimum crack width (0,2 mm)(ABC Tarcza) [mm2/m] 

 

The method used for determining the crack width in the 

ABC Tarcza program may be directly derived from standard 

equations for the sections under axial tension. However, 

there is not always compatibility between the directions of 

principal stresses and the directions of reinforcement. This 

fact directly affects  the spacing of the cracks. The spacing 

of the cracks was determined using the following equation: 

𝑠𝑟𝑚,𝑚𝑎𝑥 = 𝑠𝑟𝑚𝑥 ∙ 𝑐𝑜𝑠 (
2𝜋𝜃

360
)

𝑛

+ 𝑠𝑟𝑚𝑦 ∙ 𝑠𝑖𝑛 (
2𝜋𝜃

360
)

𝑛

. 

 (25) 

The width of the cracks, determined in such way, may be 

considered as correct when the directions of principal tensile 

stresses are roughly the same as the directions of 

reinforcement. In general, when angle 𝜃 exists between the 

principal direction 𝜎1 and the reinforcement in 𝑥 direction, 

the width of the crack in direction of 𝜎1stress and in case of 

σ1 ≥ fctm was determined from the following equation: 

𝑤1 = 𝑤𝑥 ∙  𝑐𝑜𝑠 (2𝜋
90+𝜃

360
)

3

+ 𝑤𝑦 ∙ 𝑠𝑖𝑛 (2𝜋
90+𝜃

360
)

3

. 

 (26) 

The width of the cracks in direction of σ2 stress and in case 

of σ2 ≥ fctmwas determined from the following equation: 

𝑤2 = 𝑤𝑥 ∙  𝑐𝑜𝑠 (2𝜋
90+𝜃

360
)

3

+ 𝑤𝑦 ∙ 𝑠𝑖𝑛 (2𝜋
90+𝜃

360
)

3

. 

 (27) 

If during the analysis appear intersecting cracks, the program 

shows always higher value calculated from equations (25) 

and (26). 

Comparison of stresses x and y and also reinforcement 

including cracks with limitation, is presented in tabular form 

(Table I, II, III, IV and Figure 7) and generally shows good 

agreement despite differences in modeling. The whole 

process of taking into account the crack width limitation was 

successful and seems to be reasonable. The software added 

extra reinforcement in locations in which the crack width 

exceeded the limitation. 

 
Figure 7 Comparative points 

 

TABLE I 

COMPARISON OF STRESSES SX IN COMPARATIVE POINTS A,B,C  FOR 

DIFFERENT NUMERICAL PROGRAMS 

Software Number 

of finite 

elements 

Sx(MPa) 

pt. A pt. B pt. C 

ABC 

Tarcza 

1441 5,12 4,60 -5,55 

Robot  

Structural 

Analysis 

1490 5,31 2,96 -6,08 

 

TABLE II 

COMPARISON OF STRESSES SY IN COMPARATIVE POINTS A,B,C  FOR 

DIFFERENT NUMERICAL PROGRAMS 

Software Number 

of finite 

elements 

Sy(MPa) 

pt. A pt. B pt. C 

ABC 

Tarcza 

1441 0,00 2,01 -13,36 

Robot  

Structural 

Analysis 

1490 0,00 2,05 -15,25 
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TABLE III 

COMPARISON OF REINFORCEMENTS AX IN COMPARATIVE POINTS A,B,C  FOR 

DIFFERENT NUMERICAL PROGRAMS 

Software Number 

of finite 

elements 

Ax(cm2/m) 

pt. A pt. B pt. C 

ABC 

Tarcza 

1441 18,51 14,70 Ax,min 

Robot  

Structural 

Analysis 

1490 16,77 13,56 Ax,min 

 
TABLE IV 

COMPARISON OF REINFORCEMENTS AY IN COMPARATIVE POINTS A,B,C  FOR 

DIFFERENT NUMERICAL PROGRAMS 

Software Number 

of finite 

elements 

Ay(cm2/m) 

pt. A pt. B pt. C 

ABC 

Tarcza 

1441 Ay,min 10,33 -6,70 

Robot  

Structural 

Analysis 

1490 Ay,min 8,76 -6,72 

 

V. CONCLUSIONS 

The study deals with the numerical calculations of 

reinforced concrete walls using FEM programs considering 

linear and nonlinear models. This paper presents the general 

principals of structural design and briefly describes linear 

and nonlinear types of analysis. Very important is the 

description of the cracked concrete phenomenon, basics of 

numerical analysis, touching such topics as reinforced 

concrete models, cooperation between concrete and 

reinforcing steel, numerical methods of solving systems of 

equilibrium equations, implementation of finite element 

system and finally, the nonlinear analysis algorithm. The 

most common numerical methods have been presented: 

 The Newton-Raphson method,  

 The modified Newton-Raphson method,  

 The Arc-length (Crisfield’s) method. 

The main aim of this paper is the analysis of the 

calculation methods applied in the designing of  a simple 

reinforced concrete wall with a restriction of minimum 

cracks and deflections and also comparison of  the results of 

the analysis. A one static scheme with two symmetrical 

openings, which represents an actual reinforced wall in quite 

good way, was chosen for the analysis. The numerical 

calculations of this structure were performed using the 

following FEM software:  

 Robot Structural Analysis Professional 2015, 

 ABC Tarcza 6.15. 

In the two used software programs (Robot, ABC Tarcza), 

the results of principal stresses and the required 

reinforcement were close to each other. However, some 

differences occur in the corners of the openings, where the 

stresses reach maximum values. This phenomenon may be 

caused by different implementation of peak smoothing of 

stresses in each software program. The settings of this option 

are generally treated in a very simplified way. Because of 

this fact, the peak smoothing is hard to control, which may 

result in such inaccuracies. Moreover, the differences 

occurred with crack width calculations because of 

differences in the methods applied in different programs. 

This observation may lead to the conclusion that the crack 

width calculation in this kind of software should be done 

very carefully during the design stage. Although all the used 

programs can analyze cracked concrete in some way, we 

cannot treat the results as an actual response of the RC 

structure, but only as a general view of localization and the 

width of cracks.  
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