
 

  
Abstract— The Flow Shop Scheduling Problem (FSSP) is a 

problem that is commonly found by master production 
scheduling planners in Flexible Manufacturing Systems (FMS). 
The planner should find the optimal scheduling to carry out a 
set of jobs in order to satisfy the predefined objective (e.g., 
makespan). All the jobs are processed in a production line 
composed of a set of shared machines. Furthermore, the jobs 
are processed in the same sequence. In order to be able to 
analyze this problem in a better way, this problem needs to be 
represented adequately for understanding the relationship 
among the operations that are carried out. Thus, an FMS 
presenting the FSSP can be modeled by Petri nets (PNs), which 
are a powerful tool that has been used to model and analyze 
discrete event systems. Then, the makespan can be obtained by 
simulating the PN through the token game animation. In this 
work, we propose a new way to calculate the makespan of 
FSSP based on timed place PNs. 
 

Index Terms— Flow shop scheduling problem, makespan, 
Petri nets 
 

I. INTRODUCTION 
LEXIBLE Manufacturing Systems (FMSs) are very 
important in advancing factory automation due to the 

ability to adjust to customers’ preferences and the speed to 
reconfigure the system. A FMS is a discrete event dynamic 
system composed of jobs and shared resources [1]. When a 
manufacturer is designing the master production schedule in 
a FMS with shared resources, it is common that s/he has to 
face the decision about the best sequence of jobs in the FMS 
in order to carry all operations out in the minimum time [2], 
[3]. 

This problem is called the Flow Shop Scheduling 
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Problem (FSSP), which is a combinatorial problem 
classified as NP-hard [4]. The makespan is the time that all 
the jobs are processed in the FMS, and it depends on the 
order that all the tasks are performed. 

There have been published several research papers about 
finding the minimum value of makespan in the FSSP. For 
instance, a D.S. Palmer proposed a method to find an 
acceptable sequence in less time than exhaustive search [5]. 
Another algorithm based on heuristic strategies to find 
suitable solutions was proposed in reference [6]. 
Dannenbring performed a similar work, where he proposed 
eleven heuristics to solve the FSSP [7]. Nawas proposed an 
algorithm based on the assumption that jobs with higher 
processing time must be treated first; his algorithm is 
applied to static and dynamic sequencing environment [8]. 
In reference [9], Taillard applied taboo search to solve 
FSSP; moreover, he implemented a parallel version of taboo 
search to improve the algorithm execution time. Framinan 
and Leisten proposed a heuristic taking into account the 
optimization of partial schedules; instead of optimize the 
whole schedule [10]. Later, Framinan, Leisten and Ruiz-
Usano proposed two multi-objective heuristics, whose 
objectives to solve are makespan and flowtime minimization 
[11]. 

Several metaheuristics have been used to find the 
minimum value for the makespan, such as Simulated 
Annealing [12],[13]; Taboo Search [14], [15]; Genetic 
Algorithms [16]–[18]; Ant Colony Optimization [19] – [20]; 
Iterated Local Search [21]; and Particle Swarm Optimization 
Algorithms [22], [23], [27]. These proposals can find 
reasonable results in less time than exact methods. The main 
outcome of these methods is that the global minimum could 
not be found; however, good approximations are obtained in 
a short time. Thus, all of them need a way to represent the 
FSSP in order to calculate the makespan. FSSP modeling 
should be understandable and able to calculate the makespan 
of a job operations sequence. 

FMSs have been modeled via Petri Nets (PNs) in order to 
simulate and analyze them. PN theory is adequate to 
represent in a graphical and mathematical way Discrete 
Event Systems (DES) such as FMSs, because their dynamic 
behavior based on event occurrence can be modeled by PN 
elements (places and transitions) [24]. Moreover, PN theory 
offers analytical and graphical tools to study the modeled 
systems, based on the relationship among the FMS resources 
denoted as PN elements. In [29], a timed Petri net is applied 
to model and simulate a production system, which is 
generated algorithmically. 

One important point in search methods is the calculus of 
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the makespan, taking into account a certain processing order 
of the tasks. In this paper, we propose the use of an timed 
PN to calculate the makespan taking into account the PN 
transition firing. 

II. FLOW SHOP SCHEDULING PROBLEM 
Scheduling tasks in a FMS is a typical combinatorial 

problem where it is needed to organize the processing of a 
set of jobs divided in operations, and each operation is 
carried out in a shared resource [25], [26].  

In the FSSP, given the processing times pjk for each job j 
on every machine k, and a job sequence S = (s1, s2, …, sn) 
where n jobs (j = 1, 2, …, n) will be processed by m 
machines (k = 1, 2, …, m), so the aim of FSSP is to find a 
sequence order for operation processing with the minimum 
value for the makespan. 

For instance, Table I shows a FMS with three machines, 
four jobs, and each job has three serial operations, one for 
each machine. 

III. PETRI NETS CONCEPTS 
A PN is a graphical and mathematical tool that has been 

used to model concurrent, asynchronous, distributed, 
parallel, non-deterministic, and/or stochastic systems.  

The graph of a PN is directed, with weights in their arcs, 
and bipartite, whose nodes are of two types: places and 
transitions. Graphically, places are depicted as circles and 
transition as boxes or bars. PN arcs connect places to 
transitions or transition to places; it is not permissible to 
connect nodes of the same type. The state of the system is 
denoted in PN by the use of tokens, which are assigned to 
place nodes. 

A formal definition of a PN is presented as follows [24]. 
A Petri net is a 5-tuple, PN = (P, T, F, W, M0) where: 
P = {p1, p2, …, pm} is a finite set of places, 
T = {t1, t2, …, tn} is a finite set of transitions, 
F ⊆ {P × T} ∪ {T × P} is a set of arcs, 
W = F → {1, 2, 3, …} is a weight function, 
M0 = P → {0, 1, 2, 3, …} is the initial marking, 
P ∩ T = ∅ and P ∪ T ≠ ∅. 

The set of places that are connected to a transition is 
known as input places, which is denoted as •t. On the other 
hand, the places connected from a transition are known as 
output places, and the set of output places are represented by 
t•. 

The token movement through the PN represents the 
dynamical behavior of the system. In order to change the 
token position, the following transition firing rule is used 
[24]: 

 

1. A transition t ∈ T is enabled if every input place p 
∈ P of t has w(p,t) tokens or more. w(p,t) is the 
weight of the arc from p to t. 

2. An enabled transition t will fire if the event 
represented by t takes place. 

3. When an enabled transition t fires, w(p,t) tokens are 
removed from every input place p of t and w(t,p) 
tokens are added to every output place p of t. w(t,p) 
is the weight of the arc from t to p. 

 
A Timed Place Petri Net (TPPN) is an extended PN, 

where a new element is added. It is a six-tuple TPPN = {P, 
T, F, W, M0, D), where the first fifth elements are similar to 
PN definition presented above, and D = {d1, d2, …, dm} 
denotes the time-delay for each place pj ∈ P [28]. Output 
transitions ti for each pj will be enabled once the time 
indicated in pj is reached. 

 

A. Analysis methods 
In this paper, we are applying the matrix equation approach 
as the analytical method of PN theory in order to calculate 
the makespan of the FMS modeled. 

 
Incidence matrix and state equation 
A PN with n transitions and m places can be expressed 
mathematically as an n × m matrix of integers A = [aij]. The 
values for each element of the matrix are given by: aij = aij

+ - 
aij

-, where aij
+ is the weight of the arc from ti to pj, and aij

- is 
the weight of the arc from pj to ti. 

The state equation is used to determine the marking of 
a PN after a transition firing, and it can be written as 
follows: 

 
Mk = Mk-1 × ATUk, k=1,2,…   (1) 

 
where uk is a n × 1 column vector of n - 1 zeros and one 

nonzero entries, which represents the transition tj that will 
fire. The nonzero entry is located in the position j of uk. AT is 
the transpose of incidence matrix. Mk-1 is the marking before 
the firing of tj. And Mk is the reached marking after the 
firing of tj denoted in uk. 

IV. FSSP MODELED BY A TIMED PLACE PETRI NET 
In this paper we are proposing a different way to obtain 

the makespan by using timed place PNs. The main idea is to 
denote every flow shop operation by a simple PN structure 
composed of one place denoting the operation time, one 
input transition to place pi, and one output transition from 
place pi. (Figure 1). 

TABLE I 
OPERATION TIMES IN A FMS 

Machines 
Jobs 

J1 J2 J3 J4 
M1 96 74 13 71 
M2 90 57 5 23 

M3 35 91 7 38 

Every value is denoted in a time unit. 
 

τ!

t1

t2

p1

 
Fig. 1.  PN structure denoting one single operation of a job, which is 
processed in a shared machine during  τ time units. 
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Thus, the processing time τ is stored in the place 
between the transitions, and it corresponds to the operation 
time defined in the FSSP. For each operation of job Ji 
performed in machine Mi there is a processing time τij. 
(Table II). 

 
The first operation of the first job has no dependencies 

from another operations, and it starts immediately; however, 
remaining operations depend on the previous operation in 
the same machine, the previous operation of the same job, or 
both (Figure 2). Indeed, PN modeling allows setting 
dependencies among operations and it is taken into 
advantage in order to define the operations sequence of the 
FSSP. 

 
As we mentioned above, the first job is processed 

instantly in every machine as soon as the previous machine 
finishes. Similarly, the first machine processes all the 
operations as soon as the previous operation job is 
processed. In these cases, the operations have only one 
dependency and the accumulative time is the sum of the 
processing time for all the operations of the first job, or the 
sum for the operations processed in the first machine. 
However, the other operations take into account the 
maximum time from two previous operations, the previous 
operation in the same machine and the previous operation of 
the same job. 

Once the job operations have been denoted as PN 
structures, it is important to link them in order to create a 
unique PN model representing the whole flexible 
manufacturing system. 

Linking lines in figure 2 are represented as places 
connecting PN transitions for each job operation. Hence, 
any FMS with a number of shared machines and a number 
of jobs can be modeled by PNs as shown in figure 3. 

For instance, Table I shows the processing times needed 
for three machines that will process four jobs. All jobs are 
processed in the same order in all machines. Every value 
represents the processing time τ needed by an operation Oij. 

which belongs to a job Jj and it is carried out in a machine 
Mi. 

The PN model for this example is shown in figure 4. It 
contains twelve PN structures representing every job 
operation, an input place, an output place, and seventeen 
connecting places. Thus, the initial marking M0 is a vector 
with 31 elements, 30 of them are zero and the 13th element 
is equal to 1.  

The sequence order for the four jobs is [1 2 3 4]. For a 
different sequence order the PN structure is the same; 
however, the processing time values are assigned to 
different places, according to the desired order. 

 

V. ALGORITHMS 

A. Algorithm utilized to create the PN model 
In this algorithm the PN model is created from the 

processing time data. The output is the PN model that 
represents the FMS. 

 
Algorithm create_TPPN 
Input:  τij, OS 
Output: PN 
 
1. Initialize variables  
 place = 1 
 trans = 1 
2. For i = 1 to NumberOfMachines  
 For j = 1 to NumberOfJobs 
        Aout(trans,place) = 1 
        trans = trans+1 
        Ain(trans,place) = 1 
        trans = trans+1 
        place = place+1 
 End For 
End For 
3. For i = 1 to NumberOfMachines  
     For j = 1 to NumberOfJobs 
       if(i==1 && j==1) 
         Ain(1,place) = 1 
         pos = place; 
         place = place+1 

TABLE II 
MATRIX FOR OPERATION TIMES IN A FMS 

Machines 
Jobs 

J1 J2 J3 J4 … 
M1 τ11 τ12 τ13 τ14 … 
M2 τ21 τ22

 τ23
 τ24

 … 

M3 τ31 τ32 τ33 τ34 … 
… … … … … … 

 
 

τ!11

τ!12

τ!13

τ!21

τ!22τ!31

J1

J2

J3

M1

M2

M3

 
 

Fig. 2.  Job operations dependency from previous operations of the same 
job, and/or previous operations performed in the same machine. 
 

τ!

τ! τ!

τ! τ! τ!

11

12

13

21

2231

 
Fig. 3.  PN model representing the job operations of a FMS (figure 2), 
where processing time τ is stored in PN places. 
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       elseif i==1 
         Aout(2*(j-1),place) = 1 
         Ain(2*j-1,place) = 1 
         place = place+1 
       elseif j==1 
         Aout(2*(i-2)*nj+2*j,place) = 1 
         Ain(2*(i-1)*nj+1,place) = 1 
         place = place+1 
       else 
         Aout(2*(i-2)*nj + 2*j,place) = 1 
         Ain(2*(i-1)*nj+2*j-1,place) = 1 
         place = place+1 
         Aout(2*nj*(i-1)+2*(j-1),place) = 1 
         Ain(2*nj*(i-1)+2*j-1,place) = 1 
         place = place+1 
       End If 
    End For 
End For 
4. Aout(nt,place) = 1 
5. PN = Aout - Ain 

 
In Step 1 the variables place and trans are initialized 

to 1. In Step 2, the PN structure for every operation Oij is 
created, it contains one place and two transitions. Next, in 
Step 3 the places to link the PN structures obtained in Step 2 
are added to the PN model. In Step 4 the last place is 
connected to the PN. Finally, in Step 5, the PN is obtained 
from the subtraction of output arcs (Aout) minus input arcs 
(Ain). 

B. Algorithm applied to calculate the makespan 
Once the PN model is obtained, we are able to compute 

the makespan of the FMS according to a job operation 
sequence. The algorithm to perform this calculus is the 
following. 

 
Algorithm getMakespan 
Input:  PN, S, M0, D  
Output: Makespan 
 
1. Initialize variables  
 Dacum = [0 0 0 … 0] 
2. For i = 1 to NumberOfTransitions  
 // input places to ti 
    ip = •ti 
    // output places from ti 
    op = ti•  
    max = -∞; 
    For j=1 to |ip| 
        If Dacum(ip(j)) > max 
            max = Dacum(ip(j)); 
        End If 
    End For 
    For k=1 to |op| 
        Dacum(op(k)) = max + D(op(k)); 
    End For 
  End For 
3. Makespan = Dacum(NumberOfPlaces) 

 
In Step 1, the variable Dacum is initialized to a vector 

with zero values. This variable is utilized to accumulate the 
total time needed to perform all the operations. In Step 2, 
every enabled transition is fired, and the maximum 
accumulated time from its input places is taken and placed 
in the output place plus the corresponding time τ. In Step 3 
the accumulated time is assigned to the variable 
Makespan. 

C. Example 
At the beginning, Dacum has only zero values, and this 

vector has 31 elements. Starting the PN simulation by firing 
the enabled transition t1, the value 96 is assigned to Dacum 
in the position of place p1. Next, the enabled transition t2 is 
fired and its firing assigns the value 96 to Dacum in the 
position of its output places p14 and p17. After that, enabled 
transition t3 is fired, and the accumulative value in its input 
place p14 (96) plus the processing time in D in the position 
of its output place p2 (τ=74) is assigned to Dacum in the 
position of p2 (96+74=170). 

All the transitions are fired in the same way, but in the 
case of two input places, the maximum accumulative time 
from both input places is considered for the sum. 

VI. CONCLUSION 
The nature of flexible manufacturing systems allows the 

use of shared resources; however, this versatility produces 
complications when the manufacturers think about the best 
sequence to process all the jobs. One of these is know as 
Flow Shop Scheduling Problem, which is a NP-hard 
problem that have been analyzed applying different kinds of 
techniques, such as exact models and heuristics strategies. 

96

t1

t2

p1

t9

t10

p5

t3

t4

p2

t17

t18

p9

t11

t12

p6

t5

t6
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t19

t20

p10

t13

t14

p7

t21

t22

p11

p13

p14

p15

p17

p18p19

p20p21

p24

p25p26

p27p28

74

13

t7

t8

p4

p16

71

t15

t16

p8

90

57

t23

t24

p12

p31

5

23

35

91

7

38

p22p23
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Fig. 4.  PN model representing a FMS (figure 2), where processing time τ is 
stored in PN places. 
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One important calculus in the FSSP is the makespan value, 
which depends on the sequence of operations for each job 
and the order of machine utilization. 

In this paper we propose a timed place PN model to 
represent the processing times in a FMS with a number of 
jobs ready to be processed, and a number of machines 
utilized to process the jobs. Moreover, two algorithms are 
described. The first one is used to create the PN model from 
the time processing needed for each job operation. And the 
second algorithm obtains the total time required to finish all 
the jobs in a defined job sequence. 

 As further work, we are applying this PN representation 
in a heuristic method in order to find an acceptable job 
sequence to find a minimum makespan. 
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1) Date of modification: September 4, 2016. 
2) Brief Description of the changes: 

a) In the abstract, the sentence “in order to satisfy the predefined 
objective (e.g., makespan)” was added. 
b) Also in the abstract, the last sentence was rewritten, the sentence “In 
this work, we propose an timed place PN to calculate the makespan of 
FSSP.” was replaced with “In this work, we propose a new way to 
calculate the makespan of FSSP based on timed place PNs.” 
c) Reference [29] was added, and it is cited in the last paragraph of the 
first page “In [29], a timed Petri net is applied to model and simulate a 
production system, which is generated algorithmically.” 
d) Table I was placed before Section III. 
e) In the first paragraph of Section III.A, “de” was replaced with “the” 
f) In the same section, fourth paragraph, “Mk” was replaced with “Mk” 
g) Page 3, first paragraph, “Job” was replaced with “job”. 
h) Section V.B, last paragraph, “every transition” was replaced with 
“every enabled transition”. 
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