

Abstract— The Flow Shop Scheduling Problem (FSSP) is a

problem that is commonly found by master production
scheduling planners in Flexible Manufacturing Systems (FMS).
The planner should find the optimal scheduling to carry out a
set of jobs in order to satisfy the predefined objective (e.g.,
makespan). All the jobs are processed in a production line
composed of a set of shared machines. Furthermore, the jobs
are processed in the same sequence. In order to be able to
analyze this problem in a better way, this problem needs to be
represented adequately for understanding the relationship
among the operations that are carried out. Thus, an FMS
presenting the FSSP can be modeled by Petri nets (PNs), which
are a powerful tool that has been used to model and analyze
discrete event systems. Then, the makespan can be obtained by
simulating the PN through the token game animation. In this
work, we propose a new way to calculate the makespan of
FSSP based on timed place PNs.

Index Terms— Flow shop scheduling problem, makespan,
Petri nets

I. INTRODUCTION
LEXIBLE Manufacturing Systems (FMSs) are very
important in advancing factory automation due to the

ability to adjust to customers’ preferences and the speed to
reconfigure the system. A FMS is a discrete event dynamic
system composed of jobs and shared resources [1]. When a
manufacturer is designing the master production schedule in
a FMS with shared resources, it is common that s/he has to
face the decision about the best sequence of jobs in the FMS
in order to carry all operations out in the minimum time [2],
[3].

This problem is called the Flow Shop Scheduling

Manuscript received July 19, 2016; revised August 1, 2016. This work

was supported by the Autonomous University of Hidalgo State under Grant
UAEH-DI-ICBI-ING-SF-011.

J. Medina-Marin is with the Engineering Department, Autonomous
University of Hidalgo State, Pachuca, Hidalgo, 42000 Mexico
(corresponding author to provide phone: +52 771 7172 000 ext. 4007; e-
mail: jmedina@uaeh.edu.mx).

D. Gradišar is with the Department of System and Control, Jožef Stefan
Institute, Ljubljana, 1000 Slovenia. (e-mail: dejan.gradisar@ijs.si).

J.C. Seck-Tuoh-Mora is with the Engineering Department, Autonomous
University of Hidalgo State, Pachuca, Hidalgo, 42000 Mexico (e-mail:
jseck@uaeh.edu.mx).

N. Hernandez-Romero is with the Engineering Department,
Autonomous University of Hidalgo State, Pachuca, Hidalgo, 42000 Mexico
(e-mail: nhromero@uaeh.edu.mx).

F. Nuñez-Piña is with the Engineering Department, Autonomous
University of Hidalgo State, Pachuca, Hidalgo, 42000 Mexico (e-mail:
fede30net@gmail.com).

Problem (FSSP), which is a combinatorial problem
classified as NP-hard [4]. The makespan is the time that all
the jobs are processed in the FMS, and it depends on the
order that all the tasks are performed.

There have been published several research papers about
finding the minimum value of makespan in the FSSP. For
instance, a D.S. Palmer proposed a method to find an
acceptable sequence in less time than exhaustive search [5].
Another algorithm based on heuristic strategies to find
suitable solutions was proposed in reference [6].
Dannenbring performed a similar work, where he proposed
eleven heuristics to solve the FSSP [7]. Nawas proposed an
algorithm based on the assumption that jobs with higher
processing time must be treated first; his algorithm is
applied to static and dynamic sequencing environment [8].
In reference [9], Taillard applied taboo search to solve
FSSP; moreover, he implemented a parallel version of taboo
search to improve the algorithm execution time. Framinan
and Leisten proposed a heuristic taking into account the
optimization of partial schedules; instead of optimize the
whole schedule [10]. Later, Framinan, Leisten and Ruiz-
Usano proposed two multi-objective heuristics, whose
objectives to solve are makespan and flowtime minimization
[11].

Several metaheuristics have been used to find the
minimum value for the makespan, such as Simulated
Annealing [12],[13]; Taboo Search [14], [15]; Genetic
Algorithms [16]–[18]; Ant Colony Optimization [19] – [20];
Iterated Local Search [21]; and Particle Swarm Optimization
Algorithms [22], [23], [27]. These proposals can find
reasonable results in less time than exact methods. The main
outcome of these methods is that the global minimum could
not be found; however, good approximations are obtained in
a short time. Thus, all of them need a way to represent the
FSSP in order to calculate the makespan. FSSP modeling
should be understandable and able to calculate the makespan
of a job operations sequence.

FMSs have been modeled via Petri Nets (PNs) in order to
simulate and analyze them. PN theory is adequate to
represent in a graphical and mathematical way Discrete
Event Systems (DES) such as FMSs, because their dynamic
behavior based on event occurrence can be modeled by PN
elements (places and transitions) [24]. Moreover, PN theory
offers analytical and graphical tools to study the modeled
systems, based on the relationship among the FMS resources
denoted as PN elements. In [29], a timed Petri net is applied
to model and simulate a production system, which is
generated algorithmically.

One important point in search methods is the calculus of

A Petri Net Model to obtain the Makespan in
the Flow Shop Scheduling Problem

Joselito Medina-Marin, Dejan Gradišar, Juan Carlos Seck-Tuoh-Mora, Norberto Hernandez-Romero,
and Federico Nuñez-Piña

F

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol II
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14048-2-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 4 September 2016) WCECS 2016

the makespan, taking into account a certain processing order
of the tasks. In this paper, we propose the use of an timed
PN to calculate the makespan taking into account the PN
transition firing.

II. FLOW SHOP SCHEDULING PROBLEM
Scheduling tasks in a FMS is a typical combinatorial

problem where it is needed to organize the processing of a
set of jobs divided in operations, and each operation is
carried out in a shared resource [25], [26].

In the FSSP, given the processing times pjk for each job j
on every machine k, and a job sequence S = (s1, s2, …, sn)
where n jobs (j = 1, 2, …, n) will be processed by m
machines (k = 1, 2, …, m), so the aim of FSSP is to find a
sequence order for operation processing with the minimum
value for the makespan.

For instance, Table I shows a FMS with three machines,
four jobs, and each job has three serial operations, one for
each machine.

III. PETRI NETS CONCEPTS
A PN is a graphical and mathematical tool that has been

used to model concurrent, asynchronous, distributed,
parallel, non-deterministic, and/or stochastic systems.

The graph of a PN is directed, with weights in their arcs,
and bipartite, whose nodes are of two types: places and
transitions. Graphically, places are depicted as circles and
transition as boxes or bars. PN arcs connect places to
transitions or transition to places; it is not permissible to
connect nodes of the same type. The state of the system is
denoted in PN by the use of tokens, which are assigned to
place nodes.

A formal definition of a PN is presented as follows [24].
A Petri net is a 5-tuple, PN = (P, T, F, W, M0) where:
P = {p1, p2, …, pm} is a finite set of places,
T = {t1, t2, …, tn} is a finite set of transitions,
F ⊆ {P × T} ∪ {T × P} is a set of arcs,
W = F → {1, 2, 3, …} is a weight function,
M0 = P → {0, 1, 2, 3, …} is the initial marking,
P ∩ T = ∅ and P ∪ T ≠ ∅.

The set of places that are connected to a transition is
known as input places, which is denoted as •t. On the other
hand, the places connected from a transition are known as
output places, and the set of output places are represented by
t•.

The token movement through the PN represents the
dynamical behavior of the system. In order to change the
token position, the following transition firing rule is used
[24]:

1. A transition t ∈ T is enabled if every input place p
∈ P of t has w(p,t) tokens or more. w(p,t) is the
weight of the arc from p to t.

2. An enabled transition t will fire if the event
represented by t takes place.

3. When an enabled transition t fires, w(p,t) tokens are
removed from every input place p of t and w(t,p)
tokens are added to every output place p of t. w(t,p)
is the weight of the arc from t to p.

A Timed Place Petri Net (TPPN) is an extended PN,

where a new element is added. It is a six-tuple TPPN = {P,
T, F, W, M0, D), where the first fifth elements are similar to
PN definition presented above, and D = {d1, d2, …, dm}
denotes the time-delay for each place pj ∈ P [28]. Output
transitions ti for each pj will be enabled once the time
indicated in pj is reached.

A. Analysis methods
In this paper, we are applying the matrix equation approach
as the analytical method of PN theory in order to calculate
the makespan of the FMS modeled.

Incidence matrix and state equation
A PN with n transitions and m places can be expressed
mathematically as an n × m matrix of integers A = [aij]. The
values for each element of the matrix are given by: aij = aij

+ -
aij

-, where aij
+ is the weight of the arc from ti to pj, and aij

- is
the weight of the arc from pj to ti.

The state equation is used to determine the marking of
a PN after a transition firing, and it can be written as
follows:

Mk = Mk-1 × ATUk, k=1,2,… (1)

where uk is a n × 1 column vector of n - 1 zeros and one

nonzero entries, which represents the transition tj that will
fire. The nonzero entry is located in the position j of uk. AT is
the transpose of incidence matrix. Mk-1 is the marking before
the firing of tj. And Mk is the reached marking after the
firing of tj denoted in uk.

IV. FSSP MODELED BY A TIMED PLACE PETRI NET
In this paper we are proposing a different way to obtain

the makespan by using timed place PNs. The main idea is to
denote every flow shop operation by a simple PN structure
composed of one place denoting the operation time, one
input transition to place pi, and one output transition from
place pi. (Figure 1).

TABLE I
OPERATION TIMES IN A FMS

Machines
Jobs

J1 J2 J3 J4
M1 96 74 13 71
M2 90 57 5 23

M3 35 91 7 38

Every value is denoted in a time unit.

τ!

t1

t2

p1

Fig. 1. PN structure denoting one single operation of a job, which is
processed in a shared machine during τ time units.

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol II
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14048-2-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 4 September 2016) WCECS 2016

Thus, the processing time τ is stored in the place
between the transitions, and it corresponds to the operation
time defined in the FSSP. For each operation of job Ji
performed in machine Mi there is a processing time τij.
(Table II).

The first operation of the first job has no dependencies

from another operations, and it starts immediately; however,
remaining operations depend on the previous operation in
the same machine, the previous operation of the same job, or
both (Figure 2). Indeed, PN modeling allows setting
dependencies among operations and it is taken into
advantage in order to define the operations sequence of the
FSSP.

As we mentioned above, the first job is processed

instantly in every machine as soon as the previous machine
finishes. Similarly, the first machine processes all the
operations as soon as the previous operation job is
processed. In these cases, the operations have only one
dependency and the accumulative time is the sum of the
processing time for all the operations of the first job, or the
sum for the operations processed in the first machine.
However, the other operations take into account the
maximum time from two previous operations, the previous
operation in the same machine and the previous operation of
the same job.

Once the job operations have been denoted as PN
structures, it is important to link them in order to create a
unique PN model representing the whole flexible
manufacturing system.

Linking lines in figure 2 are represented as places
connecting PN transitions for each job operation. Hence,
any FMS with a number of shared machines and a number
of jobs can be modeled by PNs as shown in figure 3.

For instance, Table I shows the processing times needed
for three machines that will process four jobs. All jobs are
processed in the same order in all machines. Every value
represents the processing time τ needed by an operation Oij.

which belongs to a job Jj and it is carried out in a machine
Mi.

The PN model for this example is shown in figure 4. It
contains twelve PN structures representing every job
operation, an input place, an output place, and seventeen
connecting places. Thus, the initial marking M0 is a vector
with 31 elements, 30 of them are zero and the 13th element
is equal to 1.

The sequence order for the four jobs is [1 2 3 4]. For a
different sequence order the PN structure is the same;
however, the processing time values are assigned to
different places, according to the desired order.

V. ALGORITHMS

A. Algorithm utilized to create the PN model
In this algorithm the PN model is created from the

processing time data. The output is the PN model that
represents the FMS.

Algorithm create_TPPN
Input: τij, OS
Output: PN

1. Initialize variables
 place = 1
 trans = 1
2. For i = 1 to NumberOfMachines
 For j = 1 to NumberOfJobs
 Aout(trans,place) = 1
 trans = trans+1
 Ain(trans,place) = 1
 trans = trans+1
 place = place+1
 End For
End For
3. For i = 1 to NumberOfMachines
 For j = 1 to NumberOfJobs
 if(i==1 && j==1)
 Ain(1,place) = 1
 pos = place;
 place = place+1

TABLE II
MATRIX FOR OPERATION TIMES IN A FMS

Machines
Jobs

J1 J2 J3 J4 …
M1 τ11 τ12 τ13 τ14 …
M2 τ21 τ22

 τ23
 τ24

 …

M3 τ31 τ32 τ33 τ34 …
… … … … … …

τ!11

τ!12

τ!13

τ!21

τ!22τ!31

J1

J2

J3

M1

M2

M3

Fig. 2. Job operations dependency from previous operations of the same
job, and/or previous operations performed in the same machine.

τ!

τ! τ!

τ! τ! τ!

11

12

13

21

2231

Fig. 3. PN model representing the job operations of a FMS (figure 2),
where processing time τ is stored in PN places.

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol II
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14048-2-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 4 September 2016) WCECS 2016

 elseif i==1
 Aout(2*(j-1),place) = 1
 Ain(2*j-1,place) = 1
 place = place+1
 elseif j==1
 Aout(2*(i-2)*nj+2*j,place) = 1
 Ain(2*(i-1)*nj+1,place) = 1
 place = place+1
 else
 Aout(2*(i-2)*nj + 2*j,place) = 1
 Ain(2*(i-1)*nj+2*j-1,place) = 1
 place = place+1
 Aout(2*nj*(i-1)+2*(j-1),place) = 1
 Ain(2*nj*(i-1)+2*j-1,place) = 1
 place = place+1
 End If
 End For
End For
4. Aout(nt,place) = 1
5. PN = Aout - Ain

In Step 1 the variables place and trans are initialized

to 1. In Step 2, the PN structure for every operation Oij is
created, it contains one place and two transitions. Next, in
Step 3 the places to link the PN structures obtained in Step 2
are added to the PN model. In Step 4 the last place is
connected to the PN. Finally, in Step 5, the PN is obtained
from the subtraction of output arcs (Aout) minus input arcs
(Ain).

B. Algorithm applied to calculate the makespan
Once the PN model is obtained, we are able to compute

the makespan of the FMS according to a job operation
sequence. The algorithm to perform this calculus is the
following.

Algorithm getMakespan
Input: PN, S, M0, D
Output: Makespan

1. Initialize variables
 Dacum = [0 0 0 … 0]
2. For i = 1 to NumberOfTransitions
 // input places to ti
 ip = •ti
 // output places from ti
 op = ti•
 max = -∞;
 For j=1 to |ip|
 If Dacum(ip(j)) > max
 max = Dacum(ip(j));
 End If
 End For
 For k=1 to |op|
 Dacum(op(k)) = max + D(op(k));
 End For
 End For
3. Makespan = Dacum(NumberOfPlaces)

In Step 1, the variable Dacum is initialized to a vector

with zero values. This variable is utilized to accumulate the
total time needed to perform all the operations. In Step 2,
every enabled transition is fired, and the maximum
accumulated time from its input places is taken and placed
in the output place plus the corresponding time τ. In Step 3
the accumulated time is assigned to the variable
Makespan.

C. Example
At the beginning, Dacum has only zero values, and this

vector has 31 elements. Starting the PN simulation by firing
the enabled transition t1, the value 96 is assigned to Dacum
in the position of place p1. Next, the enabled transition t2 is
fired and its firing assigns the value 96 to Dacum in the
position of its output places p14 and p17. After that, enabled
transition t3 is fired, and the accumulative value in its input
place p14 (96) plus the processing time in D in the position
of its output place p2 (τ=74) is assigned to Dacum in the
position of p2 (96+74=170).

All the transitions are fired in the same way, but in the
case of two input places, the maximum accumulative time
from both input places is considered for the sum.

VI. CONCLUSION
The nature of flexible manufacturing systems allows the

use of shared resources; however, this versatility produces
complications when the manufacturers think about the best
sequence to process all the jobs. One of these is know as
Flow Shop Scheduling Problem, which is a NP-hard
problem that have been analyzed applying different kinds of
techniques, such as exact models and heuristics strategies.

96

t1

t2

p1

t9

t10

p5

t3

t4

p2

t17

t18

p9

t11

t12

p6

t5

t6

p3

t19

t20

p10

t13

t14

p7

t21

t22

p11

p13

p14

p15

p17

p18p19

p20p21

p24

p25p26

p27p28

74

13

t7

t8

p4

p16

71

t15

t16

p8

90

57

t23

t24

p12

p31

5

23

35

91

7

38

p22p23

p29p30

Fig. 4. PN model representing a FMS (figure 2), where processing time τ is
stored in PN places.

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol II
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14048-2-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 4 September 2016) WCECS 2016

One important calculus in the FSSP is the makespan value,
which depends on the sequence of operations for each job
and the order of machine utilization.

In this paper we propose a timed place PN model to
represent the processing times in a FMS with a number of
jobs ready to be processed, and a number of machines
utilized to process the jobs. Moreover, two algorithms are
described. The first one is used to create the PN model from
the time processing needed for each job operation. And the
second algorithm obtains the total time required to finish all
the jobs in a defined job sequence.

 As further work, we are applying this PN representation
in a heuristic method in order to find an acceptable job
sequence to find a minimum makespan.

REFERENCES
[1] M.C. Zhou, and K. Venkatesh, Modeling, Simulation, and Control of

Flexible Manufacturing Systems. New York: World Scientific, 1999.
[2] M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems, Fourth

Edition, New York:Springer, 2012.
[3] J.K. Lenstra, A.H.G. Kan, P. Brucker, “Complexity of machine

scheduling problem,” Annals of Discrete Mathematics, vol. 1, pp. 343
– 362.

[4] A.H.G. Rinnooy Kan, Machine Scheduling Problems: Classification,
Complexity and Computations, Nojhoff, The Hague, 1976.

[5] D.S. Palmer, “Sequencing jobs through a multistage process in the
minimum total time: A quick method of obtaining a near-optimum,”
Operational Research Quarterly, vol. 16, pp. 101-107, 1965.

[6] H.G. Campbell, R.A. Dudek, M.L. Smith, “A heuristic algorithm for
the n job, m machine sequencing problem,” Management Science,
vol. 16, no. 10, pp. B630-B637, 1970.

[7] D.G. Dannenbring, “An evaluation of flow shop sequencing
heuristics,” Management Science, vol. 23, no. 11, pp. 1174-1182,
1977.

[8] M. Nawaz, E.E. Enscore Jr., I. Ham, “A heuristic algorithm for the m-
machine, n-job flow shop sequencing problem,” OMEGA, vol. 11, no.
1, pp. 91-95, 1983.

[9] E. Taillard, “Some efficient heuristic methods for the flowshop
sequencing problems,” European Journal of Operational Research,
vol. 47, pp. 65-74, 1990.

[10] J .M. Framinan, R. Leisten, “An efficient constructive heuristic for
flowtime minimisation in permutation flow shops,” OMEGA, vol. 31,
pp. 311-317, 2003.

[11] J.M. Framinan, R. Leisten, R. Ruiz-Usano, “Efficient heuristics for
flowshop sequencing with the objectives of makespan and flowtime
minimisation,” European Journal of Operational Research, vol. 141,
pp. 559-569, 2002.

[12] 1. Osman, C. Potts, “Simulated annealing for permutation flow shop
scheduling,” OMEGA , vol. 17, no. 6, pp. 551-557, 1989.

[13] F. Ogbu, D. Smith, “The application of the simulated annealing
algorithm to the solution of the n/m/Cmax flowshop problem,”
Computers and Operations Research, vol. 17, no. 3, pp. 243-253,
1990.

[14] J .Grabowski, M. Wodecki, “A very fast tabu search algorithm for the
permutation flowshop problem with makespan criterion,” Computers
and Operations Research, vol. 31, no. 11, pp. 1891-1909, 2004.

[15] E. Nowicki, C. Smutnicki, “A fast tabu search algorithm for the
permutation flowshop problem”, European Journal of Operational
Research, vol. 91, pp. 160-175, 1996.

[16] T. Aldowaisan, A. Allahverdi, “New heuristics for no-wait f1owshops
to minimize makespan,” Computers and Operations Research, vol.
30, no. 8, pp. 1219-1231, 2003.

[17] T. Murata, H. Ishibuchi, H. Tallaka, “Genetic algorithms for
f1owshop scheduling problems,” Computers and Industrial
Engineering, vol. 30, no. 4, pp. 1601-1071, 1996.

[18] R. Ruiz, C. Maroto, J. Alcaraz, “Two new robust genetic algorithms
for the flowshop scheduling problems,” OMEGA, vol. 34, pp. 461-
476, 2006.

[19] C. Rajendran, H. Ziegler, “Ant-colony algorithms for permutation
f1owshop scheduling to minimize makespan/total flowtime of jobs,”
European Journal of Operational Research, vol. 155, no. 2, pp. 426-
438, 2004.

[20] T. Stutzle, “An ant approach to the f1owshop problem,” In:
Proceedings of the 6th European Congress on Intelligent Techniques

and Soft Cmputing (EUFIT'98), Verlag Mainz, Aachen, Germany, pp.
1560-1564, 1998.

[21] T. Stutzle, “Applying iterated local search to the permutation
f1owshop problem,” Technical Report, AIDA-98-04, Darmstad
University of Technology, Computer Science Department, Intellctics
Group, Darmstad, Germany, 1998.

[22] M.F. Tasgetiren, M. Sevkli, Y.C. Liang, and G. Gencyilmaz, “Particle
swarm optimization algorithm for permutation flowshop sequencing
problem,” In: Proceedings of the 4th International Workshop on Ant
Colony Optimization and Swarm Intelligence (ANTS2004), LNCS
3172, Brussels, Belgium, pp. 382-390, 2004.

[23] M.F.Tasgetiren, Y.C. Liang, M. Sevkli, G. Gencyilmaz, “Particle
swarm optimization algorithm for makespan and total f1owtime
minimization in the permutation f1owshop sequencing problem,”
European Journal of Operational Research, 2006.

[24] T. Murata, “Petri Nets: Properties, Analysis and Applications,”
Proceedings of the IEEE, vol. 77, no. 4, pp. 541 – 580, 1989.

[25] M.A. Gonzalez-Hernandez, “Metaheuristics solutions for Job-Shop
Scheduling Problem with sequence-dependent setup times,” PhD
Thesis. Universtiy of Oviedo, 2011.

[26] R. Qing-dao-er-ji, Wang, Y. “A new hybrid genetic algorithm for job
shop scheduling problem.” Computers and Operations Research, vol.
39, pp. 2291-2299, 2012.

[27] Q.K. Pan, M.F. Tasgetiren, Y.C. Liang, “A Discrete Particle Swarm
Optimization Algorithm for the Permutation Flowshop Sequencing
Problem with Makespan Criterion,” Research and Development in
Intelligent Systems XXIII, Springer London, pp. 19-31, 2007.

[28] Z. Zhao, G. Zhang, Z. Bing, “Scheduling Optimization for FMS
Based on Petri Net Modeling and GA”, Proceedings of the IEEE
International Conference on Automation and Logistics, pp. 422-427.
August 2011, Chongqing, China.

[29] D. Gradišar, G. Mušic, “Production-process modeling based on
production-management data: a Petri-net approach,” International
Journal of Computer Integrated Manufacturing, vol. 20, Issue 8,
pp,794-810, 2007.

1) Date of modification: September 4, 2016.
2) Brief Description of the changes:

a) In the abstract, the sentence “in order to satisfy the predefined
objective (e.g., makespan)” was added.
b) Also in the abstract, the last sentence was rewritten, the sentence “In
this work, we propose an timed place PN to calculate the makespan of
FSSP.” was replaced with “In this work, we propose a new way to
calculate the makespan of FSSP based on timed place PNs.”
c) Reference [29] was added, and it is cited in the last paragraph of the
first page “In [29], a timed Petri net is applied to model and simulate a
production system, which is generated algorithmically.”
d) Table I was placed before Section III.
e) In the first paragraph of Section III.A, “de” was replaced with “the”
f) In the same section, fourth paragraph, “Mk” was replaced with “Mk”
g) Page 3, first paragraph, “Job” was replaced with “job”.
h) Section V.B, last paragraph, “every transition” was replaced with
“every enabled transition”.

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol II
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14048-2-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 4 September 2016) WCECS 2016

