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Abstract— Advanced manufacturing technologies have been 

widely used due to the competitive market forces and the rapid 
advances in computer and engineering sciences while their 
evaluation and selection require a complex decision making 
process with a large number of alternatives and performance 
attributes. This paper proposes an improved common weight 
data envelopment analysis based approach for manufacturing 
technology selection problem considering multiple inputs and 
multiple outputs. Comparative analyses of the results of a 
numerical example addressed in earlier studies are given in 
order to illustrate the robustness of the proposed decision 
methodology, which provides better weight dispersion and an 
improved discriminating power in ranking flexible 
manufacturing system (FMS) alternatives. The proposed 
approach does not require an arbitrary discriminating 
parameter, assures to identify the most efficient FMS via 
solving a single mixed integer linear programming model, and 
provides better dispersion for input and output weights.  

 
Index Terms— Common-weight DEA-based models, 

manufacturing technology selection, decision analysis, 
discriminating power, mathematical models. 
 

I. INTRODUCTION 

ATA envelopment analysis (DEA) is a mathematical 
programming-based decision making tool, which 

deals with decision problems that require taking into 
consideration multiple inputs and multiple outputs for 
evaluating the relative efficiency of decision making units 
(DMUs) without a priori information about the importance 
of inputs and outputs [1-2]. Traditional DEA models 
provide performance assessment with information whether 
evaluated DMUs are efficient or not, however, they also 
possess several shortcomings. First, these models must be 
solved n times to compute the efficiency scores of all 
DMUs, where n is the number of DMUs to be evaluated. 
Second, they do not utilize common attribute weights for 
performance assessment of DMUs that allow the DMUs to 
identify input and output weights in their own favor to 
maximize their respective efficiency scores, which may 
yield results being far from practical. Moreover, 
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conventional DEA models assume that all DMUs with the 
efficiency score of 1 are dichotomized as "efficient", 
whereas the DMUs with  efficiency score less than 1 are 
named "inefficient". In other words, since all efficient 
DMUs obtain the efficiency score of 1, traditional DEA 
models are likely to fail to provide an adequate 
discriminating power [1].  

In order to avoid subjective evaluation of DMUs to 
determine input and output weights as well as providing 
computational savings, common-weight DEA-based models 
can be considered. Thus, the discriminating power, which 
limits the selection of input and output weights in favor of 
respective DMUs, can be improved. A number of 
approaches have been proposed over the past decade for 
common-weight DEA-based models. Karsak and Ahiska [1] 
proposed a common-weight minimax efficiency approach to 
compute the efficiencies of DMUs with a single 
formulation, and included a discriminating parameter to the 
formulation to obtain a single efficient DMU. They used 
this model to solve a robot selection problem by considering 
a single input and multiple outputs. Amin and Emrouznejad 
[3] presented a formulation for obtaining the maximum 
value of non-Archimedean infinitesimal ϵ without requiring 
a linear programming model to be solved. They applied this 
model to the same robot selection problem addressed in [1]. 
Karsak and Ahiska [2] developed another common-weight 
minimax efficiency model to identify the best performing 
DMU for cases with multiple inputs and multiple outputs. 
Karsak and Ahiska [4] improved their earlier model by 
implementing a bisection search algorithm to determine 
values for discriminating parameter, k, in a robust manner 
for single input and multiple outputs problems involving 
both cardinal and ordinal data. Sun et al. [5] suggested two 
programming models and employed them for evaluating 
Asian lead frame firms and flexible manufacturing systems. 
They proposed two alternative models, namely the one that 
considers the virtual ideal unit as the reference object and 
another one that considers the virtual anti-ideal unit as the 
reference object, respectively. 

Recently, several authors have used mixed integer linear 
programming models for common-weight efficiency 
assessment. Foroughi [6] employed mixed integer linear 
programming and proposed a minimax efficiency model by 
eliminating discriminating parameter, k, and applied it to 
solve the robot selection problem. Toloo [7] extended a 
linear programming model and reached the single best 
efficient DMU by offering a mixed integer linear 
programming model for problems with multiple inputs and 
multiple outputs. The author also proposed a special 
formulation for non-Archimedean infinitesimal ϵ. Toloo [8] 

An Improved Common Weight DEA-Based 
Methodology for Manufacturing Technology 

Selection 

Nazli Goker and E. Ertugrul Karsak 

D

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol II 
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14048-2-4 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016



developed another mixed integer linear programming 
model, however, for single input and multiple outputs case 
this time. The model assures to identify the single most 
efficient DMU. More recently, Toloo [9] suggested a mixed 
integer linear programming model without requiring a non-
Archimedean infinitesimal ϵ. The author calculated super-
efficiency scores by considering weight values greater than 
or equal to unity. 

This work proposes a common weight DEA-based 
approach for manufacturing technology selection problem 
by improving the decision model developed by Karsak and 
Ahiska [2]. Rapid advances in computer and engineering 
sciences have enabled a high range of available 
manufacturing technologies to be implemented in the 
industry. In the competitive market, the firms are willing to 
incorporate advanced manufacturing technologies into their 
manufacturing processes in order to increase product 
quality, while obtaining labor savings, faster production and 
delivery, etc. [10]. A comprehensive analysis requires a high 
number of manufacturing technology alternatives and 
numerous performance indicators to be included in the 
decision framework due to the complexity of the decision 
making process for evaluating and selecting manufacturing 
technologies [1]. 

 The proposed decision framework guarantees to identify 
the most efficient manufacturing technology through 
solving a single mixed integer linear programming model. 
Furthermore, it does not require an arbitrary k value to 
improve discriminating power and provides better 
distribution among input and output weights. In order to 
illustrate its robustness, the developed methodology is 
applied to a numerical example addressed in Karsak and 
Ahiska [2] and Sun et al [5]. 

The paper is organized as follows. Section 2 gives a 
concise treatment of DEA approach. Section 3 delineates the 
proposed improved model and its advantages. Subsequent 
section provides two comparative evaluations to illustrate 
the robustness of the proposed approach. Concluding 
remarks and future research directions are outlined in the 
last section. 

II.  DATA ENVELOPMENT ANALYSIS 

Data envelopment analysis (DEA) is a linear 
programming based decision technique designed 
specifically to measure relative efficiency using multiple 
inputs and outputs without a priori information regarding 
which inputs and outputs are the most important in 
determining an efficiency score. DEA considers n decision 
making units (DMUs) to be evaluated, where each DMU 
consumes varying amounts of m different inputs to produce 
s different outputs.  

The relative efficiency of a DMU is defined as the ratio of 
its total weighted output to its total weighted input. In 
mathematical programming terms, this ratio, which is to be 
maximized, forms the objective function for the particular 
DMU being evaluated. A set of normalizing constraints is 
required to reflect the condition that the output to input ratio 
of every DMU be less than or equal to unity. The 
mathematical programming problem is then represented as 
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where 

0jE  is the efficiency score of the evaluated DMU 

(j
0
), ru  is the weight assigned to output r, iv  is the weight 

assigned to input i, y
rj
 denotes amount of output r produced 

by the jth DMU, x
ij
 denotes amount of input i used by the jth 

DMU, and  is an infinitesimal positive number. The 
weights in the objective function are chosen to maximize the 
value of the DMU’s efficiency ratio subject to the "less-
than-unity" constraints. These constraints ensure that the 
optimal weights for the DMU in the objective function do 
not denote an efficiency score greater than unity either for 
itself or for the other DMUs. A DMU attains a relative 
efficiency rating of 1 only when comparisons with other 
DMUs do not provide evidence of inefficiency in the use of 
any input or output. 

The fractional program is not used for actual computation 
of the efficiency scores due to its intractable nonlinear and 
nonconvex properties [11]. Rather, the fractional program is 
transformed to an ordinary linear program given below that 
is computed separately for each DMU, generating n sets of 
optimal weights. 
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In order to eliminate the unrealistic weight dispersion and 

improve the poor discriminating power of DEA, a number 
of approaches have been proposed aiming at weight 
restriction, which enforces some frontiers or other 
constraints on weights [1]. Another widely used 
mathematical technique to improve the discriminating 
power of DEA is cross-efficiency analysis [12]. 

On the other hand, minimax and minsum efficiency 
measures do not give favorable consideration to the 
evaluated DMU unlike the conventional DEA model. 
Minimax efficiency minimizes maximum deviation from 
efficiency [13]. The minimax efficiency model can be 
represented as follows: 

 

Proceedings of the World Congress on Engineering and Computer Science 2016 Vol II 
WCECS 2016, October 19-21, 2016, San Francisco, USA

ISBN: 978-988-14048-2-4 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2016



 
Mmin                                                                           

 
subject to                                                                            (3) 
 

,1
0

1




ij

m

i
i xv                                                                    

,,0
11

jdxvyu jij

m

i
irj

s

r
r 



                               

,,0 jdM j                                                          

.,,,0,, jirdvu jir                                                  

 
where dj is the deviation from efficiency for DMUj, (i.e. dj = 
1 - Ej when Ej is the efficiency score of DMUj), and M  is 
the maximum deviation from efficiency. 

Similarly, minsum efficiency is to minimize the total 
deviation from efficiency [13]. The resulting model is as 
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III. PROPOSED DECISION METHODOLOGY 

Over the past decade, common-weight DEA-based 
models have been proposed in order to avoid the limitations 
of traditional DEA models. These models provide a 
common evaluation for all DMUs and do not necessitate 
subjective assessment to determine input and output 
weights. Hence, the discriminating power is improved that 
restricts the selection of input and output weights in favor of 
respective DMUs [1]. This study introduces a common-
weight DEA-based approach for problems with multiple 
inputs and multiple outputs by enhancing the model 
developed by Karsak and Ahiska [2]. The minimax 
efficiency model addressed in [2] for evaluating alternatives 
with multiple inputs and outputs is as follows: 
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For the case of obtaining more than one efficient DMU 

by solving Formulation (5), Karsak and Ahiska [2] 

suggested the following common-weight model for 
identifying the best DMU. 
 





EFj

jdkMmin                                                   

 
subject to                                                                            (6)                    
 

,,0 jdM j                                    

,,0
11

jdxvyu jij

m

i
i

s

r
rjr 



                                 

,1
11




m

i
i

s

r
r vu                                      

.,,,0,, jirdvu jir                      

 
where k ϵ (0,1] is a discriminating parameter whose value is 
to be determined by the analyst, and EF is the set of 
minimax efficient DMUs that are obtained by using 
Formulation (5). 

The methodology proposed by Karsak and Ahiska [2] 
provides an improved discriminating power and 
computation savings compared with conventional DEA 
models. However, this methodology also has several 
limitations. First, it requires a decision analyst to determine 
the value of k subjectively. Second, the final evaluation in 
their proposed approach may yield lower efficiency scores 
for some minimax efficient DMUs compared with other 
DMUs that are considered to be inefficient according to 
Formulation (5). 

The first step of the proposed approach includes a non-
Archimedean infinitesimal ϵ as a lower bound to input and 
output weights in Formulation (5). The resulting multiple 
inputs and multiple outputs model is as follows: 
 

min                                                                            

 
subject to                                                                            (7) 
 

,,0 jd j                                                         

,,0
11

jdxvyu jij

m

i
i

s

r
rjr 



               

,1
11




m

i
i

s

r
r vu                                                             

,,,, irvu ir                                                           

.,0 jd j                                                                                

 
where θ refers to the maximum deviation from efficiency.  

When there exist multiple efficient DMUs with respect to 
Formulation (7), the model proposed for obtaining a single 
efficient DMU is as follows: 
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where M  is a sufficiently large positive number and zj is a 
binary variable. Unlike the earlier model developed by 
Karsak and Ahiska [2], the proposed approach does not 
require a discriminating parameter k to find the most 
efficient DMU, guarantees to have one single efficient 
DMU and provides better dispersion for input and output 
weights. The resulting efficiency rankings are consistent 
with the discrimination between efficient and inefficient 
DMUs in Formulation (7). 

IV.  NUMERICAL ILLUSTRATION 

This section illustrates the application of the proposed 
methodology through a numerical example given in Karsak 
and Ahiska [2] and Sun et al. [5]. Comparative results are 
analyzed in order to demonstrate the robustness of the 
proposed decision methodology. 

The example problem evaluates 12 FMS alternatives 
considering two inputs that are "capital and operating cost" 
and "floor space needed", and four outputs, namely 
"qualitative improvement", "improvement in WIP", 
"improvement in # of tardy" and "improvement in yield". 
Input and output data regarding FMS alternatives are given 
in Table 1. 
 

TABLE I 
INPUT AND OUTPUT DATA FOR 12 FLEXIBLE MANUFACTURING SYSTEMS 

 Data 
FMS 

(j) 
Input

1 
Input  

2 
Output1 Output2 Output3 Output4 

1 17.02 5 42 45.3 14.2 30.1 
2 16.46 4.5 39 40.1 13 29.8 
3 11.76 6 26 39.6 13.8 24.5 
4 10.52 4 22 36 11.3 25 
5 9.5 3.8 21 34.2 12 20.4 
6 4.79 5.4 10 20.1 5 16.5 
7 6.21 6.2 14 26.5 7 19.7 
8 11.12 6 25 35.9 9 24.7 
9 3.67 8 4 17.4 0.1 18.1 
10 8.93 7 16 34.3 6.5 20.6 
11 17.74 7.1 43 45.6 14 31.1 
12 14.85 6.2 27 38.7 13.8 25.4 

 
Karsak and Ahiska [2] normalized the data and employed 

their minimax efficiency formulation. Thus, normalized data 
are used in order to provide a consistent comparative 
evaluation with Karsak and Ahiska [2].  

The classical DEA model results in seven efficient FMSs 
which are FMS1, FMS2, FMS4, FMS5, FMS6, FMS7 and 
FMS9. The minimax efficiency formulation developed by 
Karsak and Ahiska [2] yields three efficient FMSs which are 
FMS1, FMS5 and FMS7. Subsequently, FMS5 becomes the 
single efficient FMS after having solved three additional 
linear programs until increasing discriminating parameter k 

to 0.3 with a step size of 0.1. Besides, FMS1 and FMS7, 
which are identified as minimax efficient by Formulation (5) 
in Karsak and Ahiska [2], are ranked in the seventh and 
third places, eventually. Formulation (7) results in three 
efficient FMSs that are FMS1, FMS5 and FMS7, and by 
solving Formulation (8), FMS1 ranks first, however FMS5 
and FMS7 rank second as listed in Table II. Hence, the 
proposed model results in consistent Formulation (8) 
rankings of the FMSs with minimax efficient FMSs in 
Formulation (7) unlike the earlier models developed by 
Karsak and Ahiska [2]. In addition, Formulation (8) does 
not necessitate an arbitrary k value to be determined for 
ranking FMSs.  
 

TABLE II 
RANKINGS WITH RESPECT TO EFFICIENCY SCORES OF FMSS  

FOR   ϵ = 0.000001  
FMS 

(j) 
DEA 

Formulation 
(5) in [2] 

Formulation 
(6) in [2] 

Formulation 
(7) 

Formulation 
(8) 

1 1 1 7 1 1 
2 1 7 8 7 7 
3 9 4 2 4 4 
4 1 8 5 8 8 
5 1 1 1 1 2 
6 1 5 4 5 5 
7 1 1 3 1 2 
8 10 9 6 9 9 
9 1 10 10 10 10 
10 11 11 9 11 11 
11 8 6 10 6 6 
12 12 12 10 12 12 

 
Sun et al. [5] proposed two mathematical programming 

models for performance ranking of FMSs, and used input 
and output data given in Table 1. Initially, they developed 
the following linear programming model. 
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Sun et al. [5] stated that the optimal weights calculated by 

Formulation (9) may not be unique, and different software 
may yield different optimal weights. In order to improve the 
usefulness of this formulation, they proposed the following 
non-linear programming model. 
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where *D  is the optimal objective function value of 
Formulation (9). Alternatively, Sun et al. [5] employed the 
following linear programming model for manufacturing 
technology selection problem. 
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Sun et al. [5] considered a single input V2 > ϵ and two 

outputs (U1, U4 > ϵ) in Formulation (10), and a single input 
V2 > ϵ and a single output U4 > ϵ to rank the alternatives in 
Formulation (11) in their paper, as they determined all the 
other weights equal to non-Archimedean infinitesimal ϵ. 
Alternatively, Formulation (8) proposed in this work 
provides better weight dispersion as shown in Table III. Due 
to these changes in weights, efficiency scores for assessing 
alternatives and the resulting rankings turn out to be 
different in the three approaches. Although Sun et al. [5] 
identified FMS2 as the most efficient one, FMS4 is placed in 
the top rank according to Formulation (8) proposed in this 
study. The comparison with respect to efficiency rankings is 
reported in Table IV. The non-Archimedean infinitesimal ϵ 
is considered as 0.000001, which is the same value used in 
Sun et al. [5]. 

 
 
 
 
 
 

 
TABLE III 

COMPARATIVE EVALUATION OF INPUT AND OUTPUT WEIGHTS 

Weight 
Formulation 
(10) in [5] 

Formulation 
 (11) in [5] 

Formulation 
(8) 

V1 0.000001 0.000001 0.437726 
V2 0.263157 0.124998 0.283321 
U1 0.000012 0.000001 0.123803 
U2 0.000001 0.000001 0.000001 
U3 0.000001 0.000001 0.063083 
U4 0.032135 0.060605 0.092065 

 
 

TABLE IV 
RANKINGS WITH RESPECT TO EFFICIENCY SCORES OF FMSS  

FOR   ϵ = 0.000001  

FMS 
(j) 

DEA 

Formulation 
(10) 
& 

Formulation 
(11) in [5] 

 
 

Formulation 
(7) 

 
 

Formulation 
(8) 

1 1 3 1 2 
2 1 1 4 4 
3 9 8 6 6 
4 1 2 1 1 
5 1 4 1 2 
6 1 10 7 7 
7 1 9 5 5 
8 10 6 8 8 
9 1 12 11 11 
10 11 11 10 10 
11 8 5 9 9 
12 12 7 11 11 

 

V.  CONCLUDING REMARKS 

In this work, an improved common-weight DEA-based 
approach, which can be applied in a straightforward manner 
for identifying the best performing manufacturing 
technology considering multiple inputs and multiple 
outputs, is developed.  

The contributions of this research to manufacturing 
technology selection can be summarized as follows. The 
proposed model eliminates the need for a discriminating 
parameter k to determine the best performing manufacturing 
technology, assures a single efficient manufacturing 
technology by solving one mixed integer linear 
programming model, provides better dispersion for input 
and output weights, and results in consistent rankings with 
the initial differentiation between efficient and inefficient 
manufacturing technologies.  

Numerical examples provided in earlier studies are 
employed to demonstrate the robustness of the proposed 
methodology and the comparative results are analyzed. 
Future research will focus on incorporating qualitative data 
into the proposed common-weight decision framework. 

One shall note that the common weight decision making 
methodology proposed in here for evaluating manufacturing 
technologies is a general purpose decision approach. Thus, 
implementing the decision methodology presented here for 
real-world decision making problems in other disciplines 
may also be the focus of future research. 
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