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Abstract—Multi-step Methods of the quasi-Newton type, 

derived in [10,11],  have shown promising numerical 

improvement for solving nonlinear unconstrained optimization 

problems over methods based on the linear Secant equation. 

Minimum curvature methods [6] have resulted in further 

performance gains as they ensure the ‘smoothness’ of the 

interpolating curves in the multi-step methods. In this work, 

we derive new methods of this type using a rational model. The 

results of the numerical tests reveal further gains over the 

methods developed earlier. 
 

 
Index Terms— Unconstrained optimization, quasi-Newton 

methods, multi-step methods, curvature algorithms 

 

I. INTRODUCTION 

HIS work addresses problems of the form: 

 

𝑚𝑖𝑛𝑚𝑖𝑧𝑒 𝑓(𝑥), 𝑥 ∈ 𝑅𝑛 , 𝑤ℎ𝑒𝑟𝑒 𝑓: 𝑅 → 𝑅𝑛 . 
Quasi-Newton methods require an approximation to the 

Hessian matrix that is updated at each iteration. Given Bi, 

the current approximation to the Hessian, the new Hessian 

approximation, Bi+1 is chosen to satisfy the standard Secant 

equation: 

                  (1) 

 where 

 
and 

 
This matrix is used in the computation of the search 

direction as follows 

 

The BFGS formula [1,2,3] is the mostly used update that 

satisfies the Secant equation and that seems to work well 

with inexact line search algorithms [12], [13] [14]. This 

rank-two update is given by 

𝐵𝑖+1 = 𝐵𝑖 −
𝐵𝑖𝑠𝑖𝑠𝑖

𝑇𝐵𝑖

𝑠𝑖
𝑇𝐵𝑖𝑠𝑖

+
𝑦𝑖𝑦𝑖

𝑇

𝑠𝑖
𝑇𝑦𝑖

. 

     

    A quasi-Newton method algorithm is generally outlined 

as ([9]): 

a. Start with any estimate x₀, of the minimum. 

b. Start with a symmetric positive-definite matrix H₀ 

(usually H₀=I). 
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c. i=0 

d. Find g₀=g(x₀); 

e. Repeat 

{ 

 compute pi = - Hi gi; 

 Determine the step length αi using some 

line search technique (e.g., Cubic 

Interpolation [2],[8]); 

 xi+1 = xi + αi pi; 

 compute si =xi+1 – xi and yi = gi+1 - gi; 

 i = i + 1 

               } 

             Until ||gi||2 < 𝜀, where 𝜀 ∈ R (𝜀 > 0) is a 

convergence parameter.  

      The paper introduces some of the successful multi-step 

algorithms that will be used in the numerical benchmarking 

in this paper. Then the rational model employed utilized in 

the derivation of the new minimum curvature method is 

presented. The derivation aims at ensuring that the 

interpolating curve, on which the idea of the multi-step 

methods is based, is `smooth'. We finally present the 

numerical results. 

 

II. MULTI-STEP QUASI-NEWTON METHODS 

In the standard Secant equation, a straight line L is used to 

find a new iterate xi+1, given the previous iterate xi, while in 

the multi-step methods higher order polynomials are used.  

    Let {x(τ)} or X denote a differentiable path in Rⁿ, where τ 

∈ R. Then upon applying the chain rule to the gradient 

vector g(x(τ)) in order to find the derivative of the gradient g 

with respect to τ we get 

                                                 (2)                                                    

    Thus, at any point on the path X, the Hessian G must 

satisfy (2) for any value of τ. More specifically for τ = τc, 

where τc ∈ R. This will result in the following relation 

  
   By analogy with the Secant equation, the aim is to derive a 

relation satisfied by the Hessian at the new iterate xi+1, we 

choose a value for the parameter τ, namely τm,, that 

corresponds to the most recent iterate as follows 

  
    or, equivalently,                                                                                                          

                                     (3) 

where the vectors ri and wi are defined in terms of the m 

most recent step vectors {𝑠𝑘}𝑘=𝑖−𝑚+1
𝑖  and the m most recent 

Bi1si  yi

si  x i1  x i,

yi  gx i1  gx i  gi1  gi.

dg

d
 Gx dx

d
.

dg

d
|c  Gx dx

d
|c .

gm  Bi1x m

wi  Bi1ri,
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gradient difference vectors {𝑦𝑘}𝑘=𝑖−𝑚+1
𝑖  respectively, as 

follows 

 
and                                                                                                                             

 
where 

 
are the standard Lagrange polynomials. 

 

III. STRATEGIES FOR THE PARAMETERIZATIONS 

OF THE CURVES 

 

    Ford and Moghrabi [10],[11] examined several choices 

for the parameters {𝜏𝑘}𝑘=0 
𝑚 where such choices influence the 

structure of the interpolating curve. The choices examined in 

[6] have proven to be far more efficient than the natural 

choice 

  
Methods corresponding to this choice are labeled as the 

"unit-spaced" methods. Of the approaches considered in 

[6,7,11], we elect here the most numerically successful 

choice that is based on, what the authors termed as the 

Accumulative Approach. 

    The choices made for the parameters{𝜏𝑘}𝑘=0 
𝑚  rely on 

some metric of the following form 

                           

 
where M is a symmetric positive-definite matrix. 

    The Accumulative approach chooses one of the iterates, 

say xj, as a "base-point" and set it to 0. Then, any value 𝜏𝑘 

corresponds to the point xi-m+k+1 for any k except for k=j is 

computed by accumulating the distance (measured by the 

chosen metric ΦM between each two consecutive pair of 

points in the sequence from xi-m+j+1} to xi-m+k+1. Therefore, 

any value 𝜏𝑘, for k=0,1,...,m, is obtainable using 

   (4)  

       

       
 

This approach will yield values of τ that satisfy 

 
 Under the assumption that no consecutive points overlap. 

    It is those values of the parameters {τk} that are used to 

compute the vectors x′(τm)  and  g′(τm)  in (3) (or vectors ri 

and wi, respectively). The two vectors ri and wi are then used 

to compute the new Hessian approximation Bi+1 satisfying 

(3). 

    It should be noted that different choices of the metric 

matrix M in ΦM will result in different algorithms. 

Numerically speaking, Ford and Moghrabi [11] indicate that 

values of m > 2 do not seem to result in substantial gains in 

performance. This may be due to the non-smoothness of the 

interpolant. Thus, m = 2 is used in this paper. Methods using 

m = 2 are referred to as 2-step methods as they use vectors 

from the two most recent iterations to update the Hessian 

approximation at each iteration.   

Possible choices for the matrix M examined in [11], include 

M = I, M = Bi , M = Bi+1.  The update done at each iteration 

generally satisfies: 

      (5) 

where 

 
For the algorithm used in the numerical comparisons here, 

the particular choices of the τ values are as follows 

     
                

The new B-version BFGS formula is given by: 

      (6) 

 

IV. A NEW CURVATURE ALGORITHM (MC) 

 

    The idea here is to determine the parameters {τk}, such 

that the curve that interpolates the iterates as well as the 

gradient points has a minimum curvature. The minimum 

curvature idea in a similar context was first proposed in [6]. 

We follow a different approach here as we propose a 

rational model for the interpolating curve. The rational 

model is given as follows: 

  x(τ,θ) = q(τ)) / (1+θτ),                          (7)                                                                                      

 where θ serves as a tuning parameter, and q(τ) is a quadratic 

expressed as: 

                              (8) 

where Lj(τ) is the Lagrange polynomial of degree 2 

associated with the abscissae {𝜏}𝑘=0
2 . Equation (6) satisfies 

the relation 

     
We now determine an expression for the parameter θ such 

that the curvature of the interpolant is minimized. From (6) 

and (7) we obtain 

                      (9) 

or, equivalently, 

𝑥′(𝜏2, 𝜃) = (𝑠𝑖(𝜏2 − 𝜏1)((−𝜏1 − 𝜏0 + 2𝜏2) 

+𝜃(𝜏2
2 − 𝜏0𝜏1)) − 𝑠𝑖−1((𝜏2 − 𝜏1)2(1 + 𝜗𝜏0))) 

/((1 + 𝜗𝜏2)(𝜏2 − 𝜏0)(𝜏1 − 𝜏0)(𝜏2 − 𝜏1)). 
 

 Also, 

                                                                               (10) 

where 

 
If we define 

 
then the curvature function is given by 

 

ri  j0

m1
sijkmj

m
Lk
 m 

wi  j0

m1
yijkmj

m
Lk
 m ,

Lk
 m   k  m 1m  j/k  j,k  m,

Lm
 m   

j0

m1m  j1 ,

k  k  m  1, for k  0,1,2, . . . ,m.

Mz1 ,z2  z1  z2TMz1  z21/2 ,

k  
Pk1

j Mx imp1 ,x imp,k  j,

 0 ,k  j,

 
Pj1

k Mx imp1 ,x imp,k  j.

k  
k1

, for k  0,1, . . . ,m  1,

Hi1yi  2

21
yi1  si  2

21
si1

  21

10
.

0  si2  si12,2  0,1  si2 .

Bi1

MultiStep  Bi 
wiwi

T

wi
Tri

 B iriri
TB i

ri
TB iri

.

q  
k0

2
Lk1  kx imk1

xk,  x ik1 , for k  0,1,2.

x ,  1  q  q

1  2
  #   

x 2 ,  1

122v
2si  si1  si  si1  si  si1 ,

v  1  02  02  1,
  2011  0,  2011  2,  21

2  0
2

  21
2  01  02  12,  21  0 and   21  2.

 j

def
 sjM

2  0, j1

def
 sj1M

2  0 and j

def
 sj1

T Msj,

2 ,  x" 2 ,M
2
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or, more explicitly, the aim to is solve for 𝜃 the following 

cubic equation 

 

                                    
where 

 
 

    Given the values for the parameters τ₀, τ1 and prescribed 

in (5), we proceed to determine the minimum curvature at 

τ₂, the parameter corresponding to the most recent iterate. 

From (10), we have 

 

 

 
whose three real roots are given by 

 
And 

 
    The roots θ1 and θ2 are points of singularity for the update 

(5). As for θ3, the curvature expression is given by 

    Φ (τ₂,θ₃) =-28(-‖si‖₂ -( ‖si‖+)²+16/(τ₀τ₁) . 

    For θ₃ to correspond to a minimum the values of τ₀ and τ₁ 

should both be less than one. 

 

V. NUMERICAL RESULTS 

 

    Our numerical experiments were conducted on sixty 

functions classified into "low" (2 ≤ n ≤ 15), "medium" (16 ≤ 

n ≤ 45), and "high" (46 ≤ n ≤80) dimension as in [7], [13] 

and [14]. Each problem was tested with four different 

starting-points each. The total number of problems tested is 

a total of 876. The overall numerical results are presented in 

Table 1. Tables 2 to 5 show the total results for each 

dimension. The results report the total number of 

function/gradient evaluations, the total iterations, the scores 

and the total execution time. Those are reported in Table 1 

and further illustrated in Figures 1 and 2.  For each problem, 

the method with the least number of gradient/function 

evaluations is awarded one point adding to the "Scores". In 

our tests, we have employed a safeguarded cubic 

interpolation line search technique where a new estimate to 

the minimum, xi+1,  is accepted if it satisfies the following 

two standard stability conditions (see [2,4,5], for example): 

  
 and 

   
    Algorithm M1 corresponds to the standard BFGS method 

while method A1 corresponds to following choices of the 

parameters in (6): 

 

  The results presented here show clearly that the new 

algorithm MC method exhibits a superior numerical 

performance, by comparison with the other algorithms 

against which it is compared. In general, the curvature 

methods show also numerical improvement in the low 

dimension. 

Table 1 : Overall Results for 648 problems 

Method 
Evaluation

s 
Iterations   Time (sec.) Scores 

M1 
86401 
 (100.00%) 

73090 
(100.00%) 

39171.18 
(100.00%) 

89 

A1 
76164 

 (88.15%) 
61335 (83.92%) 

31474.71 

(80.35%) 
241 

MC 
75975 
(87.93%) 

60490 (82.76%) 
31247.42 
(79.77%) 

546 

     

Table 2 : Results for dimensions from 2 to 15 (440 problems) 

Method Evaluations   Iterations Time (sec.) Scores 

M1 
25589 

(100.00%) 

21648 

(100.00%) 

319.83 

(100.00%) 
73 

A1 
24494 

(95.72%) 

19525 

(90.19%) 

267.25 

(83.56%) 
168 

MC 
24343 

(95.13%) 

18991 (87.72% 

) 

265.31 

(82.95%) 
199 

     

Table 3 : Results for dimensions from 16 to 45 (240 problems) 

Method Evaluations  Iterations Time (sec.) Scores 

M1 
27058 

(100.00%) 

23844 

(100.00%) 

3429.78 

(100.00%) 
44 

A1 
22995 
(84.98%) 

19578 
(82.11%) 

2745.05 
(80.04%) 

85 

MC 
22001 

(81.31%) 

18650 

(78.22%) 

2593.11 

(75.60%) 
111 

 

Table 4 : Results for dimensions from 46 to 80 (134 problems) 

Method  Evaluations Iterations Time (sec.) Scores 

M1 
21146 
(100.00%) 

17431 
(100.00%) 

13426.87 
(100.00%) 

25 

A1 
18009 

(85.17%) 

14122 

(81.02%) 

10835.33 

(80.70%) 
46 

MC1 
17930 
(84.79%) 

13819 
(79.27% ) 

10315.66 
(76.82%) 

63 

 

Table 5 : Results for dimensions from 81 to 100 (62 problems) 

Method Evaluations  Iterations Time (sec.) Scores 

M1 
12608 

(100.00%) 

10167 

(100.00%) 

21994.7 

(100.00%) 
12 

A1 
10666 

(84.60%) 
8110 (79.77%) 

17627.08 

(80.14%) 
19 

MC1 
10091 

(80.04%) 
8011 (78.79%) 

17453.34 

(79.35%) 
31 

 

 
 
   Fig. 1.  Overall function and gradient evaluations for each method. 

2 ,  1

125v2
34k1  k22  23k2  2k32

2k3  3k42  k4  4k52  0,

k 1  2 i  2 i1  2i,

k 2  2 i  2 i1  2  i,

k 3  2  2 i  2  2 i1  2    i,

k 4  2 i  2 i1  2  i,

k 5  2 i  2 i1  2i.

2 , 

10 2 i 1
2  i12110i

0110

3160
21

2   224011  0  

81  0 2  1601  81  0 
 0,

1  si12  si21 ,2  si21

3  1/2si12  si21  si21  .

fx i1  fx i  104si
Tgx i

si
Tgx i1  0.9si

Tgx i.

0  si2  si12,2  0,1  si2 .

86401 

76164 

75975 M1

A1

MC

Overall function/gradient Evaluations 
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     Fig. 2.  Overall iteration count for each method. 

 

 

VI. CONCLUSIONS AND SUGGESTIONS FOR 

FURTHER WORK 

    A new method for determining the parameterization of 

the interpolating curves in the two-step quasi-Newton 

methods was derived here. The parameters that influence the 

structure of the interpolating curve are obtained by 

minimizing a cubic equation at each iteration. It was 

revealed that the cubic curvature function to be minimized 

has cheaply computable roots. The numerical results showed 

that such approach yields a substantial improvement in 

numerical performance over the standard BFGS method. 

The new method has slightly improved over our best known 

multi-step accumulative method A1.  

    Future research might focus on issues like: 

 Is there an optimal choice for the curve parameters τ? 

 Can these methods improve the numerical performance 

if they are applied to solving systems of non-linear 

equations? 

 Further Study of the convergence properties of the 

methods. 
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