
Evaluating the Time Efficiency of the Modified

Linear Search Algorithm

G. B. Balogun

Abstract: In this study, a comparative analysis of three search

algorithms is carried out. Two of the algorithms; the linear and

binary are popular search methods, while the third, ‘The

Bilinear Search Algorithm’ is a newly introduced one; A

modified linear search algorithm that combines some features

in linear and binary search algorithms to produce a better

performing one. These three algorithms are simulated using

seventeen randomly generated data sets to compare their time

efficiency. A c_Sharp (C#) code is used to achieve this by

generating some random numbers and implementing their

working algorithms. The internal clock of the computer is set

to monitor the time durations of their computations. The result

shows that the linear search performs better than the binary

search. This agrees with the existing assertion that when a data

set is small and the time complexity of sorting method added,

the linear search performs better than the binary search. The

bilinear search however, proves to be the most efficient of them

all as its time efficiency at all levels of the data sets proves to be

better than both the linear and binary search algorithms.

Keywords: Linear Search, Binary Search, Bilinear, Simulation.

I. INTRODUCTION

The difference between a fast program and a slow one is the

use of a good algorithm for the data set (Prelude, 2011). Any

imperfections in search algorithms would undoubtedly

affect most if not all computer users as users are likely to

engage in search activities at one time or the other while

using the system. There is therefore a need to know which

search techniques should or should not be used in data

processing to minimize the effects of their shortcomings on

the output.

 Brian, (2017) tried to display the advantages of binary

search over linear search. He noted that the more the

elements present in the search array, the faster a binary

search will be (on average) compared to a linear search. The

downside, he continued, is that binary search only operates

on a sorted array, which means the data must be pre-sorted

using some means. However, some other factors such as the

data size can determine the choice of the search technique

used (Dalal, 2004).

 Furthermore, John Morris, (1998) affirmed that the binary

and linear search algorithms as with others are not without

their shortcomings. The binary search algorithm which is

believed to be a very efficient algorithm (Shield, 1983)

requires that the array elements be sorted using

any of the sorting algorithms. Its efficiency therefore

depends on the sorting algorithm used.

The linear search on the other hand, neither requires a sorted

data to operate nor any special care to write its codes as they

are straight forward and relatively simple, but that is not to

say it is without its own disadvantages (Trims, 2014);

Manuscript received 2 August, 2017.
Balogun Ghaniyyat Bolanle is a lecturer in the Department of Computer

Science, University of Ilorin, Kwara State, Nigeria.

it is inefficient when the array being searched contains large

number of elements.

The algorithm will have to look through all the elements in

order to find a value in the last element. The average

probability of finding an item at the beginning of the array is

almost the same as finding it at the end. (Thomas and Devin,

2017).

 Nell, Daniel and Chip,(2016), tried to improve on the

performance of the linear search by stopping a search when

an element larger than the target element is encountered,

but this is based on the condition that the elements in the

array be sorted in ascending order. The disadvantage of this

method is that, it is also dependent on sorting just like in the

binary search. Its efficiency would be dependent on the

sorting algorithm used for its implementation.

II. RESEARCH MOTIVATION AND METHODOLOGY

The need to develop a search algorithm that would be both

independent of sorting and efficient brought about the

development of the ‘bilinear search’ algorithm. The ‘bilinear

search’ algorithm is an improved/modified form of the

linear search algorithm. For this method, the array is broken

and searched in a multi-directional manner. The array need

not be sorted to use the bilinear search. The method operates

on the idea that when a search is conducted on the

raw/unsorted data it should not be conducted in a one

directional (top-down) or step by step manner. Rather the

search should be conducted in a multi directional manner

(top-down, down-top, top-center, center-top, center-down,

down-center and so on). That is the search is spread out and

comes from different directions. This method increases the

probability/chances of finding the search item faster than in

the case of the one directional linear search. This search

method also allocates position in the form of sectors for the

items in the array thereby providing some form of

information as to the location of the required item in

question. The use of this algorithm to search for a specified

element in an array at one stretch is referred to as ‘single

bilinear search’. Dividing the array into two sectors is

referred to as the ‘double bilinear’. Dividing into three it is

called the ‘triple bilinear search’. Dividing the elements into

four sectors is called ‘quadruple bilinear search’ and

dividing the elements into five sectors to search for some

specified elements, is called ‘quintuple bilinear search’.

 In this study, a comparative analysis of the bilinear search

algorithm with the linear and binary search algorithms when

subjected to some experimental platforms is conducted. A

c_Sharp (C#) code is developed. The code generates some

random numbers, implements the working algorithms of the

bilinear searches, the linear search, and the binary search

algorithms. It sorts the random numbers using bubble sort,

insertion sort, and quick sort techniques before applying the

binary search algorithm. The internal clock of the computer

is set to monitor the time durations of the computations.

Proceedings of the World Congress on Engineering and Computer Science 2017 Vol I
WCECS 2017, October 25-27, 2017, San Francisco, USA

ISBN: 978-988-14047-5-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2017

 The linear search and binary search together with the

single bilinear search, double bilinear search, triple bilinear

search, quadruple bilinear search and quintuple bilinear

search methods are simulated using seventeen different data

sets. The data are all numeral and generated randomly.

The sizes of the data sets used in the simulation are 50, 100,

200, 500, 1000, 2000, 5000, 10,000, 20,000, 30,000, 40,000,

50,000, 60,000, 70,000, 80,000, 90,000 and 100,000

In summary, the C# code does the following:

 Generate random numbers for the 17 data sets listed

above

 Implements the five levels of the bilinear search

algorithms

 Implement bubble sort

 Implement insertion sort

 Implement quick sort

 Implement linear search

 Implement binary search

 The code also sets the system clock to know

 the duration of time taken by different

 computations.

 The following computations are done and the

 time used on them by the computer noted.

 BinBS = Bubble sort based

 binary search

 BinQS = Quick sort based

 binary search

 BinIS = Insertion sort based

 binary search

 Lin = Linear search only

 Single BL = Single Bilinear

 Double BL = Double Bilinear

 Triple BL = Triple Bilinear

 Quadruple BL = Quadruple Bilinear

 Quintuple BL = Quintuple Bilinear

The outcome of the study was to determine whether to

recommend one of the existing algorithms or opt for the

newly introduced one.

 Below is the C# code for bubble sort based binary search,

quick sort based binary search, insertion sort based binary

search and the linear search:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Diagnostics;

namespace TestCompareNew

{class Program

 { static void Main(string[] args)

 {Stopwatch s = new Stopwatch();

 int MaxData = 100000;

Repeat: Console.Clear();

int[] DataSet = { 50, 100, 200, 500, 1000, 2000, 5000, 10000,

20000, 30000, 40000, 50000, 60000, 70000, 80000,

90000,MaxData };

Random random = new Random();

Console.WriteLine("|-------|---------------|----|---------------|------------

---|");

Console.WriteLine("|-------|---------------|--This will return only

time spent in millisecond--|---------------|---------------|");

Console.WriteLine("|-------|-----------------------|-----------------------

|-----------------------|-----------------------|");

Console.WriteLine("|Set\t|\tBinBS\t\t|\tBinQS\t\t|\tBinIS\t\t|\tLin\t\t

|");

Console.Write("|-------|-----------------------|-----------------------|------

-----------------|-----------------------|");

int[] NumArray = new int[MaxData];

NumArray = RandomNumber(MaxData);

for (int i = 0; i < DataSet.Length; i++)

{

int ind = DataSet[i] - 1;

/////////////Bubble sort and Binary Search starts/////////

 int[] NumArray1 = PickRandomNumber(NumArray, 0,

DataSet[i]);

 s.Start();

 int[] ArrayNum = BubbleSort(NumArray1);

 int SearchedVal = BinarySearch(ArrayNum,

NumArray1[ind]);

s.Stop();

Console.Write("\n|" + DataSet[i]);

Console.Write("\t|\t" + s.Elapsed.TotalMilliseconds+"\t");

/////////////Bubble sort and Binary Search ends/////////

/////////////Quick sort and Binary Search starts/////////

int[] NumArray2 = PickRandomNumber(NumArray, 0,

DataSet[i]);

s.Restart();

ArrayNum = quickSort(NumArray2, 0, NumArray2.Length - 1);

SearchedVal = BinarySearch(ArrayNum, NumArray2[ind]);

 s.Stop();

Console.Write("\t|\t" + s.Elapsed.TotalMilliseconds + "\t");

/////////////Quick sort and Binary Search ends/////////

/////////////Insertion sort and Binary Search starts/////////

int[] NumArray3 = PickRandomNumber(NumArray, 0,

DataSet[i]);

s.Restart();

ArrayNum = InsertSort(NumArray3);

SearchedVal = BinarySearch(ArrayNum, NumArray3[ind]);

s.Stop();

/////////////Insertion sort and Binary Search ends/////////

Console.Write("\t|\t" + s.Elapsed.TotalMilliseconds + "\t");

/////////////Linear Search starts/////////

int[] NumArray4 = PickRandomNumber(NumArray, 0,

DataSet[i]);

s.Restart();

SearchedVal = LinearSearch(NumArray4, NumArray4[ind]);

s.Stop();

Console.WriteLine("\t|\t" + s.Elapsed.TotalMilliseconds + "\t\t|");

Console.Write("|-------|-----------------------|-----------------------|------

-----------------|-----------------------|");

/////////////Linear Search ends/////////

 }

 Console.WriteLine("\nDo you want to repeat the

simulation? 1 -- Yes; 0 -- No ");

 string resp = Console.ReadLine();

 if (resp == "1")

 {

 goto Repeat;

 }

 else if (resp == "0")

 {

 Console.WriteLine("Good Bye");

 Console.ReadLine();

 }

 }

 public static int[] RandomNumber(int ListNum)

 {

 Random randomNew = new Random();

 int[] Number = new int[ListNum];

 for (int i = 0; i < ListNum; i++)

 {

Proceedings of the World Congress on Engineering and Computer Science 2017 Vol I
WCECS 2017, October 25-27, 2017, San Francisco, USA

ISBN: 978-988-14047-5-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2017

 int num = randomNew.Next();

 Number[i] = num;

 }

 return Number;

 }

 public static int[] PickRandomNumber(int[] FromArray, int

init, int ListNum)

 {

 Random randomNew = new Random();

 int[] Number = new int[ListNum];

 int icount = 0;

 for (int i = init; i < ListNum; i++)

 {

 Number[icount] = FromArray[i];

 icount++;

 }

 return Number;

 }

 //////// BubbleSort

 public static int[] BubbleSort(int[] array)

 {

 int temp;

 int j;

 int i = array.Length - 1;

 while (i > 0)

 {

 int swap = 0;

 for (j = 0; j < i; j++)

 {

 if (array[j].CompareTo(array[j + 1]) > 0)

 {

 temp = array[j];

 array[j] = array[j + 1];

 array[j + 1] = temp;

 swap = j;

 }

 }

 i = swap;

 }

 return array;

 }

 //??/////Insertion Sort

 static int[] InsertSort(int[] array)

 {

 int i, j;

 for (i = 1; i < array.Length; i++)

 {

 int value = array[i];

 j = i - 1;

while ((j >= 0) && (array[j].CompareTo(value) > 0))

 {

 array[j + 1] = array[j];

 j--;

 }

 array[j + 1] = value;

 }

 return array;

 }

 //////// QuickSort

 private static void quickSwap(int[] Array, int Left, int Right)

 {

 int Temp = Array[Right];

 Array[Right] = Array[Left];

 Array[Left] = Temp;

 }

 public static int[] quickSort(int[] Array, int Left, int Right)

 {

 int LHold = Left;

 int RHold = Right;

 Random ObjRan = new Random();

 int Pivot = ObjRan.Next(Left, Right);

 quickSwap(Array, Pivot, Left);

 Pivot = Left;

 Left++;

 while (Right >= Left)

 {

 int cmpLeftVal = Array[Left].CompareTo(Array[Pivot]);

 int cmpRightVal =

Array[Right].CompareTo(Array[Pivot]);

 if ((cmpLeftVal >= 0) && (cmpRightVal < 0))

 {

 quickSwap(Array, Left, Right);

 }

 else

 {

 if (cmpLeftVal >= 0)

 {

 Right--;

 }

 else

 {

 if (cmpRightVal < 0)

 {

 Left++;

 }

 else

 {

 Right--;

 Left++;

 }

 quickSwap(Array, Pivot, Right);

 Pivot = Right;

 if (Pivot > LHold)

 {

 quickSort(Array, LHold, Pivot);

 }

 if (RHold > Pivot + 1)

 {

 quickSort(Array, Pivot + 1, RHold);

 }

 return Array;

 }

 public static int BinarySearch(int[] array, int value)

 {

 int low = 0, high = array.Length - 1, midpoint = 0;

 while (low <= high)

 {

 midpoint = low + (high - low) / 2;

 // check to see if value is equal to item in array

 if (value == array[midpoint])

 {

 return midpoint;

 }

 else if (value < array[midpoint])

 high = midpoint - 1;

 else

 low = midpoint + 1;

 }

 // item was not found

 return -1;

 }

Proceedings of the World Congress on Engineering and Computer Science 2017 Vol I
WCECS 2017, October 25-27, 2017, San Francisco, USA

ISBN: 978-988-14047-5-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2017

 public static int LinearSearch(int[] array, int item)

 {

 int searchItem = item;

 int len = array.Length;

 for (int j = 0; j < len; j++)

 {

 if (array[j] == searchItem)

 {

 return j;

 }

 if (j == len - 1)

 {

 return -1;

 }

 }

 return -1;

 }

C# Program used in the implementation of the bilinear search

algorithm

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Diagnostics;

namespace LinerSearch

{

 class BiLinear

 {

 static void Main(string[] args)

 {

 //Console.WriteLine("Enter the number of elements you

want to add in the array ?");

 // string s =Console.ReadLine();

 // int x = Int32.Parse(s);

 //no of array elements

 int[] x_array = { 50, 100, 200, 500, 1000, 2000, 5000,

10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000,

100000, 200000, 300000, 400000, 500000, 600000, 700000,

800000, 900000, 1000000 };

 //peform the iteration 15x with different no of array size

 Console.WriteLine("====================== Time

in Miliseconds ==========================");

 Console.WriteLine("Array Size "+ "\t"+"Linear: " +"\t" +

"Bi-Linear: "+ "\t" + "Double Bi-Linear: ");

 Console.WriteLine("---

---------------------------------");

 for (int k = 0; k < x_array.Length; k++)

 {

 Random rdmn = new Random();

 //// Console.WriteLine("Enter the Search element\n");

 // string s3 =Console.ReadLine();

 // int x2 = Int32.Parse(s3);

 int x2 = rdmn.Next(500);

 int x = x_array[k];

 int[] a = new int[x];

 int[] anew = new int[x];

 int[] bnew = new int[x];

 a = RandomNumber(x);

 //for the first partion

 for (int j = 0; j < (x / 2); j++)

 {

 anew[j] = a[j];

 }

 //for the second partion

 for (int j = (x / 2); j < x; j++)

 {

 bnew[j] = a[j];

 }

 //search using linear method

 var watch = Stopwatch.StartNew();

 Linear ln = new Linear();

 ln.findLinear(a, x2, x);

 watch.Stop();

 var l_elapsedMs = watch.ElapsedMilliseconds;

 //Search begins with bi linear method

 watch = Stopwatch.StartNew();

 Bi_linearClass nn = new Bi_linearClass();

 nn.findbiliner(x, x2, a, anew, bnew);

 //end search

 //Calculate time taken

 watch.Stop();

 var bil_elapsedMs = watch.ElapsedMilliseconds;

 //Search begins with double bi linear method

 watch = Stopwatch.StartNew();

 Double_bilinear dbli = new Double_bilinear();

 dbli.find_double_biliner(x, x2, a, anew, bnew);

 //end search

 //Calculate time taken

 watch.Stop();

 var dbl_elapsedMs = watch.ElapsedMilliseconds;

 Console.WriteLine(x+"\t " + l_elapsedMs + "\t "

+ " " + bil_elapsedMs + "\t " + " " + dbl_elapsedMs);

 Console.WriteLine("--

------------------------------------");

 }

 Console.ReadLine();

 }

 public static int[] RandomNumber(int ListNum)

 {

 Random randomNew = new Random();

 int[] Number = new int[ListNum];

 // Console.WriteLine("Generated Numbers below: ");

 for (int i = 0; i < ListNum; i++)

 {

 int num = randomNew.Next(500);

 Number[i] = num;

 //Console.Write(num+", ");

 }

 return Number;

III. RESULTS

The performance of the search algorithms is presented in

Table I. It is also summarised diagrammatically in the

diagrams below. The time values (Millisecond) of the search

algorithms are embedded in a clockwise manner in the

diagrams.

Proceedings of the World Congress on Engineering and Computer Science 2017 Vol I
WCECS 2017, October 25-27, 2017, San Francisco, USA

ISBN: 978-988-14047-5-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2017

Table 1: Time Spent in Millisecond for the Execution of 50 to 100,000 Data Set

Set BinBS BinQS BinIS Lin Single

BL

Double

BL

Triple

BL

Quadruple

BL

Quintuple

BL

50 0.9674 1.6193 0.5427 0.3727 0.003 0.0036 0.0031 0.0031 0.003

100 0.4997 0.6948 0.0538 0.0032 0.0031 0.003 0.003 0.0033 0.003

200 0.5023 1.5506 0.1751 0.0051 0.0045 0.0039 0.0038 0.0036 0.0035

500 4.0547 3.8436 1.072 0.0083 0.0063 0.0041 0.0046 0.0041 0.0039

1000 12.6108 8.0684 4.4294 0.0147 0.0108 0.0087 0.0088 0.008 0.0079

2000 50.6395 16.099 17.1159 0.0256 0.0191 0.0121 0.0132 0.011 0.0108

5000 321.5405 37.1292 131.5038 0.0603 0.0421 0.0301 0.0291 0.0298 0.029

10000 1285.501 71.8507 436.5314 0.1174 0.0961 0.0951 0.0751 0.0801 0.0742

20000 5150.955 168.4701 1741.123 0.2328 0.2003 0.174 0.1759 0.1603 0.1602

30000 11638.39 226.806 4145.625 0.6781 0.3671 0.3123 0.3182 0.3137 0.4001

40000 20414.13 292.9878 6933.484 0.4709 0.462 0.4001 0.3901 0.3854 0.4012

50000 31203.49 372.8973 10917.26 0.5787 0.4778 0.3982 0.4217 0.4115 0.4215

60000 45536.24 468.4171 16241.34 0.6961 0.5183 0.518 0.4687 0.4821 0.4827

70000 63380.1 505.5233 21143.43 0.818 0.6249 0.6318 0.6219 0.6365 0.6255

80000 82410.09 622.7206 29061.69 0.9232 0.5437 0.5563 0.5321 0.5612 0.5327

90000 112526.9 700.1806 36341.18 1.0643 0.6781 0.6417 0.6511 0.6153 0.6104

100000 126516.8 774.3558 45896.85 1.158 0.9721 0.7543 0.8256 0.8129 0.8116

9,674.00

16,193.00

5,427.00

3,727.00
30

36
31

31

30

VALUES OF SET 50.00 X 10-4

BinBs

BinQs

BinIS

Lin

Single BL

Double BL

Triple BL

Quadruple BL

Quintuple BL

 Figure 1: Pictorial analysis of the Search Algorithms

 used on Data Set 50.

 Figure 2: Pictorial analysis of the Search Algorithms

 used on Data Set 1,000.

128,550.06

7,185.07

43,653.14

11.74
9.61 9.51 7.51 8.01

7.42

VALUES OF SET 10,000 X 10-2

BinBs

BinQs

BinIS

Lin

Single BL

Double BL

Triple BL

Quadruple BL

Quintuple BL

 Figure 3: Pictorial Analysis of the Search Algorithms

 used on Data Set 10,000

31,203.49

372.9
10,917.26

0.58

0.48 0.4 0.42 0.41

0.42

VALUES OF SET 50,000
BinBs

BinQs

BinIS

Lin

Single BL

Double BL

Triple BL

Quadruple BL

Quintuple BL

 Figure 4: Pictorial Analysis of the Search Algorithms

 used on Data Set 50,000.

126,108.00
80,684.00

44,294.00

147

108 87 88
80

79

VALUES OF SET 1,000 X 10-4

BinBs

BinQs

BinIS

Lin

Single BL

Double BL

Triple BL

Quadruple BL

Quintuple BL

Proceedings of the World Congress on Engineering and Computer Science 2017 Vol I
WCECS 2017, October 25-27, 2017, San Francisco, USA

ISBN: 978-988-14047-5-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2017

126,516.80

774.3558

45,896.85

1.158

0.9721

0.7543

0.8256
0.8129

0.8116

VALUES OF SET 100,000

BinBs

BinQs

BinIS

Lin

Single BL

Double BL

Triple BL

Quadruple BL

Quintuple BL

 Figure 5: Pictorial Analysis of the Search Algorithms

 used on Data Set 100,000

IV. ANALYSIS OF THE RESULTS

 From figure 1, it is observed, that for the data set 50, both

the single bilinear search and the quintuple bilinear search

algorithms return as the most efficient algorithm in terms of

time complexity. The other bilinear searches also prove to

be more efficient than the linear and binary searches. The

quick sort based binary search is found to be the least

efficient. This is to be expected as the quicksort is known to

be inefficient where small data are concerned (Shield,

1983).

 As the data set increases from 50 to 10,000, so does the

performance of the quicksort based binary search improve.

But better as the quicksort based binary sort may get, the

linear search still proves to be more efficient at this stage.

All the levels of the bilinear searches however, prove to be

the most efficient of them all. There are slight fluctuations

in the level of efficiency among the bilinear searches in this

interval of 50 to 10,000, but the quintuple bilinear search

still maintains its position as the most efficient.

 The inefficiency of the bubble sort explodes as the data set

increases from 10,000 to 50,000 and then gets worse as the

data set increases to 100,000. This is to be expected as

bubble sort has been proved to be efficient only for small

data sets. The insertion sort though also efficient for only

small data set, proves to be more efficient than the bubble

sort at all stages of the data sets except for a single data set;

100.

 The efficiency of the quick sort based binary search

improves as the data set moves to 100,000. This is also

expected as the larger the data, the more efficient the quick

sort. Therefore at this stage, the quicksort based binary

search performs better than the bubble sort based binary

search and the insertion sort based binary search.

 The linear search, at the 100,000 data set, still proves to be

overwhelmingly more efficient than the entire sort based

binary searches. This is because of the fact that when the

data to be searched is not very large, and the sorting

complexity is added to that of the binary search complexity,

the linear search proves to be more efficient.

 For all the levels of the bilinear searches however, the

results indicate that they are more efficient than all the other

search methods even though there are slight fluctuations in

the level of efficiency amongst them as the data set

increases from 50 to 100,000. With the larger share of

efficiency going to the quintuple bilinear search algorithm.

V. SUMMARY OF FINDINGS

 The result confirms the fact that the so called acclaimed

efficiency of the binary search algorithm cannot be

generalised. Its dependence on the type of sorting method

used in its implementation and the size of the data to be

searched makes its efficiency vulnerable (Balogun and

Sadiku, 2013). If the statuses of these factors are not

properly verified before employing the binary search

method, the search may become inefficient. Variations in

the level of efficiency of the binary search using different

sorting algorithms can be seen as the data set is gradually

increased from 50 to 100,000.

 The bubble and insertion based binary searches performed

better at the lower data set stage than the quicksort based

binary search. But as the data set increases to a larger size,

the bubble sort based binary search collapses, that of the

insertion based binary search drags on slowly while that of

the quicksort based binary search gains momentum to

become the better performing option. But overall, the linear

search performed better than the sort based binary searches.

This corroborates the idea that linear search outperforms the

binary search if sorting time required in binary search is

taken into consideration.(Glenn, 2007).

 Introducing and simulating the bilinear search algorithm

which is a modified linear search algorithm along with the

linear and binary search algorithms, the result obtained

shows that this modified linear search algorithm

outperforms both the linear and binary search algorithms.

This can be associated to the fact that the search algorithm

combines some good features found in both the linear and

binary searches, to consequently make it a better performing

search algorithm.

VI. CONCLUSION

 Most research works conducted on the efficiency of linear

and binary search algorithms revolve around the comparison

of one search algorithm against the other (Nell et al., 2016),

while trying to establish which of the two algorithms come

out tops as the better performing one, thus, the discrepancy

among some researchers as to which algorithm performs

better than the other. Balogun and Sadiku, (2013) however,

demonstrated that none of the two; linear or binary search

algorithms can be said to outperform the other as their level

of efficiency is determined by the size of the data set and the

efficiency of the sorting algorithms used in the

implementation of the binary search.

 The ‘bilinear search algorithm’ which is a modified linear

search that does not search from only one direction and can

allocate some form of address for the data in the form of

sector location, comes as a solution for having a search

method that is not only independent of sorting but at the

same time performs a search effectively well.

REFERENCES
[1] Balogun B.G. and Sadiku J.S. (2013). Simulating Binary Search

Technique Using Different Sorting Algorithms. International Journal

Of Applied Science And Technology. Volume 3, No 6 pp. 67-

75.August, 2013.

[2] Brian. F. (2016). Computer Programming, C Programming. What are

the Advantages of binary search on linear search in c? Copyright ©

answers.com/Q.

[3] Dalal. A.C. (2004). Searching and Sorting Algorithms. Supplementary

Lecture Notes. Copyright © cs.carleton.edu/faculty.

Proceedings of the World Congress on Engineering and Computer Science 2017 Vol I
WCECS 2017, October 25-27, 2017, San Francisco, USA

ISBN: 978-988-14047-5-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2017

http://www.answers.com/Q/FAQ/2096
http://www.answers.com/Q/FAQ/3353

[4] Glenn J. (2007): Computer Science; an Overview Tenth Edition,

Pears on Education, New Jersey, U.S.A.

[5] John. M. (1998). Data Structures and Algorithms. Copyright © John

Morris j.morris@auckland.ac.nz (1998).

[6] Nell D, Daniel T., Chip (2016). Weems Object-Oriented Data

Structures Using Java Copyright © Jones & Bartlett Learning.

[7] Prelude, (2011). Linear Search, Binary Search and other Searching

Techniques. Copyright © 1997-2011 Cprogramming.com. All rights

reserved.

[8] Shield. F (1983): Theory and Problems of Computers and

Programming, Schaum’s Outline Series.

[9] Thomas. C and Devin. B (2017). Binary Search. Khan Academy

computing curriculum team. Copyright © CC-BY-NC-SA.

[10] Trims. (2014). What are advantages and disadvantages of linear

search? Java Programming, C Programming. Eishet Eilon Industries.

Proceedings of the World Congress on Engineering and Computer Science 2017 Vol I
WCECS 2017, October 25-27, 2017, San Francisco, USA

ISBN: 978-988-14047-5-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2017

mailto:morris@auckland.ac.nz
https://books.google.com.ng/url?id=DuQxX8GVtVgC&pg=PA405&q=http://www.jblearning.com&clientid=ca-print-jones_bartlett&linkid=1&usg=AFQjCNGMjXPBqH9ftvnA1_g_t4iYRM4_Tw&source=gbs_pub_info_r
http://www.cprogramming.com/use.html
http://www.cprogramming.com/use.html
http://creativecommons.org/licenses/by-nc-sa/4.0/

