


Abstract— This communication describes an open source

repository for embedded software and hardware designs. Its
main goal is to make available to everyone, in an open-source
style, the designs and results from academia/research
community. SHORES hosts the source code of various software
and hardware design projects, that combined with the newest
algorithms proposed by academia, give birth to embedded
solutions to the most challenging obstacles in the fields of
vision, bio-cryptography, signal processing, etc. SHORES
resources are distribute under the terms of the GNU General
Public License as published by the Free Software Foundation;
either version 2 of the license, or any later version.

Index Terms—Embedded system, intellectual property
module, open source hardware, open source software.

I. INTRODUCTION

he open source philosophy is well known in software,
and has been exploited extensively. However the

concept of open source hardware is more recent. The Open
Source Hardware Association [1] defined the open source
hardware (OSHW) as “a term for tangible artifacts
(machines, devices, or other physical things) whose design
has been released to the public in such a way that anyone
can make, modify, distribute, and use those things. This
definition is intended to help provide guidelines for the
development and evaluation of licenses for Open Source
Hardware”.

There are different types of OSHW products. One type of
OSHW products are electronic artefacts that are distributed
so that the user can access to all the information for
implementation such as the schematic, system
specifications, component distributers, etc. An example of
this type of product is Open Electronics [2]. For other type
of OSHW products the development tools are provided. A
well-known example is Arduino [3].

Another type of OSHW product corresponds to IP
(Intellectual Property) modules described in a hardware
description language. These modules can be used and
modified by the user to implement a specific application.
The rise of this type of product began with the development
of FPGA devices.

Manuscript received May 10th, 2017; revised June 8th, 2017 This work

was supported in part by Ministerio de Economía y Competitividad under
the Projects TEC2014-57971-R, co-financed by FEDER.

Laurentiu Acasandrei is with the Instituto de Microelectrónica de
Sevilla, IMSE-CNM, CSIC/Universidad de Sevilla, Spain (e-mail:
laurentiu@imse-cnm.csic.es). Angel Barriga is with the Instituto de
Microelectrónica de Sevilla, IMSE-CNM, CSIC/Universidad de Sevilla,
Spain (e-mail: barriga@imse-cnm.csic.es).

A. OSHW sites

There are few open source hardware products compared
to the case of software. Resources exist primarily oriented to
specific applications [4-7].

There are few repositories that offer multiple open source
hardware projects. Table I shows a list (not intended to be
complete) of some of the main repositories.

OpenCores [8] is the most known site of open source
hardware IP cores. It host a large set of source code for
different digital hardware projects (IP-cores, System on
Chip (SoC), boards, etc) and support the users with different
tools, platforms, forums and other useful information. One
useful resource of this site is the forums in which users can
interact for help, exchange ideas, knowledge and
experience. This active site is the starting point for
searching open source hardware for any designer.

Freecores [9] contain cores most of which are in
OpenCores. The main useful of this site is to provide the
benefit of using git (a distributed revision control systems).

Open Hardware Repository [10] at CERN is a site
containing open hardware resources at experimental physics
applications. This site offers two kinds of facilities: open
hardware projects and support (containing information for
users).

The BeagleBoard.org Foundation [11] is a non-profit
corporation existing to provide education and promotion of
the design and use of open source software and hardware in
embedded computing. BeagleBoard.org provides a
communication forum for the owners and developers of
open-source software and hardware.

Table I. OSHW sites
Name Ref # Projects

OpenCores [8] 1241
Freecores [9] 768
OHWR [10] 100
BeagleBoard.org
Foundation

[11] 484

Zoybar [12] 25
SHORES [13] 10
Free Model
Foundry

[14]
> 11,000

components
TimVideos [16] 4
Milkymist [17] 4
MinSoC [18] 1

SHORES: Software and Hardware Open
Repository for Embedded Systems

Laurentiu Acasandrei, and Angel Barriga, Member, IAENG

T

Proceedings of the World Congress on Engineering and Computer Science 2017 Vol I
WCECS 2017, October 25-27, 2017, San Francisco, USA

ISBN: 978-988-14047-5-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2017

Other examples correspond to IP modules of processors
(and associated peripherals) that are distributed under the
concept of open source hardware. Here we highlight the
case of Leon [18], OpenRisc [8], OpenSparc [19], S1 Core
[20], F-cpu [21], etc.

For the case of open source software there are numerous
sites for embedded software applications. Some examples
are: OpenEmbedded [22], SourceForge [23], Open
Embedded Software Foundation [24], Embedded [25], etc.

B. Licensing issues

An important issue to consider for open source is the
license aspect. In this case, OSHW inherits the open source
software licenses scheme. According to [1] “in general,
there are two broad classes of open-source
licenses: copyleft and permissive. Copyleft licenses (also
referred to as “share-alike” or “viral”) are those which
require derivative works to be released under the same
license as the original; common copyleft licenses include
the GNU General Public License (GPL) and the Creative
Commons Attribution-ShareAlike license. Other copyleft
licenses have been specifically designed for hardware; they
include the CERN Open Hardware License (OHL) and
the TAPR Open Hardware License (OHL). Permissive
licenses are those which allow for proprietary (closed)
derivatives; they include the FreeBSD license, the MIT
license, and the Creative Commons Attribution
license. Licenses that prevent commercial use are not
compatible with open-source”. The GNU Lesser General
Public License (LGPL) is a non-viral license, instead GPL
which is viral, widely used.

Open source concept means that the source code is
publicly available under a license that gives users the right
to change, and distribute the software. The term was coined
in 1998 by Open Source Initiative (OSI). The "free" of open
source refers exclusively to the source code, and it is
possible to make business giving support, services,
documentation, and even binary versions.

All the free software can be described as open source,
however almost all open source software is free software.
The difference is subtle but in the case of hardware the term
"open source" is more appropriate since the sources,
schematic, etc., are offered, and the user is who makes the
implementation. Therefore, OSHW is closer to the concept
Do-It-Yourself (DIY) [26].

Another issue that may raise doubts in the field of open
source refers to the authors copyright. As described in [27]
there are many possible scenarios in the case of open source
projects. In any case OSHW, like as in software, are
protected by copyright laws. For open source the author is
granting the user a license of the copyrighted hardware. The
copyright and author rights of the work are given to the
author whatever are the terms of the license.

C. SHORES site

Software and Hardware Open Repository for Embedded
Systems (SHORES) is an open source repository for
embedded Software and Hardware designs. Its main goal is
to make available to everyone, in an open-source style, the
designs and results from academia/research community.

SHORES hosts the source code of various software and
hardware design projects that combined with the newest
algorithms proposed by academia give birth to embedded
solutions to the most challenging obstacles in the fields of
vision, bio-cryptography, signal processing, etc.

II. SHORES REPOSITORY DESCRIPTION

Figure 1 shows the home page of the repository. The
repository is organized into two main areas: Software and
Hardware. There is also planned an area of algorithms that
currently has no content. In each area the different projects
are organized into categories.

An important characteristic of the projects included in the
repository is that they have been tested in specific
applications. This means that these are projects that have
been proven and, therefore, are operational on the platform
indicated in the project description.

Fig. 1. SHORES home page.

The Software area of SHORES site contains embedded
software projects. They are embedded applications running
on a specific processor indicated in the project description.
In general, software applications have been written to make
them independent of the execution platform. Therefore the
direct portability to other platforms should be feasible.
Source files and documentation for the user to modify and
adapt them to their needs are supplied.

Currently the software projects are focused within the
category of Embedded Vision (EV). There are 3 projects
related to detection and recognition. In particular these
focus on face detection and recognition, but can be applied
to the detection and recognition of objects in general.

Hardware area contains designs of hardware IPs
organized into four categories: Communication Interfaces
(CI), Embedded Vision (EV), Arithmetic Circuits (AC) and
Video Coder/Encoder (VC). The circuits are described in
VHDL and are portable to various FPGA and ASIC
technologies.

The information displayed for each project aims to
identify functionality, design status, dependence with other
projects and associated references. Figure 2 shows an
example of a project. Each project has an ID that identifies

Proceedings of the World Congress on Engineering and Computer Science 2017 Vol I
WCECS 2017, October 25-27, 2017, San Francisco, USA

ISBN: 978-988-14047-5-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2017

it. ID consists of three fields. The first indicates the type of
project: SW (Software) or HW (Hardware). The second
field indicates the category in which the project is classified.
For example in the case of Figure 2 the category is EV
(Embedded Vision). The third field is a number that
identifies the project.

The name and project description specifies its
functionality, main characteristics, and the platform for
which the application was designed and proven.

The status indicates that the project has been verified on
the targeted hardware/software platform. All projects of
SHORES repository must have the “Proven” status value.
This ensures that the project has been tested and is
operational. The operation of the project is guaranteed by
the platform listed in the description.

Other information provided in the project is the
“Associated” section. This section lists the prerequisites
needed to implement the project. In the example of Figure 2
the execution platform based on Leon3 processor is required
to run the software application.

There is also useful information that can be find in the list
of publications related to the project. The publications
describes algorithmic and implementation
challenges/solutions. They complement the documentation
of the project.

Fig. 2. Example of a project in SHORES.

Fig. 3. User form for download.

Each project has a download link. There is no need for
user registration/authentication, but when activating the
download link, a small amount of information is requested
before the download is started. Figure 3 shows the form of
user information. The information on this form is required
for statistical purposes. It helps to know statistic information
such as the geographic areas, universities or research centers
that intend to use the applications/designs offered by the
repository. It can be useful also to warn of new updates.

By activating the "Send and Download" button a

download of the project is started. The downloaded file is a
compressed file (zip file) containing the sources and
documentation.

III. SOFTWARE PROJECTS

This section contains a brief description of the software
projects, the authors, the status, an archive of the source
code and archives, when is the case, with the auxiliary
software or test benches used for debugging and
verification.

Software section currently has a single category of
applications corresponding to Embedded Vision. Within this
category there are available three applications described
below. Figure 4 shows the block diagram of a face
identification system.

Fig. 4. Face identification system.

The starting point for the design methodology of the

embedded system is the OpenCV’s baseline face
detection/recognition applications. OpenCV (OPEN source
Computer Vision), started by Intel in 1999, is a library of
programming functions for real time computer vision [28].
OpenCV is released under a BSD license and hence it is free
for both academic and commercial use. It is written in
C/C++ and was designed for computational efficiency and
with a strong focus on real-time applications.

The host target for the proposed face detection system is
an embedded environment based on LEON3 AMBA Bus
processor. The LEON3 is a synthesizable VHDL soft core
of a 32-bit processor compliant with the SPARC V8
architecture [18] [29]. The processor is highly configurable,
and particularly suitable for System-on-Chip (SoC) designs.
The full source code is available under the GNU GPL
license. The processor controls and executes the majority of
software application tasks while a specific IP module
accelerate only those tasks that require a high number of
clock cycles.

Each project includes two applications: OpenCV ported
software version and algorithmic accelerated version
application. For the OpenCV ported software version for
embedded system it has been considered that the majority of
embedded environments are capable of running C
applications with or without operating system support. This
means that the resulting application code has to be
compatible for C compilers, and in the same time platform
independent.

Another consideration made is the fact that most of the
SoC have no floating point support. For it, the resulting
application uses integer operations instead of floating point

Recognition
 ·Individual
 identification

Features
extraction
·Feature vectors

Face detection
·Localization and
size

Image
acquisition

Proceedings of the World Congress on Engineering and Computer Science 2017 Vol I
WCECS 2017, October 25-27, 2017, San Francisco, USA

ISBN: 978-988-14047-5-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2017

operations in order to preserve the generality of the
application for the embedded system world. An important
moment in this step was finding an acceptable scaling
coefficient of the floating point variables and data to integer
variables and data. After trying different values and
comparing the resulted integer application with the floating
point application, we found that by scaling with 20 bits
(precision of 20 bits for the floating point decimals) the
integer and floating point applications obtain identical
results. Also the floating point squared root function,
necessary to calculate variance of the evaluating window,
was replaced with a fast integer squared root version.
Finally, it was obtained a face detection stand-alone
application compatible with C using only integer type
operations and data.

For the algorithmic accelerated version application,
different detection modes were analyzed, in order to find the
run time bottlenecks and optimize the detection. There have
been implemented some improvements to optimize the
algorithms.

A. Embedded Local Binary Pattern face detection software
application

This project includes two applications: OpenCV ported
software version and algorithmic accelerated version of
Local Binary Pattern (LBP) face detection application [30].
The two applications run on Xilinx ML505 development
board containing LEON3 Sparc V8 32 bits synthesized. To
run the applications one needs to download the hardware
platform from project HW_EV_01, and follow the project
instructions.

B. Viola Jones face detection software application

This project includes two applications: OpenCV ported
software version and algorithmic accelerated version of
Viola Jones face detection application [31-33]. The two
applications run on Xilinx ML505 development board
containing LEON3 Sparc V8 32 bits synthesized. To run the
applications one needs to download the hardware platform
from project HW_EV_02, and follow the project
instructions.

C. Face recognition using Fisherfaces (LDA) and
Eigenfaces (PCA)

This project includes two applications: OpenCV ported
software version of the face recognition using Fisherfaces
(LDA) and Eigenfaces (PCA) [34-35]. This project is
composed by a group of four software applications that are
involved in training of new classification vectors,
verification of the trained results and face recognition. The
first application is cv_open_core, and contains the core
functions and data used in the rest of the applications.
The make_training uses an image face database to train new
classification vectors (either Fisherfaces or Eigenfaces) and
must be run in operative system that has OpenCV installed.
The c_opencv_test application measures the recognition
performances of the new trained classification vectors and
must run in operative system that has OpenCV installed.
The face_classification_leon3 application uses the trained
vectors to recognize users from images. The face
classification application targets the LEON3 embedded

system running on Xilinx ML505.

IV. HARDWARE PROJECTS

This section contains a brief description of the hardware
design, the authors, the status, an archive of the design and
test bench used for debugging and verification.

The section of hardware projects currently has four
categories of applications described below.

A. Communication Interfaces (CI)

There is a project containing various AMBA bus
interfaces. These interfaces can be used on systems with
different restrictions (low power, low speed to high speed
applications transmission). The project consists in a VHDL
library of most common AMBA master and slaves, and a
VHDL test framework with basic examples. The interfaces
are: APB slave, AHB master/slave, AXI master/slave, AXI-
Stream master/slave. The project also includes an APB slave
and AHB master/slave test framework in order to help the
verification of the use of the interfaces. As an example,
Figure 5 shows the test bench setup for APB slaves. An
application example of AXI-Stream bus is described in [36].

Fig. 5. AMBA testbench setup for APB slave

The AMBA architecture, as being an open standard, has

the advantage that there are available many bridges to other
communication architectures (Core Connect, Wishbone,
Avalon, etc). This means that the interfaces developed in
this project can be integrated with minimal effort in
embedded systems based on different bus architectures.

B. Embedded Vision (EV)

In this category there are two projects related to face
detection IP modules: A Local Binary Pattern (LBP) face
detection embedded system and a Viola-Jones face detection
embedded system [37-39].

Both projects are based on Aeroflex Gaisler´s LEON3
Sparc V8 32 bit processor. The embedded system projects
contain a custom face detection hardware accelerator (based
in LBP algorithm or in Viola-Jones algorithm, respectively)
and run on Xilinx ML505 development board. The software
for detection and the support software tools for debugging
are also provided. The entire system is described in VHDL,
and it is portable to various FPGA and ASIC technologies.
Figure 6 shows the schema of the application system
implementation.

Proceedings of the World Congress on Engineering and Computer Science 2017 Vol I
WCECS 2017, October 25-27, 2017, San Francisco, USA

ISBN: 978-988-14047-5-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2017

Fig. 6. Embedded face detection system implementation.

Based on the algorithmic accelerated software version

application those parts that consume a many resources and
have large run times were implemented as an IP circuit. The
idea is to offload to the hardware the functions with a high
degree of processing, and to parallelize the execution of the
detection algorithm. With this, the face detection process
can be drastically accelerated.

The proposed embedded software application is
responsible for initializing the face detection IP memory
(i.e. in the case of Viola-Jones algorithm it stores the Haar-
like features in the IP shared memory). Also it initializes the
face detection IP configuration registers. When the software
application starts the face detection process, the IP module
takes the control in order to search faces in variable size
regions. Upon completion the detection process, the IP
signalize if there are faces by updating the status register
and generating an interrupt. The result of the face detection
system consists of the coordinates of the face in the image,
as well as its size. This information is read by the software
application in order to be used for face recognition. Once
finished the recognition, the system informs if the individual
has been identified or not.

C. Arithmetic Circuits (AC)

The three projects under this category are arithmetic
circuit generators. It was found that the number of free,
publicly available arithmetic module generators offered
from academia or industry to implement a fast multiplier is
quite low. In academia the arithmetic module generator
(ARITH) with algorithm optimization capability [40] can
generate VHDL and Verilog descriptions for multipliers and
adders. The ARITH generator [41] is capable of generating
arithmetical blocks (multipliers and adders) having any
width between 4 and 64. Another initiative is FloPoCo
(FLOating-POint COres) which is a generator of arithmetic
cores for FPGAs [42-43]. It generates VHDL synthesizable
code of the arithmetic modules

The first project is a multiplier generator called SLAM
(Scalable Low Area integer Multiplier generator). The
scalable low area multiplier is a novel architecture targeting
low power/area applications. It can generate integer

signed/unsigned multipliers having operands with a data
width between 8 and 64 bits.

Fig. 7. Entity of NxN bit signed multiplier

The second project is a non-restoring integer square root

pipelined generator. The generator targets high speed high
throughput applications. It can generate integer square root
circuits having the operand with a data width between 8 and
256 bits.

Finally the third project is a radix 4 sequential integer
square root generator. The generator targets targeting low
power/area applications. It can generate integer square root
circuits having the operand with a data width between 16
and 256 bits.

D. Video Coder/Encoder (VC)

In this category there is one project named BT656
(ITU656) Video Stream Decoder. This AMBA bus
compatible IP is used to decode video streams compressed
with BT656 standard. This IP was implemented in
embedded system containing LEON3 Sparc V8 processor
connected to a Videology 21C405W camera [44]. The input
video is decoded in real time and each frame is saved to a
user defined memory area. The download link contains the
VHDL sources code of the BT656_IP, the embedded system
containing the IP and the software drivers, and software
examples on how to use the IP.

Fig. 8. Video Stream Decoder connected to camera and Leon3 system

entity SLAM_signed_multiplier_NxN is
 Generic (N: integer:= 8);
 Port (rstn : in STD_LOGIC;
 clk : in STD_LOGIC;
 OPA : in STD_LOGIC_VECTOR (N-1 downto 0);
 OPB : in STD_LOGIC_VECTOR (N-1 downto 0);
 PROD : out STD_LOGIC_VECTOR (2*N-1 downto 0));
end SLAM_signed_multiplier_NxN;

Proceedings of the World Congress on Engineering and Computer Science 2017 Vol I
WCECS 2017, October 25-27, 2017, San Francisco, USA

ISBN: 978-988-14047-5-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2017

V. CONCLUSIONS

An open source repository for embedded software and
hardware applications is described. The hardware IP
modules are described in a hardware description language
(VHDL). The software applications are written in C
language in a technology independent style. These modules
can be used and modified by the user to implement their
own specific application. The repository aim is to give
support to the embedded system community in the design
process, in order to increase productivity, and helping in the
developing of complex systems.

REFERENCES
[1] OSHWA: http://www.oshwa.org/
[2] Open Electronics: http://www.open-electronics.org/
[3] Arduino: http://www.arduino.cc/
[4] Hacom: http://www.hacom.net/
[5] Adafruit: http://www.adafruit.com/
[6] Kosagi: http://www.kosagi.com/
[7] Open Compute Project: http://www.opencompute.org/
[8] OpenCores: http://opencores.org/
[9] Freecores: http://freecores.github.io/
[10] OHWR: http://www.ohwr.org/
[11] BeagleBoard.org Foundation: http://beagleboard.org/
[12] Zoybar: http://www.zoybar.net/
[13] SHORES: http://www.imse-cnm.csic.es/shores/
[14] Free Model Foundry (FMF): http://www.freemodelfoundry.com/
[15] TimVideos: http://code.timvideos.us/
[16] Milkymist: http://m-labs.hk/
[17] MinSoC: http://www.minsoc.com/
[18] Leon: http://www.gaisler.com/
[19] OpenSparc:http://www.oracle.com/technetwork/systems/opensparc/in

dex.html
[20] S1 Core: http://www.srisc.com/
[21] F-cpu: http://f-cpu.seul.org/
[22] OpenEmbedded: http://www.openembedded.org/
[23] SourceForge: http://sourceforge.net/
[24] Open Embedded Software Foundation: http://www.oesf.biz/
[25] Embedded: http://www.embedded.com/
[26] M. Wolf and S. McQuitty: “Understanding the do-it-yourself

consumer: DIY motivations and outcomes”. Springer AMS Rev.,
1:154–170, (2011)

[27] O. Johnny, M. Miller and M. Webbink: “Copyright in Open
Source Software – Understanding the Boundaries”. International
Free and Open Source Software Law Review, vol. 2, issue 1, pp
13 – 38, (2010)

[28] OpenCV: http://sourceforge.net/projects/opencvlibrary/
[29] J. Gaisler, S. Habinc, E. Catovic: GRLIB IP Library User’s Manual,

Gaisler Research, 2009.
[30] Acasandrei, L., Barriga, A.: Design Methodology for Face Detection

Acceleration. 39th Annual Conference on IEEE Industrial Electronics
Society (IECON), November 2013.

[31] Acasandrei, L., Barriga, A.: Embedded face detection implementation.
IEEE International Conference of the Biometrics Special Interest
Group (BIOSIG), September 2013.

[32] Berni, J. F., Acasandrei, L., Galan, R.C., Barriga, A., Vazquez, A.R.:
Power-efficient focal-plane image representation for extraction of
enriched Viola-Jones features. IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 3122–3125, 2012

[33] Acasandrei, L., Barriga, A.: Accelerating Viola-Jones face detection
for embedded and SoC environments. 5th ACM/IEEE International
Conference on Distributed Smart Cameras (ICDSC), 2011.

[34] Acasandrei, L., Barriga, A.: Face Identification Implementation in a
Standalone Embedded System. International Symposium on Industrial
Electronics (ISIE), June 2014.

[35] Acasandrei, L., Rodríguez, M.Q., Ribes, A.R., Barriga, A.: Sistema
empotrado reconfigurable para aplicaciones de identificación de caras.
Jornada de Computacion Reconfigurable y Aplicaciones (JCRA),
Madrid 2013.

[36] Fularz, M., Kraft, M., Kasinski, A., Acasandrei, L.: A hybrid system
on chip solution for the detection and labeling of moving objects in
video streams. Signal Processing: Algorithms, Architectures,
Arrangements, and Applications (SPA), pp. 94–99, 2013

[37] Acasandrei, L., Barriga, A.: AMBA bus hardware accelerator IP for
Viola–Jones face detection. IET Computers & Digital Techniques,
vol. 7, no. 5, pp. 200–209, September, 2013

[38] Acasandrei, L., Barriga, A.: Implementación sobre FPGA de un
sistema de detección de caras basado en LEON3. Proceedings of the
XVIII International IBERCHIP Workshop, pp. 6-9, 2012

[39] Acasandrei, L., Barriga, A.: FPGA implementation of an embedded
face detection system based on LEON3. International Conference on
Image Processing, Computer Vision, and Pattern Recognition, Las
Vegas, 2012

[40] Watanabe, Y.; Homma, N.; Aoki, T.; Higuchi, T.; ‘Arithmetic module
generator with algorithm optimization capability’, IEEE International
Symposium on Circuits and Systems, pp.1796-1799, 2008

[41] Arithmetic Description Language: ARITH.
http://www.aoki.ecei.tohoku.ac. jp/arith/

[42] Florent de Dinechin and Bogdan Pasca. Designing custom arithmetic
data paths with FloPoCo. IEEE Design & Test of Computers, August,
2011

[43] FloPoCo: http://flopoco.gforge.inria.fr/
[44] Videology Imaging Solutions, Inc.: http://www.videology.nl/

Proceedings of the World Congress on Engineering and Computer Science 2017 Vol I
WCECS 2017, October 25-27, 2017, San Francisco, USA

ISBN: 978-988-14047-5-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2017

