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Classes of Ordinary Differential Equations
Obtained for the Probability Functions of Burr
XII and Pareto Distributions

Hilary 1. Okagbue, Sheila A. Bishop, Member, IAENG, Abiodun A. Opanuga and Muminu O. Adamu

Abstract— In this paper, the differential calculus was used
to obtain some classes of ordinary differential equations (ODE)
for the probability density function, quantile function, survival
function, inverse survival function, hazard function and
reversed hazard function of Burr XI1 and Pareto distributions.
This was made easier since later distribution is a special case of
the former. The stated necessary conditions required for the
existence of the ODEs are consistent with the various
parameters that defined the distributions. Solutions of these
ODEs by using numerous available methods are new ways of
understanding the nature of the probability functions that
characterize the distributions.

Index Terms— Burr XII distribution, differential calculus,
probability density function, survival function, quantile
function, Pareto distribution.

|I. INTRODUCTION

HE 2-parameter Burr XI1 distribution was considered in

this research. It is a continuous distribution proposed by
Burr [1] but was popularized through the work of [2], where
they applied the distribution to model income distributions.
Tadikamalla [3] reviewed the distribution and suggested
possible relationships with other distributions while a
detailed guide on the application was given by [4]. Al-
Hussaini [5] proposed the detailed nature of the order
statistics. Other aspects of the distribution available
includes: Bayesian estimation [6],[7[,[8], parameter
estimation in the presence of outliers [9], expected Fisher
information [10], Loss function [11], maximum likelihood
in the presence of censored samples [12], estimation of
parameters using order statistics [13], estimation of
parameters under progressive type Il censoring [14],
application of neural network in the estimation of the
parameters [15], minimax estimation of the parameters [16],
entropy based parameter estimation [17], explicit closed
form for the characteristic function [18], reliability analysis
under random censoring [19], estimation with middle
censored samples [20], optimal b-robust estimator [21].
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Other variants, sub models, generalizations of the model
have been studied by researchers such as: log Burr XII
regression model [22], three parameter [23], beta Burr XII
distribution [24], Kumaraswamy Burr XII distribution [25].

The Pareto distribution is a special case of Burr XII was
also considered. Pareto distribution is hierarchal, skewed,
heavy tailed distribution and characterized by scale and
shape parameter. The distribution was famously used in the
modeling of distribution of wealth. Recent applications
include: modeling loss payment data [26], neurophysiology
[27], volatility cluster analysis [28], network management
[29], transportation [30], wage distribution [31[and
modeling flood frequency [32].

The aim of this research is to develop ordinary
differential equations (ODE) for the probability density
function (PDF), Quantile function (QF), survival function
(SF), inverse survival function (ISF), hazard function (HF)
and reversed hazard function (RHF) of Burr XII and Pareto
distributions by the use of differential calculus. Calculus is a
very key tool in the determination of mode of a given
probability distribution and in estimation of parameters of
probability distributions, amongst other uses. The research
is an extension of the ODE to other probability functions
other than the PDF. Similar works done where the PDF of
probability distributions was expressed as ODE whose
solution is the PDF are available. They include: Laplace
distribution [33], beta distribution [34], raised cosine
distribution [35], Lomax distribution [36], beta prime
distribution or inverted beta distribution [37].

Il. PROBABILITY DENSITY FUNCTION

The probability density function of the Burr XII
distribution is given by;

ckx®?
f(X)="—7 (1)
@+ x%)
When ¢ = 1, the distribution reduces to the Pareto
Distribution.
The probability density function can also be written as
f (x) = ckx® ™ (L+ x°) * @)

Differentiate equation (2) to obtain;
—(k+Dc(x* )21+ x°) *+2

f'(x) =ck ©))
+(C—1)X? L+ x°)"*
Simplify to obtain;
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£100 = ck {_ (k +2)c(x=1)? C —1)x°? } @

(1+ XC)(k+2) (1+ XC)(k+l)
The condition necessary for the existence of the equation is
c,k,x>0
When ¢ = 1, equation (4) becomes;
K(k +1
F'(x) = _ _k(k+1) 5)
(L+x)*?

The first order ordinary differential equation for the

probability density function of the Pareto distribution is
given as;

(1+x)*2 f '(x) +k(k+1)=0 (6)
f()= Zkﬂ W
When k =1, 2, n; equation (6) becomes
A+x)°f'(x)+2=0 ®)
L+x)* f'(x)+6=0 )
A+x)"2 ' (x)+n(n+1) =0 (10)
Equation (4) can be simplified further to obtain;
c-1
£1(x) = £ (x) _(k+1)ex N (c-1 a1
@+x°) X

(k +Dex*™ N (c-1)
@+x% X

The first order ordinary differential for the probability
density function of the Burr XII distribution is given as;

Let A(x) =

(12)

f'(xX)—A(x)f(x)=0 (13)
ck
f1)= okt (14)

1. QUANTILE FUNCTION

The quantile function of the Burr XII distribution is derived
from the cumulative distribution function given as:

F(x)=1-(1+x°)* (15)

Q(p) = ( 1 ]k -1 (16)
p

Q(p) = [(l— p)’% —1}C an

Differentiate equation (17), to obtain;

Q(p)= ﬂ(l— o) —1}[° ] o g

i{(l_ p)_i_l}i (1-p)+
o {(1— ) —1} t=p)

The condition necessary for the existence of the equation is

Q(p)= (19)
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c,k>0,0<p<1.
When ¢ = 1, equation (19) becomes;

1(1- p)
Q(p) =+ < p)

The first order ordinary differential equation for the quantile

function of the Pareto distribution is given as;
k+1

k(t-p) * Q(p)-1=0 (21)

Q(0)=0 (22)
Simplify equation (19) using equation (16), equation (16)
becomes;

Q:(p) - [ ] 1
-p

Q@ (p)+1=(-p)* (24)
Substitute equations (17), (23) and (24) into equation (19),

(20)

(23)

to obtain;

Q(p) | Q°(p)+1
Q(p)_ck[Q(p)J[ 1-p j (25)
ck(L-p)Q°(P)Q'(P) =Q(P)(Q°(p) +1) (26)

The first order ordinary differential for the quantile function
of the Burr XII distribution is given as;

ck(1-p)Q°(P)Q'(P) -Q(P)Q° (P +D =0 (7

Q(0)=0 (28)

To obtain the second order equation,
differentiate equation (18) to obtain;

differential

{(1— p)i_l}(i_lj(k+1j(l_ R
oot
@ p)f[%]
(29

"(p) =+
Q(p)_ck ) 1

(30)
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The condition necessary for the existence of the equation is
c,k>0,0<p<l.
When ¢ = 1, equation (30) becomes;

" _1 k+1 (1_ p)7E
Q(|0)—k ( " j(l_p)z (31)

Equation (31) is simplified to obtain the second order
differential equation for the quantile function of the Pareto

distribution, given as;
2k+1

k*(1-p) ¥ Q"(p)—-(k+1) =0 (32)

, 1
Q'(0)= K (33)
Simplifying equation (30) to obtain;

a-pyiaf
(M=~ _ 1 g-p

o [(l— p) —1} (1-p)

1
k+1 1 1-c 1 @-p)«
k 1-p) ek © T (1-p)
P {G—MK—@ P
(34)
The condition necessary for the existence of the equation is
c,k,0<p<l1
Simplify using equations (16) and (19;

oo k+1)( 1 ) (@-c)Q(p)
Q(p)—Q(p){( " )(1_pj+ Q(p) }

k(- p)Q(P)Q"(P) = (k +1)Q(P)Q'(P)
+k(1-c)(1- p)Q"(p)

The second order ordinary differential for the quantile
function of the Burr XII distribution is given as;

k(- p)Q(P)Q"(P) - (k+1)Q(P)Q'(P) an

—k(L-c)(1- p)Q*(p)=0
Q(0)=0 (38)

(35)

(36)

IV. SURVIVAL FUNCTION

The survival function of the Burr XII distribution is given
as:

S(t) = (1+t°)* (39)
Differentiate equation (39), to obtain;
S'(t) = —ckt“ (A +1°) * (40)
Equation (40) can also be written as;
c c\—k
§/(t) = —ck = L) (41)
t (1+t%)

The condition necessary for the existence of the equation is

ISBN: 978-988-14047-5-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

c,k,t>0
When ¢ = 1, equation (41) becomes;
, (1+t)*
S'(t) =—k 42
(t) @y (42)
L+1)“s'(t) =k (43)

The first order ordinary differential equation for the survival
function of the Pareto distribution is given as;

(L+0)'S't)+k =0 (44)
S®-o s
When k =1, 2, n, equation (44) become,
(1+t)*S'(t)+1=0 (46)
(1+1)%S'(t)+2=0 (47)
(L+t)™S't)+n=0 (48)
Simplify equation (41) using equation (39), to obtain;
sty = —ck >0 (49)
t (1+t°)
S'(t) = —ckB(t)S(t) (50)
ckt®
Where B(t) = ) (51)

The first order ordinary differential equation for the survival
function of the Burr XII distribution is given as;

S'(t) + ckB(t)S(t) = 0 (52)
1
S = ox (53)

To obtain the second order differential equation,
differentiate equation (40) to obtain;

_ k 1 c-1y2 1 c\—(k+2)
§7(t) = —ck | TUE YA (54)
+He-Dt?@+t°)

_c(k+1)ck [t—) -ty
t ) (1+t9)

@+t

t? (1+t°)

The condition necessary for the existence of the equation is

c,k,t>0.

When ¢ = 1, equation (55) becomes;

1+1t)7

S"(t) = (k +Dk d+0) .

@+t

The second order ordinary differential equation for the
survival function of the Pareto distribution is given as;

S"(t)=- (55)

+(c-1)ck

(56)

A+1)?S'(t)—k(k +1) =0 (57)
, k
S (1) = _W (58)
When k =1, 2, n, equation (57) become,
(1+1)%S'(t)-2=0 (59)
(1+1)*S'(t)-6=0 (60)
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1+1)™2S'(t)—n(n+1) =0
Simplify using equation (55), to obtain;
S"(t) = - c(k+)t°S'(t)  (c-1S'(t)
t(1+t%) t

5() :_{c(k +Dt°  (c-1)
t(1+1°) t
_ck+Dt® (c-1)
Where D(t) = Tt "

(61)

(62)

}S’(t) =-D@)S'(t)

(63)

(64)

The second order ordinary differential equation for the

survival function of the Burr XII distribution is given as;

S"(t)+ D(1)S'(t) = 0
S() :ik

ck

S0 =2

V. INVERSE SURVIVAL FUNCTION

(65)

(66)

(67)

The inverse survival function of the Burr XII distribution is

given as;

Q(p) = { o }

Differentiate equation (68), o obtain;

-2t

ck

p(kﬂj( pT _ 1)E
ck(p ¥ -1)

Q'(p)=-

(68)

(69)

(70)

The condition necessary for the existence of the equation is

(71)

(72)

(73)

c,k,0<p<1.
Substitute equation (68) into equation (70) to obtain;
,(Ll]
k
Q(p) =P )
ck(p ¥-1)
Q(p) =- (1%('[’)_1
ckp“ “(p *-1)
Q)= 9®)_
ckp(1-p*)

Equation (68) can be further simplify as;
1

Q°(p)=p*-1
p*=Q°(p)+1
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(74)

(75)

P =(@Q(P)+D™ (76)
Substitute equation(76) into equation (73);
: Q(p) Q(P)(Q°(p) +1)
Q (p) =- - c
ko (1_ 1 ) ckpQ°(p)
Q°(p)+1
(77)
() = -2 (PNQ"(P) +D) 8
ckp
Q,(p)z_(Q(pHQ‘“(p)j 79)
ckp

The first order ordinary differential equation for the inverse
survival function of the Burr XII distribution is given as;

ckpQ'(p) +Q(p)+Q"*(p) =0 (80)

Q(0)=0 (81)
When ¢ = 1, equation (80) becomes;

kpQ'(p) +Q(p)+1=0 (82)

VI. HAZARD FUNCTION
The hazard function of the Burr XII distribution is given as:
ckt®*
h(t) =

1+t°
Differentiate equation (83) to obtain;

() = ck[~C(t )2 (L+ )2 + (c Dt 2L +19) Y]
(84)

(83)

(85)

c-1\2 c-2
(1) = ck [— o) e }
1L+t%)?  (@1+t9)
The condition necessary for the existence of the equation is
c,k,t>0
When ¢ = 1, equation (85) becomes;

N |
h(t)_k{ —(1+t)2} (86)

The first order ordinary differential equation for the hazard
function of the Pareto distribution is given as;

L+t (M) +k =0 (87)
k
h®)=> (88)

Simplify equation (85) to obtain;

| O (c-])

h(t)_{ o tc)+ " }h(t) (89)
(D) = { o, e 1)}1@) (0
kth'(t) = —thz(t) +(c—Dkh(t) (91)

The first order ordinary differential equation for the hazard
function of the Burr XII distribution is given as;

KEh'(t) +th2(t) — (c —)kh(t) = 0 92)
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h = &

To obtain the second order
differentiate equation (84) to obtain;

2c(t°)* (L+1°)° = 2¢(c —D)(t* ) (t°?)
h"(t) = ck{ (1+1°) 2 —c(c Dt )t 2)@+t°) >
+(c-DCc-t°@+t)™

(93)

differential equation,

(94)
2t 2c(c-1(E)(t?)
h(t) = 1+t @+t
_cle=DEhHE?) . (c-D(c-2)°?°
(1+1t°)? (1+t°)
(95)

The condition necessary for the existence of the equation is
c,k,t>0
When ¢ = 1, equation (95) becomes;

ey 2
h (t)_k{(mf}

The second order ordinary differential equation for the
hazard function of the Pareto distribution is given as;

(L+1)°h"(t) — 2k =0

(96)

@ M=
(98) Simplify equation (95) to obtain;
2c(t™)’  2c(c-1(t"?)
h(t) = ckte | (1+1°) (1+t°)
I+t° | c(c-D(t) L (e-D(c-2)
(1+t°) t?
(99)
_ {_ c(t)® (C—l)(t”)}
h"(t) = h(t) R T
_cle-)() N (c-1(c-2)
(1+1°) t?

o) () c(t) , (c=2)
h(t)—h(t){ Zc[ j (c- )mef 7 }}

(101)

(e) = h(t){Zh(t) -2 " (th)}

(102)
The second order ordinary differential equation for the
hazard function of the Burr XII distribution is given as;

kt?h"(t) + h(t)[ 2t?'(t) + (e ~1)(th(D) + k(c ~2) | =0
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(103)

c-1 c
h'(1) = k{T__}

7 (104)

VII. REVERSED HAZARD FUNCTION

The reversed hazard function of the Burr XII distribution is
given as:

)= ckt®™* (105)
. A+t)[A+t) -1
Differentiate equation (105) to obtain;
C-Dt* ct @+t~
, thl 1+tc -1 ]
FO=1 )
okt @+ t) A +t9)* 1]
[+t -1
(106)
The condition necessary for the existence of the equation is
c,k,t>0.
., c-1) ct? ckt® (1 +t)* .
j-C )ty
t @+t*) @+tH(@P+t%)" -1
(107)
, (c-1) ct! ok e |
t)= - —(1+t t t 108
i'® { o @+t)°j) ¢ it)  (208)

The ordinary differential equations can be obtained for
particular values of the parameters.
When ¢ = 1, equation (108) becomes;

J(>——{%+(1+t) J(t)}j(t)

The first order ordinary differential equation for the reverse
hazard function of the Pareto distribution is given as;

(1+t)j’(t)+(1+t)“jz(t) +j(t)=0
Q=

(109)

(110) 2(2k )
(111)

The ODEs can be obtained for the particular values of the
distribution which will require further classifications and
analysis. Several analytic, semi-analytic and numerical
methods can be applied to obtain the solutions of the
respective differential equations [38-49]. Also comparison
with two or more solution methods is useful in
understanding the link between ODEs and the probability
distributions.

VIII.

In this paper, differentiation was used to obtain some
classes of ordinary differential equations for the probability
density function (PDF), quantile function (QF), survival
function (SF), inverse survival function (ISF), hazard
function (HF) and reversed hazard function (RHF) of Burr
X1l and Pareto distributions. In all, the parameters that

CONCLUDING REMARKS
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define the distribution determine the nature of the respective
ODEs and the range determines the existence of the ODEs.
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