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Abstract—This letter presents an effective direction of arrival
(DOA) and range estimation algorithm for a single near-field
source. In the proposed algorithm, a correlation function is
firstly constructed based on the array configuration. Then, the
phase which contains the information about the DOA and range
is extracted. By utilizing the least square operation, the closed-
form solutions of DOA and range are obtained. Compared
to the existing high-order statistics based estimate algorithm
which involves spectral search and eigenvalue decomposition
(EVD), the proposed algorithm can provide higher computation
efficiency and improved estimate accuracy. Simulations are
carried out to verify the effectiveness of the proposed algorithm.

Index Terms—Near-field, linear antenna array, source local-
ization, closed-form solution.

I. INTRODUCTION

D IRECTION of arrival (DOA) and range estimation are
important topics of source localization, which have

extensive application prospects in microphone array, radar,
sonar, and navigation. In the far-field scenario (FFS), the
sources are located far from the array, and the range of all
sources is infinity. Hence only the DOA should be estimated.
On the other hand, for the near-field sources (NFS), the
sources are located close to the array, and the received data
is a coupling of the DOA and range. As a result, source
localization for NFS is more complicated than the FFS [1].

Recently, a large number of algorithms have been devel-
oped for localization of the NFS. Two-dimensional (2-D)
multiple signal classification (MUSIC) algorithm have been
presented in [2]. To reduce the computational complexity, W.
Zhi et al. subdivided the uniform linear array (ULA) into two
subarrays [3]. By utilizing the rotational invariance property,
2-D spectrum search is transformed to one-dimensional (1-D)
search, thereby enhancing computational efficiency. J. Liang
et al. proposed a two-stage MUSIC algorithm, in which twice
1-D MUSIC were carried out to achieve source localization
[4]. To some extent, this algorithm reduces the computational
complexity. However, twice 1-D spectral search and the
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Fig. 1: Near-field ULA configuration.

eigenvalue decomposition (EVD) implementation still con-
sume great computational burden. The simplified high-order
estimation (SHOE) algorithm [5] constructs a non-Hermitian
fourth order cumulant matrix, by exploiting twice 1-D spec-
tral search, the localization is achieved. Another well-known
subspace-based algorithm is the high-order estimation of
signal parameters via rotational invariance technique (ES-
PRIT) algorithm [6],[7], which can avoid the tremendous
spectral search. Constructing several fourth-order cumulants,
high-order ESPRIT algorithm makes use of the multiple
rotational invariance properties to accomplish range and bear-
ing estimation. Although the maximum likelihood estimator
(MLE) [8],[9] and weighted linear prediction method [10]
are developed, the computational efficiency is depended on
an iterative procedure.

In this letter, we present a computationally efficient DOA
and range estimation algorithm for a single near-field source.
Unlike the algorithms in aforementioned literature, the pro-
posed algorithm does not require spectrum search or the EVD
operation, which can reduce the computational complexity
to a great extent. By constructing a correlation function
based on the array configuration, the proposed algorithm
provides a closed-form solution of the DOA and range based
on the least square (LS) approach. Compared to the SHOE
[5] and TLS-ESPRIT [6] algorithm, the proposed algorithm
possesses significant efficiency advantage and can achieve
better estimation accuracy.

II. SIGNAL MODEL

Consider a uniform linear array (ULA) with M identical
sensors, the distance between two adjacent elements is d. As
illustrated in Fig. 1, a single narrowband source impinging
on the ULA. The signal received by the mth sensor is then
given by

ym(l) = s(l)ejϕm + nm(l) (1)

where l = 1, 2, · · · , L, and L is the number of snapshots, s(l)
is the source signal, nm(l) is the additive sensor noise, ϕm
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is the phase shift between the signal received by the sensor
1 and sensor m of the single source. In near-field scenario,
ϕm can be expressed as [11],[12]

ϕm =
2π

λ

(√
r2 + (md)

2 − 2rmd sin θ − r

)
(2)

where λ is wavelength, r is range, θ is DOA. When the
source is in the Fresnel region [1], which is satisfying
0.62(D3

/
λ)1/2 < r < 2D2

/
λ, with D is the array aperture,

by applying the second-order Taylor expansion, we have

ϕm = ηm+ γm2 +O

(
d2

r2

)
(3)

where O
(
d2
/
r2
)

is the remainder term of Taylor formula
that is neglected here, and

η=− 2πd

λ
sin θ (4)

γ=
πd2

λr
cos2θ (5)

By omitting the Taylor remainder, the received signal in (1)
can be represented as

ym(l) = s(l)e
j(− 2πd

λ sin θ)m+j
(
πd2

λr cos2θ
)
m2

+ nm(l) (6)

III. PROPOSED ALGORITHM

Under above signal model, we firstly construct a correction
function. The (p, q)th element in the covariance matrix of
received signal is given as

Rp,q = E[yp(l)y
∗
q (l)]

= σ2
se
j(− 2πd

λ sin θ)(p−q)+j
(
πd2

λr cos2θ
)
(p2−q2) + σ2

n

(7)

where (·)∗ represents the complex conjugate, σ2
s and σ2

n are
the power of signal and noise, respectively. Extracting the
phase of Rp,q , we have

ψp,q =

(
−2πd

λ
sin θ

)
(p− q) +

(
πd2

λr
cos2θ

)(
p2 − q2

)
= −2πd

λ

[
(p− q) sin θ −

(
p2 − q2

) d
2r

cos2θ

]
(8)

To guarantee there is no phase ambiguity in ψp,q , it should
satisfy the condition that d/λ ≤ 1/4. Note that the problem
of phase ambiguity can also be solved by [13]. Rewrite (8)
as

ψp,q = −2πd

λ

[
p− q
q2 − p2

]T [
sin θ
d
2r cos

2θ

]
(9)

where (·)T represents the transpose. Assume that p− q = v,
we can express (9) in matrix form as

ψ = HW (10)

where

ψ = [ψ1,1+v, ψ2,2+v, · · · , ψM−v,M ]
T (11)

H = −2πd

λ


v (1 + v)

2 − 12

v
...
v

(2 + v)
2 − 22

...
M2 − (M − v)

2

 (12)

W =

[
sin θ
d
2r cos

2θ

]
(13)

TABLE I: Comparison of the computation complexity.

Algorithms Computation complexity

TLS-ESPRIT O(4×9(M
2
)2L+ 4

3
( 3M

2
)3)

SHOE O(9M2L+ 4
3
M3 +TM2)

Proposed method (M−v)L+(M−v)(L−1)

Note that v is a constant, which can be chosen as
1, 2, · · · ,M − 1. To exploit the greatest degree of array
aperture, we chose v = 2 in all of the simulations.

In practical, assume R̂p,q is the estimate of Rp,q , and ψ̂p,q
is associated phase, by utilizing the LS method, the estimate
of Ŵ can be obtained as

Ŵ = [ŵ1, ŵ2]
T
=
(
HTH

)−1
HT ψ̂ (14)

where ψ̂ =
[
ψ̂1,1+v, ψ̂2,2+v, · · · , ψ̂M−v,M

]T
. According to

(13), the estimate of θ and r can be represented as

θ̂ = arcsin(ŵ1) (15)

r̂ =
dcos2θ̂

2ŵ2
(16)

Here we compare the computation complexity of the
proposed algorithm with the TLS-ESPRIT and the SHOE,
as shown in Table 1. For a single source, the main computa-
tion load of the TLS-ESPRIT lies in constructing cumulant
matrices and performing the EVD. Summing these two
operations, the total computation load of the TLS-ESPRIT
is O(4 × 9(M2 )2L + 4

3 (
3M
2 )3). While for the SHOE, twice

1-D spectrum search is needed. For T points spectrum
search, the total computation load of the SHOE is roughly
O(9M2L + 4

3M
3 + TM2). In comparison, the proposed

algorithm needs neither constructing cumulant matrices nor
performing the EVD, it only requires to formulate multiply
operation in (7), and LS calculation in (14), and the total
computation complexity is (M − v)L+ (M − v)(L− 1).

IV. SIMULATION RESULTS

In this section, several simulations are carried out to verify
the performance of the proposed algorithm, which are also
compared with the SHOE [5], the TLS-ESPRIT [6], and the
CRLB [1]. For the simulations, a ULA with M = 9 and
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Fig. 2: RMSE versus the SNR of DOA estimation.
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Fig. 3: RMSE versus the SNR of range estimation.
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Fig. 4: RMSE versus the number of snapshots of DOA
estimation.

d = λ/4 is utilized, and the noise is additive white Gaussian
noise. A single source is located at (θ, r) = (30◦, 2.3λ). We
define the root mean square error (RMSE) of the estimate
DOA and range as

RMSE =

√√√√ 1

K

K∑
k=1

(x̂k − x)
2 (17)

where K=500 is the number of Monte Carlo trials, x̂i is
the estimated DOA or range of the kth trail, and x is the
corresponding real value.

Figs. 2 and 3 show the RMSE of the DOA and range
against the signal-to-noise ratio (SNR), respectively. The
number of snapshots is set as L = 300, and the SNR is
varying from -5 to 25 dB. From these figures, we can see
that the proposed algorithm has a lower RMSE than the
SHOE and TLS-ESPRIT algorithm for both DOA and range
estimation. Note that the estimate performance is distinctly
enhanced at low SNR, which is ascribed to the proposed
algorithm directly extract phase operation to restrain the
influence of noise.

As shown in Figs. 4 and 5, the RMSE of the DOA and
range versus the number of snapshots are depicted. The SNR
is fixed as 0 dB, and the number of snapshots is varying from
100 to 1500. For the DOA estimation, although the proposed
algorithm exhibits similar RMSE to the SHOE, it is superior
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Fig. 5: RMSE versus the number of snapshots of range
estimation.
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Fig. 6: Run time versus the number of sensors.

to that of the TLS-ESPRIT. For the range estimation, the
RMSE of the proposed method is lower than that of the
other two algorithms.

With regards to the computational efficiency, the simula-
tion time of the proposed algorithm is compared with that of
the SHOE and the TLS-ESPRIT. The simulations are carried
out at MATLAB platform with a PC of Inter(R) Core(TM)
i5-4440 CPU and 8G RAM. The results are averaged over
500 runs. For the search interval is 0.01◦, the computation
consume of the SHOE, the TLS-ESPRIT, and the proposed
algorithm are 0.3029, 0.0113, and 1.3879× 10−4 s, respec-
tively. The runtime versus sensor number is depicted in Fig.
6, in which we can see that the proposed algorithm has much
lower time consuming than the SHOE and the TLS-ESPRIT.

V. CONCLUSION

In this letter, a computationally efficient DOA and range
estimation algorithm is proposed for near-field source. The
key idea of the proposed algorithm is to construct a corre-
lation function matrix whose phase contains the information
of the DOA and range. By solving the correlation function
matrix, the close-form solutions of the DOA and range
are obtained. The proposed algorithm does not need to
construct high-order cumulant matrices or spectral search or
perform the EVD operation. As a result, it is computationally
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efficient. Simulation results demonstrate the effectiveness of
our algorithm.
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