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Abstract—Dynamic Virtual Bats Algorithm (DVBA) is a
relatively new nature inspired optimization algorithm. DVBA,
like Bat Algorithm (BA), is fundamentally inspired by bat’s
hunting strategies, but it is conceptually very different from
BA. In DVBA, a role based search is developed to avoid
deficiencies of BA. Although the new technique outperforms BA
significantly, there is still an insufficiency in DVBA regarding
its exploration, when it comes to high dimensional complex
optimization problems. To increase the performance of DVBA,
this paper presents a novel, improved dynamic virtual bats
algorithm (IDVBA) based on probabilistic selection. The perfor-
mance of the proposed IDVBA was compared with DVBA and
four state-of-the-art BA variants. The algorithms were tested
on 30 optimization problems from CEC 2014. The experimental
results demonstrated that the new search mechanism improved
the performance of DVBA in terms of accuracy and robustness.

Index Terms—dynamic virtual bats algorithm, meta heuristic
algorithm, global numerical optimization.

I. INTRODUCTION

DYNAMIC virtual bat algorithm (DVBA), by Topal and
Altun [13], [14], is another meta-heuristic algorithm

inspired by bats ability to manipulate frequency and wave-
length of emitted sound waves. DVBA is not a classic Bat
Algorithm [17] variation, it is a new simulation of the bat’s
hunting strategies. In DVBA, a role-based search is devel-
oped by using just two bats to improve the Bat Algorithm.
Recently, DVBA has been tested on well-known test func-
tions [13] and supply chain cost problem [15]. Experimental
results show that, DVBA is suitable for solving most of the
low dimensional problems. However, DVBA, similar to other
evolutionary algorithms, has some challenging problems. For
example, the convergence speed of DVBA is slower than
other population-based algorithms like PSO [9], GA [5], BF
[12], and BA. The convergence issue of these algorithms was
resolved through the latest variants [4] [19]. Additionally,
in high dimensional multimodal problems, escaping from
the local optima traps becomes a difficult task for DVBA.
Therefore, accelerating convergence speed and avoiding the
local optima have become two of the most important issues
in DVBA.

To minimize the impact of this weakness, this paper pro-
poses an improved solution which accelerates convergence
speed and avoids the local optima trap. To achieve both
goals, we introduce a new search mechanism for the ex-
plorer bat. This new search mechanism improves the search
performance and gives DVBA more powerful exploitation
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Fig. 1. Explorer bat is searching for prey with a wide search scope.
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Fig. 2. Exploiter bat is chasing prey with a narrow search space.

capabilities. Simulations and comparisons based on several
well-studied benchmarks demonstrate the effectiveness, effi-
ciency, and robustness of the proposed IDVBA.

The rest of this paper is organized as follows. Section
2 summarizes DVBA. The improved DVBA algorithm is
presented in Section 3. Section 4 presents simulation results
on the use of IDVBA for solving CEC 2014 test functions.
Finally, conclusions are drawn in Section 5.

II. DYNAMIC VIRTUAL BATS ALGORITHM (DVBA)
When bats search out prey, they burst sound pulses with

lower frequency and longer wavelengths so the sound pulses
can travel farther. In this long range mode it becomes
hard to detect the exact position of the prey; however, it
becomes easy to search a large area. When bats detect
prey, the pulses will be emitted with higher frequency and
shorter wavelengths so that bats are able to update the prey
location more often [1], [7]. In DVBA, two bats are used
to imitate this hunting behavior. Each bat has its own role
in the algorithm and during the search they exchange these
roles according to their positions. These bats are referred
as explorer bat and exploiter bat. The bat that is in a better
position becomes the exploiter meanwhile the other becomes
the explorer.

In Fig.1 and Fig.2 [13], the hunting strategy of a bat is
simulated. The black triangle is the current solution (bat loca-
tion), the black circles are the visited solutions on the search
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Algorithm 1 DVBA pseudo code. fgbest is the global best solution and d is the number of dimensions. [13]

1: Objective function f(x), x = (x1, ..., xd)
T

2: Initialize the bat population xi(i = 1, 2) and vi
3: Initialize wavelength λi and frequency fi
4: Initialize the number of the waves
5: while (t < Max number of iterations) do
6: for each bat do
7: Create a sound waves scope
8: Evaluate the solutions on the waves
9: Choose the best solution on the waves, h∗

10: end for
11: if (f(h∗) < f(xi)) then
12: Move to new solution
13: Decrease λi and increase fi
14: else if (f(xi) > fgbest) then
15: Change the direction randomly
16: Increase λi and decrease fi
17: else if (f(xi) = fgbest) then
18: Minimize λi and maximize fi
19: Change the direction randomly
20: end if
21: end if
22: Rank the bats and find the current best xgbest
23: end while
24: end while

waves in this iteration, and ”+” sign represents prey. During
the search, the explorer bat’s search scope gets its widest
shape; the distance between the search waves and the angle
between the wave vectors (red dashed arrows) get larger (see
Fig. 1). On the contrary, if the bat becomes the exploiter
bat, its search scope gets its narrowest shape; the distance
between the search waves and the angle between the wave
vectors get smaller (see Fig.2). The number of the visited
solutions is same for both bats, just the distance between
the solutions changes dynamically by using wavelength and
frequency. The wavelength and the distance between the
solutions are proportional. The frequency and the angle
between the wave vectors are inversely proportional.

The algorithm determines the best solution in the bat’s
search scope. If it is better than the current location (so-
lution), the bat will fly to the better solution, decrease the
wavelength and increase the frequency for the next iteration.
These changes are targeting to increase the intensification of
the search. Unless there is no better solution than the current
solution in the search scope, the bat will stay on it, turn
around randomly and keep scanning its nearby surrounding
space. It will keep spinning in this position and expanding its
search scope until it finds a better solution. The basic steps
of the algorithm for minimizing an objective function f(x)
are shown in Algorithm 1.

III. PROPOSED NOVEL IMPROVED DYNAMIC VIRTUAL
BATS ALGORITHM (IDVBA)

A. The weakness of DVBA

In DVBA, the explorer bat’s search scope size is limited
by the wavelength. This search scope might not be large
enough to detect better solutions near its surrounding space.
Thus, it is very likely that the explorer bat will be trapped

in a local optimum. In addition, the exploiter bat’s search
scope size becomes very small during the exploitation and it
moves very slowly. Therefore it might need too much time
to reach the global optima. These problems in DVBA have
been eradicated by introducing probabilistic selection restart
techniques in IDVBA.

The concept of IDVBA is analogous to the idea behind the
Micro-Particle Swarm Optimizer [6] and the Micro-Genetic
Algorithm [10], where a set of restart operations are executed
after the population has converged. However, IDVBA uses
restart operations according to the bats’ stagnancy during
the search and it doesn’t blacklist the inferior solutions as in
micro-genetic algorithm.

B. Improved Dynamic Virtual Bats Algorithm (IDVBA)

To improve the search performance and give DVBA more
powerful search capabilities, we introduce two probabilistic
selections: R - random flying probability and C - convergence
probability. If the explorer bat is stuck in large local minima,
it chooses to fly away from the trap randomly with a
probability R related to number of unsuccessful attempts.
In addition, it chooses to fly near to the exploiter bat with
a probability C related to the number of escapes attempted
from the traps. R is calculated as follows:

Rt+1
i = Rt

i[1− exp(−trialiγ)], (1)

where γ constant and triali denotes the number of unsuc-
cessful attempts. Obviously, the higher the triali is, the
greater the probability that the explorer bat might fly away
from the trap to a random solution in the search space. As the
unsuccessful attempts increase, the random flying probability
Ri decreases and the possibility of rand() < Ri being true
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Algorithm 2 IDVBA pseudo code. fgbest is the global best solution and d is the number of dimensions. The code we
discuss in the text is in boldface.

1: Objective function f(x), x = (x1, ..., xd)
T

2: Initialize the bat population xi(i = 1, 2) and vi
3: Initialize wavelength λi and frequency fi
4: Initialize the number of the waves
5: Ci = Ri = 1.0
6: while (t < Max number of iterations) do
7: for each bat do
8: Create a sound waves scope
9: Evaluate the solutions on the waves

10: Choose the best solution on the waves, h∗
11: end for
12: if f(h∗) < f(xi) then
13: Move to new solution
14: Decrease λi and increase fi
15: triali = 0
16: else if f(xi) > fgbest then
17: Calculate the random flying probability Ri by Eq.1
18: if rand() ¡ Ri then
19: Change the direction randomly
20: triali = triali + 1
21: else
22: Restart the search from a random position
23: Reset Ri and triali
24: rflyi = rflyi + 1
25: Calculate the Ci by Eq.2
26: end if
27: if rand() > Ci then
28: Produce a new solution around the exploiter bat.
29: Reset Ci and rflyi

30: end if
31: Increase λi and decrease fi
32: else if f(xi) = fgbest then
33: Minimize λi and maximize fi
34: Change the direction randomly
35: Reset rflyi and triali
36: end if
37: end if
38: Rank the bats and find the current best xgbest
39: end while
40: end while

(line 17 in Algorithm 2) increases. This can help the explorer
bat to escape from the local optima trap rapidly. However,
the explorer bat should not leave the trap without exploring
the nearby surrounding space. Thus, γ should be chosen
carefully.

The convergence probability C gives possibility to the
explorer bat to converge with the exploiter bat, instead of
exploring a random position. Thus, the exploitation speed
will be increased rapidly around the best position. Time after
time the explorer bat visits the exploiter bat to speed up the
exploitation process then flies away randomly to keep up
the exploration process. This also increases the exploitation
capability of IDVBA. C is calculated as follows:

Ct+1
i = Ct

i [1− exp(−rflyiγ)], (2)

where rflyi denotes the number of random restarts. As
shown in Eq.(2), the convergence probability C is inversely
proportional with the number of random restarts rflyi done
by the explorer bat. Thus, increasing random restarts will
increase the probability of rand() > C that allows the
explorer bat to visit the exploiter bat often (line 25-26 in
Algorithm 2).
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Fig.3 shows the characteristics of Eq. 2 for different
values of γ as the unsuccessful attempts of the explorer
bat increases. As it can be seen from Fig.3 and Algorithm
2, the higher γ value will keep the explorer bat longer in
local minima. Our preliminary studies have suggested that
the best value for γ is in the range of [2, 4] for the test
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functions we use in this work. R is calculated with the same
equation used for C Eq. 2 but with different values of γ.
Therefore Fig.3 shows the characteristics of Eq.1 as well.
By properly choosing the value of γ, we can prevent bats
from local minima traps while allowing them to explore and
exploit the nearby surrounding space without experiencing
too many unnecessary random jumps. In our experiments,
we set γ = 2 for R and γ = 3 for C. According to all these
approximations and improvements IDVBA can be given as
in Algorithm 2. The differences from DVBA are shown in
boldface font.

IV. EXPERIMENTS

This section presents an extensive comparisons among
the performances of six algorithms. IDVBA is compared
with DVBA and four state-of-the-art BA variants: Adap-
tive Bat Algorithm (ABA) [16], Novel Adaptive Bat Al-
gorithm (NABA) [8], Local Memory Search Bat Algorithm
(LMSBA) [18], and Chaotic Local Search-based Bat Algo-
rithm (CLSBA) [2].

In our experimental studies, parameter settings of the al-
gorithms are same as in their original papers. The population
size of the algorithms has been kept as 50.

All the algorithms are developed using Anaconda Python
Distribution environment and run a PC with a 3.0 GHz CPU
and 8.00 GB of RAM.

A. Test Functions

To provide a comprehensive comparison, all thirty CEC
2014 test functions are used to conduct this experiment. The
descriptions of these functions are given in [11]. In CEC
2014 test suits, f1 − f3 are rotated unimodal, f4 − f16 are
shifted and rotated multimodal, f17 − f22 are hybrid, and
f23 − f30 are composition test functions.

B. Comparison Experiments

This paper aims to test the quality of the final solution
and the convergence speed at the end of a fixed number of
function evaluations (FEs). According to the instructions in
CEC 2014 special session we set the maximum number of
FEs as 3 × 105 and the dimensions of the problems 30-D.
The test results are shown in Table 1 in terms of the mean
error values (MeanErr) and the standard deviation (STDEV)
of the results found over the 30 independent runs by each
algorithm.

Furthermore, we used t-tests [3] to compare the mean error
values of the results produced by the IDVBA and the other
algorithms at the 0.05 level of significance. The statistical
significance level of the results are shown in the Table 1.
In Table 1 ‘−’ indicates that IDVBA is significantly more
successful than selected one at a 0.05 level of significance
by two-tailed test, ‘≈’ means the difference of means is
not statistically significant and ‘+’ indicates that the other
algorithm is significantly more successful than IDVBA at a
0.05 level of significance by two-tailed test.

C. Experimental Results and Discussion

The functions f1, f2, and f3 are unimodal and non-
separable plate shaped problems. From Table 1, it can be

seen that these functions are very hard to optimize and the
algorithms did not show a significant success. By analyzing
their t-test values, we can see that the solutions with IDVBA
are significantly better than that with other algorithms, fol-
lowed by NABA. For the function f3, except DVBA, IDVBA
is outperformed by other algorithms. NABA has the best
solutions in terms of mean error values, followed by CLSBA.

The test functions in second group (f4 - f16) are simple
multi-modal. The t-test values show that the performance
of IDVBA is significantly better than that of other five
algorithms. In this group, DVBA remained the toughest
competitors of IDVBA in most of the functions.

The third group (f17−f22) has six hybrid functions which
are almost same as real-world optimization problems [11].
On these functions, IDVBA exhibits better performance than
other algorithms. For function f20, LMSBA, NABA, and
ABA have less mean error values than that of IDVBA.
LMSBA, CLSBA, and NABA performed comparable to
IDVBA on f19. In this group, LMSBA and NABA also find
competitive solutions compared with IDVBA, as their t-test
values reflect.

In group four, there are eight composition functions.
The composition function merges the properties of the
sub-functions better and maintains continuity around the
global/local optima. We can observe that, the performance of
IDVBA is superior overall to that of five competitors. Only
for function f24, LMSBA performed better than IDVBA in
terms of the mean error values.

We observe that IDVBA found effective results in most
cases, which implies that IDVBA by its improved search
mechanism is more competent in tackling complex problems
than DVBA.

Additionally, we can observe that among the BA’s variants,
NABA has the best performance in terms of the mean,
followed by LMSBA.

V. CONCLUSION

In order to apply DVBA to solve complex high dimen-
sional problems efficiently, this paper proposes a novel
improved dynamic virtual bats algorithm, namely IDVBA.
The proposed algorithm employs two probabilistic selections
- random flying probability R and convergence probability
C. They are used to prevent the bats from falling into the
local minimum traps, accelerate the convergence speed, and
increase the accuracy. Results show that we achieved our
goal efficiently with the new search mechanism.

To prove the effectiveness and robustness of the proposed
algorithms, the proposed IDVBA was compared with the
DVBA, ABA, CLSBA, LMSBA, and NABA on all 30
bound-constrained numerical 30-D optimization problems
from CEC-2014. The results demonstrate that the IDVBA
achieves a good balance between exploration and exploitation
and has the best universality on different type of problems.
And we can say that IDVBA in general performs better or
comparable to other algorithms.
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