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Abstract—This paper proposes a highly efficient 128-bit 

AES implementation based on FPGA. The S-box in AES is 

implemented in composite field, and the Common 

Sub-expression Elimination (CSE) algorithm is applied to 

reduce the redundant hardware overhead further more by 

42.22% of XOR gates and 52.73% of AND gates. Then we 

analyze the delay of each arithmetic unit and use pipeline in 

the proper position to improve the throughput without 

bringing extra resource consumption. The experiment shows 

that our strategy can achieve the throughput of 93.54Gbps at 

the cost of 5081 slices on a Xilinx Virtex-6 XC6VLX240T 

device. The efficiency of our implementation is 18.41 

Mbps/Slice which is much higher than the previous works. 

 

Index Terms—AES, High efficient, Composite field, CSE, 

Pipeline, FPGA 

I. INTROCTION 

N 2001, National Institute of Standards and Technology 

(NIST) formally adopted the Rijndael algorithm as the 

Advanced Data Encryption Standard (AES) algorithm 

encryption standard. Since then, it has become a research 

hotspot to achieve high throughput and low hardware 

consumption of AES and it’s very necessary for high-speed 

but resource-constrained applications. 

Some methods have been proposed to realize the highly 

efficient AES. Chih-Peng Fan and Jun-Kui Hwang used the 

Content-Addressable Memory method to design a 

high-speed S-box and it achieved the throughput of 

0.867Gbps and 32Gbps respectively in the loop structure 

and the unrolled structure [1]. Chi-Jeng Chang et al. 

designed a 32-bit AES circuit reaching the throughput of 

0.867Gbps with the consumption of 156 slices [2], although 

it occupied little hardware resource, its throughput was too 

low. Shanxin Qu et al. used the external pipelining method 

to accelerate the AES circuit achieving the throughput of 

73.737Gbps with 22994 LUTs, but this method consumed 

too much hardware resources causing the low efficiency [3]. 

In Ref.[4], there is no pipeline in S-box, and in Ref.[5] [6] 
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and [7], the sub-pipelined method was applied reaching the 

throughput more than 80Gbps, however, their pipeline 

strategy was not optimal, and the efficiency still could be 

improved. 

In order to improve the implementation efficiency, we 

use the composite field (CF) arithmetic to design the S-box, 

and the DACSE algorithm is applied to optimize the 

arithmetical units. We can get a compact AES circuit with 

this method. Based on the compact AES achieved, we 

analyze the delay of each unit. Then our pipeline strategy is 

carried out to boost the frequency which improves the 

throughput of the implementation. 

The rest of the paper is organized as follows: Section II 

introduces the principle of AES algorithm and CSE 

algorithm briefly. Section III describes the composite field 

implementation of S-box, and applies the CSE algorithm to 

optimize the S-box circuit. The optimal pipelining method 

is represented in Section IV. Section V shows the results of 

our research and the comparison with previous works. 

Section VI concludes this paper. 

II. REVIEW OF AES AND CSE ALGORITHM 

A. Review of AES 

AES is a symmetric block cipher algorithm with a data 

length of 128 bits, a key length of 128 bits, 192 bits or 256 

bits, and the number of round transformation is 10, 12 and 

14, respectively. Our work focuses on the 128-bit key AES. 

During the process, the 128-bit input data is mapped to the 

matrix of 4 by 4 called the State Matrix. Fig.1 illustrates the 

process of AES. 
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Fig. 1 Process of AES 

AES algorithm is mainly composed of key expansion and 

round transformation. Key expansion uses the initial key to 

provide round key for each round transformation. In this 

paper, we use the pre-calculation method to expand the 

round key. And there are four parts in round transformation, 

SubBytes (SB), ShiftRows (SR), MixColumns (MC) and 

AddRoundKey (ARK). The last round does not have 

MixColumns. 

SB is the only nonlinear transformation in the round 

transformation, which requires two steps, the first step is 

computing the multiplication inverse (MI) of the input byte 

on the finite field GF(28), the second step is computing the 

affine transformation (AF). SR shifts each row of the State 

Matrix cyclically left to get a new matrix, the first, second, 

third and the fourth row is shift left by zero, one, two and 

three bytes respectively. The MC takes each column of the 
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State Matrix as the target, the column is multiplied by the 

polynomial 3x3+x2+x+2 in the GF(28) field and modulo by 

x4+1. Finally, ARK adds the result of the MC and the round 

key together to get the round transformation result. 

Usually, there are two kinds of the AES overall structure 

as shown in Fig.2, Loop structure and Unrolled structure. 
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(b) Unrolled structure 

Fig.2  AES Overall Structure 

Loop structure consumes few hardware resources but 

achieves low throughput, the unrolled structure can reach 

high throughput by applying the pipeline strategy, but will 

consume a lot of hardware resources. The AES 

implemented in this paper is based on the unrolled structure. 

The optimization method for the hardware consumption 

will be described in Section II. The optimization method of 

the throughput will be explained in the Section III. 

B. Principle of CSE 

Usually there exists redundancy in many expressions 

which consist of exclusive-or operation. In order to reduce 

the redundancy in the AES circuit, we choose CSE 

algorithm to make the circuit become compact. The idea of 

CSE is to identify common sub-expressions (CSs) that are 

present in expressions more than once and replace them 

with a single variable. CSE algorithm can be exploited to 

extract the common factors in all the bit-level equations, in 

order to reduce the hardware cost of combinational logic 

implementation. 

Generally, CSE algorithm involves the following steps: 

i) Identify CSs presenting in the transformation. 

ii) Select a CS for elimination. 

iii) Remove all the occurrences of the selected CS. 

iv) The eliminated CS is computed only once. 

v) Repeat Step i~iv until none of multiple CSs is present. 

Several CSE algorithms have been proposed, and the 

CSE used in this paper is called Delay Aware CSE (DACSE) 

[10]. The DACSE algorithm considers both the hardware 

overhead and the delay of the operation. We take the matrix 

[0x3, 0x7, 0xf, 0xd] multiplication as an example. 
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First, we select x1+x0 into the new factor b1 to get a new 

matrix, then we select the common expression x2+b1 into 

the new factor b2. As we can see, before optimization, the 

circuit needs 8XORs, and delay is 4TXOR, after optimization, 

the circuit only needs 5XORs, and delay is 4TXOR. 

III. THE PROPOSED UNROLLED AES ARCHITECTURE 

A. Reducing Hardware Resource Method 

The hardware overhead of S-box is the largest in the four 

arithmetic units of the round transformation, occupying 

about 75% area of the round transformation. So, we focus 

on the method to reduce the hardware consumption of the 

S-box in this part.  

Usually, there are two kinds of methods to implement the 

S-box, the LUT method and the CF method. In this paper, 

we design a 128-bit AES with full parallel S-boxes used in 

the unrolled structure. Each round transformation needs 16 

S-boxes, there will be 160 S-boxes in ten round 

transformations, and if we add the 40 S-boxes used in the 

key expansion, the entire AES needs 200 S-boxes. If the 

S-box is designed by LUT, it will consume a lot of 

hardware resources like [8]. The method based on 

composite field can reduce the S-box hardware overhead to 

a great degree, so we choose the CF way to achieve a 

compact S-box. In this work, we decompose the finite field 

GF(28) to the composite field GF((24)2) to realize the 

composite field S-box [9]. The method will be introduced 

step by step as follows. 

i) Step1: S-box In GF((24)2) 

In CF technology, an isomorphic mapping matrix is 

demanded to map the input vector from the finite field 

GF(28) to the composite field GF((24)2), and its inverse 

matrix is required to revert the computing results to GF(28) 

at last. So the S-Box based on CF technique can be 

expressed as: 
1 1

( ( ) )Z M X Y    (1) 

where X is the input vector, Z is the output vector, M is the 

affine matrix and δ is the mapping matrix. The S-box in 

GF((24)2) is displayed in Fig.3. 
First, we map the input vector from the finite field GF(28) 

to the composite field GF((24)2), the expression is: 
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(2) 

The mapping operation costs 5XOR gates. Then we make 

MI in composite field GF((24)2). In CF technology, the MI 

over GF(28) is built iteratively from GF(2) by using the 

following irreducible polynomials: 
2

1
2

2
2

3

( )

( )

( ) 1

f z z z

f y y y

f w w w
     

(3) 

In Eq.(3) f1(z), f2(y), f3(w) represent the irreducible 

polynomials of field GF((24)2), GF((22)2) and GF((2)2) 
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respectively. In Ref.[9] the circuit occupies the least 

hardware resources when γ=(0001)2 and λ=(10)2. 
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 Fig.3 S-box Structure in GF((24)2) 

We use the same coefficients. According to Eq.(3), the 

MI over GF(28) decomposed to the GF((24)2) is expressed 

as: 
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(4) 

where {Ah, Al}∈GF(24). From Eq.(4), we can see that the 

MI needs three multiplication units, two addition units, one 

multiplying-constant unit, one inverse unit and one square 

arithmetic unit.  

ii) Step2: Arithmetic Unit Analysis 

We analyze all the arithmetic units in the composite field 

S-box, assuming that a={a3, a2, a1, a0}, b={b3, b2, b1, b0} 

are two operations belonging to GF(24). We assume that 

c={c3, c2, c1, c0} represents the multiplication result of a 

and b, so c=ab mod(x4+x3+x2+x+1) can be expressed as: 
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(5) 

We can see that the multiplication (Mul) needs 21XOR 

gates and 25AND gates. We let d={d3, d2, d1, d0} represents 

the square result, d can be expressed as: 
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(6) 

The square (Squ) needs 3XOR gates. Similarly, we let 

e={e3, e2, e1, e0} represents the result of 

multiplying-constant (MulC) where the constant is 

{λ=(10)2}.The result can be expressed as: 
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And the multiplying-constant needs 3XOR gates. If we 

merge the Squ and MulC together as 

square-multiplying-constant (SquMulC), we can get the 

result f={f3, f2, f1, f0} as follows: 
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(8) 

From Eq.(8), we can see that the merged SquMulC does 

not consume hardware resources. 

When we make inverse (Inv) of a, we can get the result 

expression g={g3, g2, g1, g0} as follows: 
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(9) 

So, the Inv of a needs 21XOR gates and 27AND gates. 

At last, we revert the computing results to GF(28) and 

perform the affine operation, we represent the operation 

using InvMapping, the result is expressed as: 
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(10) 

iii) Step3:Resource Optimization 

In order to reduce the hardware overhead, we adopt the 

DACSE algorithm to optimize the operations appeared in 

the composite field S-box. The DACSE algorithm consider 

both the hardware overhead and the delay of the operation, 

which is very helpful for realizing our pipeline strategy. We 

take the Mul as an example to illustrate the optimization. 

The optimization of the Mul operation is expressed as: 
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Then the product of a and b is: 
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Then we let 

2 2S R r

     

(13) 

So, result is: 
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The optimized Mul operation occupies 15XOR gates and 

16AND gates, and the delay is 3TXOR+1TAND. 

The hardware consumption of each unit is shown in 

TABLE.I. It is obvious that the reduction of hardware 

overhead is quite significant with the optimized method. 

B. High Throughput Implementation 

In order to implement high efficiency AES circuit, we 

need not only to reduce hardware overhead, but also 

improve the circuit throughput. T7he method to reduce 

hardware overhead has been introduced and it is the basis of 

our pipeline strategy. The point is how to use the pipeline 

reasonably to boost the circuit at the low cost of hardware 

resources. 

First, we need to analyze the delay of each arithmetic unit. 

The delay of every optimized arithmetic is shown in 

TABLE.II. 
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TABLE.I HARDWARE CONSUMPTION OF EACH UNIT 

Arithmetic 
Unoptimized Overhead Optimized Overhead 

XOR AND XOR AND 

Mapping 22 0 11 0 

Mul 21 25 15 16 

Squ 3 0 3 0 

MulC 3 0 3 0 

SquMulC 6 0 0 0 

Inv 21 27 16 10 

InvMapping 20 0 13 0 

 

TABLE.II DELAY OF EACH ARITHMETIC UNIT IN S-BOX 

Arithmetic Mapping XOR Mul SquMulC Inv InvMapping 

Delay 3TXOR 1TXOR 3TXOR+1TAND 0 3TXOR+2TAND 4TXOR 
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Fig.4 Proposed Pipeline S-box 
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Fig.5 Proposed Pipeline AES Round Transformation 

Based on the delay shown in TABLE.II, we can insert 

pipeline in S-box. The pipelined S-box is shown in Fig.4. 

The structure in Fig.2 guarantees that the delay of each 

pipeline stage is nearly equivalent, so, it will not bring the 

unnecessary hardware overhead. In Ref. [5] [6] and [11], 

the S-box is pipelined. However, they did not analyze the 

delay of each arithmetic unit in S-box, the pipeline strategy 

was not reasonably enough resulting in the extra hardware 

overhead. 

Based on the pipelined S-box, we design the pipelined 

AES circuit, whose round transformation is demonstrated in 

Fig.5. 

First, we insert pipeline among each round 

transformation forming 10 extern pipeline stages. Inside the 

round transformation, we insert a pipeline after the 

SubBytes forming 5 inner pipeline stages, that’s because the 

delay of MixColumns is 3TXOR, the delay of AddRoundKey 

is 1TXOR, and the total delay is 4TXOR. The total pipeline 

stages in our implementation are 60. 

Our pipeline strategy can make sure the delay of each 

pipelining stage nearly equivalent. This will improve the 

throughput meanwhile taking no extra hardware overhead. 

V. COMPARISION AND RESULTS 

The AES designed in this paper has been implemented 

using the Verilog HDL language. We use Modelsim-10.4 for 

simulation, ISE-14.4 for synthesis and Place and Route. We 

instantiate the design in Xilinx Virtex4 xc4vLX100, Xilinx 

Virtex5 xc5vLX85 and Xilinx Virtex6 xc6vLX240T 

platforms. The implementation results are shown in 

TABLE.III. 
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TABLE.III THE IMPLEMENTATION RESULTS AND COMPARISION WITH PREVIOUS WORKS 

Works Platform Frequency(MHz) Throughput(Gbps) Slices Efficiency(Mbps/Slice) 

Ref.[1] XC4VLX200 250 32 86806 0.37 

Ref.[2] XC2VP2 306 0.876 156 5.62 

Ref.[3] XC5VLX85 576.07 73.74 22994 3.21 

Ref.[4] XC5VLX110T 198.26 22.89 14522 2.11 

Ref.[6] XC6VLX240T 764.059 97.8 10760 9.08 

This Work 

XC4VLX200 544.959 69.75 9857 7.08 

XC5VLX85 552.425 70.71 5237 13.5 

XC6VLX240T 730.727 93.53 5081 18.41 

 

Our implementation can reach the throughput of 

79.98Gbps, 70.71Gbps and 93.53Gbps at the cost of 

11722Slices, 5237Slices and 5081Slices respectively. 

In Ref. [2], the AES is implemented in Loop structure, 

although it occupied little hardware resource, its throughput 

was too low. Compared to Ref.[1] and [4], our 

implementation improve a lot both in throughput and 

hardware overhead, that’s because their S-boxs are not 

designed in composite field, and the pipeline stages are not 

enough. Compared to Ref.[3] [6], although our throughput 

is slightly lower, our hardware consumption is much less 

than they do, so our design is much more efficient. They 

don’t optimize the arithmetic in the S-box, and their 

pipeline strategies are not readonable enough causing the 

extra hardware overhead. 

VI. CONCLUSION 

In this paper, we design a 128-bit unrolled AES based on 

FPGA, the S-box is implemented based on the composite 

field. The CSE algorithm is used to optimize the mapping, 

multiplication, inverse and inverse mapping units in the 

S-box to reduce the hardware overhead. Then we analyze 

the delay of the round transformation, to apply a reasonable 

pipeline strategy to ensure the best performance. The AES 

designed in this paper can reach frequency of 730.727MHz 

in the Virtex6 xc6vLX240T platform, the throughput is 

93.53Gbps at the cost of 5081 Slices and the efficiency of 

the implementation is 18.41 Mbps/Slice. 
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