
 

 

Abstract— In this paper, the differential calculus was used to 

obtain some classes of ordinary differential equations (ODE) 

for the probability density function, quantile function, survival 

function, inverse survival function, hazard function and 

reversed hazard function of the 3-parameter Weibull 

distribution. The stated necessary conditions required for the 

existence of the ODEs are consistent with the various 

parameters that defined the distribution. Solutions of these 

ODEs by using numerous available methods are a new ways of 

understanding the nature of the probability functions that 

characterize the distribution.      

 

Index Terms— 3-parameter Weibull distribution, 

differential calculus, probability density function, survival 

function, quantile function. 

I. INTRODUCTION 

HE 3-parameter Weibull distribution is a variant of the 

Weibull distribution and was obtained to improve the 

flexibility of modeling with Weibull distribution [1]. The 

distribution has been studied by [2], where they estimated 

the shape parameter of the distribution. Cran [3] studied 

extensively the properties of moment estimators of the 

distribution while [4] proposed the robust estimator for the 

3-parameter Weibull distribution. Some other aspects that 

have been studied includes: conditional expectation [5], 

parameter estimation under defined censoring [6-7], 

censoring sampling [8], posterior analysis and reliability [9-

10], minimum and robust minimum distance estimation [11-

12], three-parameter Weibull equations [13], confidence 

limits [14], quantile based point estimate of the parameters 

[15], percentile estimation [16], methods of estimation of 

parameters [17-21]. Strong computational techniques have 

now been used in the estimation of parameters of the 

distribution such as particle swarm optimization [22], 

differential evolution [23].  Li [24] applied the least square 

method in the estimation of the parameters of the 

distribution. Mahmoud [25] observed that the 3-parameter 

inverse Gaussian distribution can be used and apply as an 

alternative model for the 3-parameter Weibull distribution. 

The distribution has been used in the modeling of real life 

 
Manuscript received June 30, 2017; revised July 31, 2017. This work 

was sponsored by Covenant University, Ota, Nigeria. 

 H. I. Okagbue, A. A. Opanuga and J.G. Oghonyon are with the 

Department of Mathematics, Covenant University, Ota, Nigeria. 

 hilary.okagbue@covenantuniversity.edu.ng 

  abiodun.opanuga@covenantuniversity.edu.ng                

 M. O. Adamu is with the Department of Mathematics, University of 

Lagos, Akoka, Lagos, Nigeria. 

situations such as: fatigue crack growth [26], step-stress 

accelerated life test [27], ageing [28], helicopter blade 

reliability [29], cost estimation [30], time between failures 

of machine tools [31].                   

   The aim of this research is to develop ordinary differential 

equations (ODE) for the probability density function (PDF), 

Quantile function (QF), survival function (SF), inverse 

survival function (ISF), hazard function (HF) and reversed 

hazard function (RHF) of 3-parameter Weibull distribution 

by the use of differential calculus. Calculus is a very key 

tool in the determination of mode of a given probability 

distribution and in estimation of parameters of probability 

distributions, amongst other uses. The research is an 

extension of the ODE to other probability functions other 

than the PDF. Similar works done where the PDF of 

probability distributions was expressed as ODE whose 

solution is the PDF are available. They include:  Laplace 

distribution [32], beta distribution [33], raised cosine 

distribution [34], Lomax distribution [35], beta prime 

distribution or inverted beta distribution [36].                        

II. PROBABILITY DENSITY FUNCTION 

   The probability density function of the 3- parameter 

Weibull distribution is given as;            
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with the parameters , , , 0, 0x     .          

To obtain the first order ordinary differential equation for 

the probability density function of the 3-parameter Weibull 

distribution, differentiate equation (1), to obtain;    

 

2

1

1

1

( ) ( )

e

e

x

x

x

x

f x f x

x








 







 

 





 

 





  
 
 

 
 
 

   
  

  
  
       
 

  
 

   
 
 

          (2)        

1

1
( ) ( )

x
f x f x

x


  

  

    
    

    

                     (3) 

Classes of Ordinary Differential Equations 

Obtained for the Probability Functions of  

3-Parameter Weibull Distribution 

Hilary I. Okagbue, Member, IAENG, Muminu O. Adamu, Abiodun A. Opanuga,  

Jimevwo G. Oghonyon 

T 

Proceedings of the World Congress on Engineering and Computer Science 2017 Vol II 
WCECS 2017, October 25-27, 2017, San Francisco, USA

ISBN: 978-988-14048-4-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2017



 

 

The condition necessary for the existence of the equation is 

, , , 0x                                                                         

The differential equations can only be obtained for 

particular values of ,  and  .                                                                              

When 1  , equation (3) becomes;          
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When 2  , equation (3) becomes;  
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When 3  , equation (3) becomes; 
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Equation (3) is differentiated to obtain;        
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The following equations obtained from (3) are needed to 

simplify equation (10);     
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Substitute equations (11) and (14) into equation (10);   
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The condition necessary for the existence of the equation is 

0, 0, ( ) 0, , 0x x f x                                                      

The second order ordinary differential equation for the 

probability density function of the 3-parameter Weibull 

distribution is given by;          
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III.  QUANTILE FUNCTION 

The Quantile function of the 3- parameter Weibull 

distribution is given as;                   
1

( ) ( ln(1 ))Q p p                            (21) 

The parameters are: , 0,0 1p     .                                                                                              

To obtain the first order ordinary differential equation for 

the Quantile function of the 3-parameter Weibull 

distribution, differentiate equation (21), to obtain;        
1
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The condition necessary for the existence of the equation is 

, 0,0 1p     .                                  

Equation (21) can also be written as;       
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Substitute equation (23) into equation (22);         
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Equation (23) can also be simplified as;        
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Substitute equation (25) into equation (24);  
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1
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The differential equations can only be obtained for 

particular values of ,  and  .                                                                              

When 1  , equation (27) becomes;          
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When 2  , equation (27) becomes;          
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When 3  , equation (27) becomes;  
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IV. SURVIVAL FUNCTION 

The survival function of the 3- parameter Weibull 

distribution is given as;                             
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To obtain the first order ordinary differential equation for 

the survival function of the 3-parameter Weibull 

distribution, differentiate equation (35), to obtain;  
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The condition necessary for the existence of the equation is 

0, , , 0t      .                                          
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The differential equations can only be obtained for 

particular values of ,  and  .                                                                              

When 1  , equation (37) becomes;                      
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When 2  , equation (37) becomes;        
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When 3  , equation (37) becomes;        
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Equation (37) is differentiated in order to obtain a simplified 

ordinary differential equation; 
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The condition necessary for the existence of the equation is 

, , , 0t     .                                                                   

The following equations obtained from (37) are needed to 

simplify equation (45);                    
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 Substitute equations (46) and (48) into equation (45);    
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The second order ordinary differential equation for the 

survival function of the 3-parameter Weibull distribution is 

given by;          

 
2( ) ( ) ( ) ( ) ( ) ( 1) ( ) 0t S t S t t S t S t            

                                                                                 (50)

        (0) eS






 
  
                                    (51)

       

1

(0) eS


 

 

 

  
  
 

 
    

 
         (52) 

Alternatively, the ordinary differential equations can be 

derived using the results obtained from the probability 

density function.                                     

Equation (3) can be modified using equation (36) to obtain;  
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When 1  , equation (53) becomes;         
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When 2  , equation (53) becomes;        
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When 3  , equation (53) becomes;         
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V. INVERSE SURVIVAL FUNCTION 

The inverse survival function of the 3- parameter Weibull 

distribution is given as;       
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To obtain the first order ordinary differential equation for 

the inverse survival function of the 3-parameter Weibull 

distribution, differentiate equation (60), to obtain;        
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The condition necessary for the existence of the equation is 

, 0,0 1p     .                                                             

Equation (60) can also be written as;            
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Substitute equations (63) into equation (62);        
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Substitute equation (64) into equation (65);         
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The differential equations can only be obtained for 

particular values of ,  and  . Some cases are considered 

and shown in Table 1.                                     

   

 

 

 

Table 1: Some class of ODE for different parameters of the 

inverse survival function of the 3-parameter Weibull 

distribution         


  


   Ordinary differential equation 

1 1 - ( ) 1 0pQ p  
 

1 2 - ( ) 2 0pQ p  
 

1 3 - ( ) 3 0pQ p  
 

2 1 1 2 ( ( ) 1) ( ) 1 0p Q p Q p  
 

2 1 2 2 ( ( ) 2) ( ) 1 0p Q p Q p  
 

2 2 1 ( ( ) 1) ( ) 2 0p Q p Q p  
 

2 2 2 ( ( ) 2) ( ) 2 0p Q p Q p  
 

                        

  

VI.  HAZARD FUNCTION 

The hazard function of the 3- parameter Weibull distribution 

is given as;          
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To obtain the first order ordinary differential equation for 

the hazard function of the 3-parameter Weibull distribution, 

differentiate equation (70), to obtain;      
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The condition necessary for the existence of the equation is 

, , , 0t     .                                              
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The first order ordinary differential equation for the hazard 

function of the 3-parameter Weibull distribution is given by;
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(74) To obtain the second order ordinary differential 

equation for the hazard function of the 3-parameter Weibull 

distribution, differentiate equation (71);      
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The condition necessary for the existence of the equation is 

, , , 0t     .                                                                 

Two ordinary differential equations can be obtained from 

the simplification of equation (75);                        

ODE 1; Use equation (70) in equation (75);  
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ODE 2; Use equation (71) in equation (75)       
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To obtain the third order ordinary differential equation for 

the hazard function of the 3-parameter Weibull distribution, 

differentiate equation (75);      
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the simplification of equation (81);                                               

ODE 1; Use equation (70) in equation (81);  
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VII. REVERSED HAZARD FUNCTION 

The reversed hazard function of the 3- parameter Weibull 

distribution is given as;         
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To obtain the first order ordinary differential equation for 

the reversed hazard function of the 3-parameter Weibull 

distribution, differentiate equation (89), to obtain;              
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The condition necessary for the existence of the equation is 

, , , 0t     .          
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The differential equations can only be obtained for 

particular values of ,  and  .                                                                              

When 1  , equation (92) becomes;        
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When 2  , equation (92) becomes;       
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Equation (92) is differentiated to obtain;         
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The condition necessary for the existence of the equation is 

, , , 0t     .                                                                        

The following equations obtained from (92) are needed to 

simplify equation (97);  
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Substitute equations (98) and (101) into equation (97); 
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The ODEs can be obtained for the particular values of the 

distribution. Several analytic, semi-analytic and numerical 

methods can be applied to obtain the solutions of the 

respective differential equations [37-51]. Also comparison 

with two or more solution methods is useful in 

understanding the link between ODEs and the probability 

distributions. 

VIII. CONCLUDING REMARKS 

 In this work, differentiation was used to obtain some 

classes of ordinary differential equations for the probability 

density function (PDF), quantile function (QF), survival 

function (SF), inverse survival function (ISF), hazard 

function (HF) and reversed hazard function (RHF) of the 3-

parameter Weibull distribution. In all, the parameters that 

define the distribution determine the nature of the respective 

ODEs and the range determines the existence of the ODEs.  
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