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Abstract—Multicomponent systems are encountered in a
variety of applications. Specifically, modern nanodevices are
composed of a large number of almost identical parts that
function as a unit. If such a system of N components, with
components characterized by random load thresholds {qi},
1 ≤ i ≤ N , is subjected to a load Q, that irreversibly breaks
some weak components, then short sequences of components
failures appear. If the load is applied progressively to the
system, these initial sequences develop in avalanches of failures,
consecutive numbers of functioning components decrease and
the system is driven towards an edge of its functionality. This
limiting state of the system is characterized by the critical load
Qc and the number nc < N of still-functioning components,
whereas Q > Qc triggers an ultimate destruction of the system.
We employ computer simulations to analyze distributions of
Qc and nc. We show, that for a class of nanotechnologi-
cal multicomponent systems, with q governed by a Weibull
distribution pk(q) = kqk−1 exp(−qk), where k is the shape
parameter, the ratio Qc/nc is distributed according to a skew-
normal distribution, whereas nc/N is normally distributed with
mean nc and variance σ scaled as (1 − nc/N) ∼ 1/k7/4 and
σ/N ∼ 1/k, respectively.

Index Terms—avalanches, critical load, evolving failure, mul-
ticomponent system, probability distribution.

I. INTRODUCTION

MULTICOMPONENT systems posses a large number
of identical components that perform a common task.

A possible sequence of failures among these components
decreases the device performance and may eventually lead
to a catastrophic avalanche of failures. This is because, once
the system is subjected to an increasing load it begins to
fail immediately when the internal load intensity equals or
exceeds the critical value of weakest components and the
failure develops in a form of avalanches of simultaneously
damaged elements. More specifically, avalanches appear
when an increasing load eliminates an element from the
working community in such a way that this exclusion alters
the internal load pattern sufficiently to trigger the failure of
the other elements and, in consequence, provoking a wave
of destruction. A common approach to study avalanches of
failures is to apply so-called load transfer models. Among
them, the Fibre Bundle Models (FBM) and Random Fuse
Models [1], [2], [3] are frequently employed in problems
related to technological applications.

Our system is a grid of components represented by a
collection of components located at nodes of a square lattice,
see Fig. 1, and then analyzed within a Fibre Bundle Model
framework [4], [5], [6], [7], [8], [9]. We restrict our analysis
to the case where each component is characterized by two
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Fig. 1. Schematic view of a multicomponent system. Disks represent
components: black disks – intact components, open circles – destroyed
components, white discs – just damaged components with their loads
transferred to nearest components marked by patterned disks.

states: working or failed. We also assume that failed com-
ponents are not repairable. In our simulations, an ensemble
of N components is subjected to a growing load Q, that
systematically eliminates week components and involves
avalanches of failures. This means that when a component
breaks, its load is transferred to the other intact elements
and thus the probability of subsequent failures increases. The
rule of load transfer is a crucial ingredient of the model.
Among many different rules there are two extreme ones:
global (equal) load sharing and local load sharing (LLS)[10],
[11], [12].

Components’ imperfections have impact on the behavior
of systems under load. Due to these imperfections, compo-
nents’ yields are nonuniform and multiple component-failure
modes are represented by the component-load-thresholds. In
simulations these load-thresholds are modeled by quenched
random variables. The two most frequently employed load-
thresholds distributions are uniform and Weibull distribu-
tions. The former one is especially well situated in the
context of engineering systems [13], [14], [15].

II. COMPUTATION METHOD

During the loading process, sequences of simultaneous
ruptures of several components take place. In order to handle
the load partitioning into groups of working components we
employ the LLS transfer rule. Within a short interval be-
tween consecutive failures the load carried by the destroyed
component is transferred only to its closest intact neighbors.
The LLS rule is schematically depicted in Fig. (1) where
white disks represent destroyed components and their closest
neighbors are marked by patterned disks. It is seen that
numbers of nearest intact neighbors vary during the loading
process. Because of such a limited-range-load-transfer, the
distribution of intrinsic load is not homogeneous giving rise
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to appearance of regions of load accumulation throughout
the entire system. The increasing load imposed on the intact
components leads to other failures, after which each intact
component bears growing load. If the load transfer does
not trigger further failures, a stable configuration emerges
meaning that this present value of Q is not sufficient to
provoke destruction of the entire system, and its value may
increase. In the simulations we applied a quasi-static loading
procedure, i.e. if the system is in a stable state the exter-
nal load increases uniformly on all the intact components
by an amount δQ sufficient to break the weakest-working
component and then the increase of load stops until a new
stable state emerges. A series of increases in the value of
the external load gives Qc such that Qc corresponds to
a stable state of the system whereas Qmin = Qc + δQ
induces an avalanche of failures among all still working
components. Application of quasi-static loading allows us
to obtain minimal load Qmin necessary for destruction of all
the components in the system and thus yields Qc and nc that
characterize the system on the edge of its functionality.

In our simulation, component-load-thresholds {qi} , i =
1, . . . , N are independent random variables governed by
the Weibull distributions [13], [16]. The probability density
function of this distribution is given by

pk(q) = kqk−1 exp(−qk), (1)

where the shape parameter k > 0 controls the amount
of disorder in the system. The Weibull distribution, in its
general form, involves a second parameter λ, the so-called
scale parameter. Since this λ scales q and pk(q), respectively
as q̃/λ and p̃k(q̃)/λ, we assume λ = 1 through all our
simulations.

An interesting question is how do component-load-
thresholds {q}, distributed according to (1), combine to yield
such effective quantities as e.g. critical load Qc or limiting
number of working components nc. Along with these global
characteristics, also some local quantities should be analyzed.
Among them, the ratio Qc/nc represents a particular interest
because it reflects an effective-local-load intensity. In this
context, we concentrate on statistical properties of nc and
Qc/nc. Distributions and estimators related to Qc have been
reported in [17].

Based on our numerical simulations, we have found that
coefficient of skewness of distribution of Qc/nc decreases
with the system size and takes negative values for systems
with N > 50 × 50. It turns out that our skewed data are
nicely fitted by a three-parameter skew-normal distribution
(SND) [18], [19] defined by

SND(x) =
erfc

(
−αx−µ√

2σ

)
√
2πσ

exp

[
−
(
x− µ√

2σ

)2
]

(2)

where: µ, σ and α are respectively: location, scale and shape
parameters of the SND.

III. RESULTS AND DISCUSSION

Employing the LLS transfer rule, we simulated the loading
process in a two-dimensional square grid of components with
a number of components ranging from N = 50 × 50 to
N = 100 × 100. We have tuned the amount of component-
load-threshold disorder by integer values of k ranging from
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Fig. 2. Empirical probability density function (pdf) of nc for systems
with N = 1002 components with component-load-thresholds taken from
the Weibull distribution with k = 2. The solid lines represent normally
distributed nc with the parameters computed from the simulations. The
results are obtained from 104 samples.

2 to 9 and each simulation was repeated at least 104 times.
Within such a scenario we have collected large data sets
involving detailed information about loads (Q) and corre-
sponding numbers of destroyed components (n). Based on
these results we have determined statistics relating the both,
critical load Qc and critical number of intact components nc,
along with such empirical estimators as the mean values and
the standard deviations.

A. Distribution of critical number of component

Under the computation method described above we have
gathered long records containing critical numbers of com-
ponents nc. Based on these records we we have studied
the empirical probability density functions. Two of such
empirical functions are presented in Fig. (2), for k = 2,
and in Fig. (9b), for k = 4.

Analysis of all our experimental distributions of nc enable
us to fit these distributions by a normal distribution with a
mean (µ̃) and a variance (σ̃) that can be approximated by
scaling relations: µ̃(N, k) ∼ Nµ(k) and σ̃(N, k) ∼ Nσ(k).
It turns out that the scaled mean can be written as

µ(k) = 1− a(N)

k7/4
, (3)

where the coefficient a(N) depends on system size only and
0 < a(N) < 1 for all N > 50. The scaling (3) is presented
in Fig. (3) for systems with different number of components.
The relative error (µ̃/µ−1) of this approximation lies in the
interval (−0.002, 0.003).

In the same way we have fitted values of σ̃ by a function
σ defined as:

σ(k) =
b(N)

k
, (4)

where 0 < b(N) < 1 for N >> 1. The computed standard
deviation σ̃ and the scaling (4) are displayed in the inset of
Fig. (3). The relative error (σ̃/σ − 1) of this approximation
lies in the interval (−0.034, 0.025) for all simulated systems.
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It is worth mentioning that for systems with component-
load-threshold uniformly distributed over a segment [0, 1]
and LLS transfer rule, the critical number of components
is also normally distributed [20].

B. Distribution of ratio of Qc/nc
Prior to destruction of the system, the applied load attains

its maximal value Qc, i.e. it is the maximal load that can
be carried by the system. In the same time the system
contains a minimal number of components supporting Qc.
This means that Qc/nc represents an average intensity of
imposed load. In a case when all intact components equally
share a load transferred from destroyed components, the
load Qc is composed from values of load-thresholds of
the weakest components. However, within the LLS rule,
that we consider in this work, only components that are
neighbors of a failure suffer from an extra load. This means
that the intensity of imposed load is not uniform and the
set of eliminated components does not involve the weakest
components only. A closer look at collected sets of Qc and nc
yields that they are strongly anti correlated, see Fig. (4). The
Pearson coefficient (r) computed from their distributions has
values r ∈ (−0.96,−0.88) for all collected data. In Fig. (5)
we present an example of an experimental joint probability
distribution built by assembling, sample by sample, the
critical load Qc with the number nc of components working
under Qc.

We start our analysis by comparing values of Qc/nc col-
lected from two groups of systems: (i) systems with growing
number of components while the strength of disorder is
kept constant, i.e. N 6= const., k = const. and (ii) the
size of system is fixed whereas the strength of disorder
varies. Figures (6) and (7) show empirical probability density
functions of Qc/nc for systems representing (i) and (ii),
respectively. In Fig. (6), that corresponds to the case (i), the
maximum of Qc/nc is pushed left for a growing number
of components. This is because for growing N the number
of relatively week components also increases and this gives
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Fig. 3. Mean value µ(k) of scaled critical number of components = nc/N
as a function of the Weibull shape parameter k. Systems with N = 100×
100 components - open disks, systems with 60 × 60 components - filled
disks. The solid lines are drawn using (3). The inset presents variance σ(k)
of nc/N for the same systems. Solid lines are defined by (4). The results
are obtained from 104 samples.
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Fig. 4. Critical number of components nc vs. critical load Qc for
systems with 1002 components and load-thresholds drawn from the Weibull
distribution with k = 4. Sample size is 104.

Fig. 5. Empirical joint probability density function of Qc and nc for
systems with 1002 components and load-thresholds drawn from the Weibull
distribution with k = 4. Sample size is 104.

rise to a growing probability of subsequent failures. This is
in contrast to the case (ii), presented in Fig. (7): increasing
values of k reflect a decreasing variance of component-load-
thresholds and, in consequence, systems with higher values
of Qc/nc.

A careful analysis of data presented in Figs. (6) and (7)
reveals that the experimental distributions of Qc/nc have sta-
tistical properties described by the SND (2). In these plots we
have added fitting lines of skew normal probability density
functions with parameters computed from the samples. We
also present a quantile-quantile (Q-Q) plot of the quantiles
related to one of the collected data set against the corre-
sponding quantiles given by the SND. As it is seen in Fig.
(8), the points closely follow the straight line which indicates
that the set of empirical data comes from the population
with underlying skew normal probability distribution. Beside
the fact, that we display this Q-Q plot only for an estimate
purpose, we have examined our simulated data sets using
different goodness of fit tests. We have also estimated values
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Fig. 6. Empirical probability density functions (pdf) of Qc/nc for systems
with N = 1002 (open circles), N = 802 (triangles) and N = 602

(filled circles) components. Component-load-thresholds are governed by the
Weibull distribution with k = 2 for all presented systems. The solid lines
represent skew-normally distributed Qc/nc with the parameters computed
from the simulations. The results are obtained from at least 104 samples
for each value of N .
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Fig. 7. Empirical probability density functions (pdf) of Qc/nc for
systems with 1002 components and load-thresholds drawn from the Weibull
distribution: k = 2 (open circles), k = 4 (filled circles) and k = 6
(triangles). The solid lines represent skew-normally distributed Qc/nc with
the parameters computed from the simulations. The results are obtained
from 104 samples for each value of k.

of the location, scale and shape parameters of the SND by
employing the maximum likelihood procedure.

We finalize our analysis of quantities, that represent sys-
tems on their edge of functionality, with an example of
the system whose 100× 100 component-load-thresholds are
characterized by the Weibull shape parameter k = 4. This
system is sufficiently large, with still moderate disorder, to
be representative for multicomponent systems studied in this
work. In Fig. (9) we present experimental distributions of
quantities collected during simulations carried out with this
system, i.e. distributions of: nc, Qc, Qc/nc as well as Qc
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Fig. 8. Quantile-Quantile plot of the quantiles of the set of computed
Qc/nc vs. the quantiles of the skew normal probability distribution for
systems with 1002 components and load-thresholds drawn from the Weibull
distribution with k = 4. Sample size is 104.

vs. nc. We have already mentioned that the experimental
distribution of Qc, presented in Fig. (9a) can be fitted
correctly by the Weibull distribution [17]. Also Figs. (4)
and (5) are related to this system, namely they show the
experimental joint probability distribution of Qc and nc.

C. Conclusion

We carried out simulations of progressively loaded mul-
ticomponent systems. We considered components placed in
nodes of a square lattice and characterized by quench random
components-load-thresholds drawn from the Weibull proba-
bility distribution. Based on the presented results of simula-
tion study we conclude that the experimental distributions of
the critical number of components nc as well as the local-
load intensity Qc/nc can be effectively estimated. By fitting
discrete distributions, we have found that on the edge of the
system functionality: (i) the ratio Qc/nc is skew-normally
distributed, (ii) the number of intact components is normally
distributed and (iii) for N >> 1, the mean and variance of
normally distributed nc/N scale like (1 − µ/N) ∼ 1/k7/4

and σ ∼ 1/k, respectively.
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