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Abstract—Application of techniques for modelling of bound-
ary value problems implies three conflicting requirements:
obtaining high accuracy of the results, high speed of the solution
and low occupancy of computers memory (RAM). It is very
difficult to satisfy such requirements particularly in process of
solving large-scale engineering problems. Numerical solution
of these problems require computations on large matrices.
Accurate results can be obtained only by using appropriate
models and algorithms. In the previous papers the authors
applied the parametric integral equations system (PIES) in
modelling and solving boundary value problems. The first
requirement was satisfied - the results were obtained with very
high accuracy. This paper fulfils other requirements by novel
approach to accelerate the PIES. For this purpose the fast
multipole method (FMM) is included into conventional PIES,
therefore the fast PIES method is obtained.

Index Terms—parametric integral equations system, bound-
ary value problems, fast multipole method.

I. INTRODUCTION

FOR many years the authors of this paper have worked on

development and application of the parametric integral

equations system (PIES) to solve boundary value problems.

The PIES has already been used to solve problems modelled

by 2D and 3D partial differential equations, such as: Laplace

[1], [2], Helmholtz [3] or Navier-Lamé [4], [5], [6]. The

remarkable advantage of the PIES, compared to traditional

boundary integral equation (BIE), is direct inclusion in its

mathematical formalism a shape of the boundary of the

considered problem [7]. The shape of the boundary is gen-

erally defined using particular functions. For this purpose,

the curves (eg. Bézier, B-spline, etc.) or surface patches

(such as Coons, Bézier and others) widely used in computer

graphics, were applied in the PIES. The PIES is an analytical

modification of traditional BIE. The above mentioned curves

and surface patches are applied in modelling the shape of

the boundary, instead of the contour integral as in the case

of BIE. Therefore in practice, a small number of control

points is required to define any shape of the boundary. It

is definitely much easier than in case of element methods

(such as boundary element method BEM [8] or finite element

method FEM [9]). Moreover, the accuracy of solutions can

be efficiently improved without interference in modelling the

shape of the boundary.

The former studies focused on accuracy and efficiency

of the results obtained using the PIES in comparison with

the well-known algorithms such as the FEM or the BEM,

as well as analytical methods. These studies confirmed the

effectiveness and accuracy of the PIES in solving 2D [1], [4]

and 3D [2], [5], [7] boundary value problems. The authors

Manuscript received March 14, 2017; revised April 14, 2017.
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also proposed some extensions of the PIES method, i.e. to

solve uncertainly defined problems (interval PIES [10], [11])

or to solve transient problems [12]. The former studies show,

that modelling of the boundary in the PIES is definitely

more simple and efficient compared to the FEM or the

BEM. However efficient solving of large-scale engineering

problems by the PIES is limited (similarly to conventional

BEM) due to the fact, that the PIES in general produces dense

and non-symmetrical matrices. That matrices are definitely

smaller in sizes than in the BEM, although to compute their

coefficients we need O(N2) operations and another O(N3)
operations to solve obtained system using direct solvers

(where N - the number of equations of the algebraic system

of linear equations).

In the paper [13] the authors proposed parallel version

of the PIES obtained using OpenMP, while in [14], [15],

[16] they accelerated numerical computing of coefficients

and solving of the system of linear equations using CUDA

[17]. These approaches reduce quite significantly the time

of computations, however the problem of limited resources

of RAM in PC still exists. Therefore, it not allows for

convenient and efficient solving of large-scale engineering

problems.

In the mid of 1980s of XX century Rokhlin and Greengard

proposed the fast multipole method (FMM) [18], [19], [20],

which allows to reduce the CPU time in the FMM accelerated

methods to O(N), as well as definitely reduce occupancy of

RAM. However, application of the FMM has increased the

complexity of implementation of the PIES. It requires a new

approach for computing coefficients and solving the system

of linear equations.

The main goal of this paper is to present possibility of

acceleration of the PIES for numerical solving of boundary

value problems using the FMM. The main concept of the

FMM is adopted from the FMM-BEM method [20]. However

we think, that inclusion of the FMM into the PIES should

be more effective than into the BEM. It is strictly connected

with the different way of defining of BRC in the PIES and

the BEM. To verify this concept, we need to include the

FMM into conventional PIES. Additionally, we must modify

the way of solving of the linear system of equations and

apply iterative solver. Therefore, we obtain the new fast PIES

method. In our preliminary studies we try to confirm high

efficiency of the fast PIES on the example of polygonal 2D

potential boundary problem.

II. THE PIES FOR TWO-DIMENSIONAL POTENTIAL

BOUNDARY PROBLEM

The PIES for two-dimensional Laplaces equation was

obtained as the result of analytical modification of boundary

integral equations (BIE), where the boundary is defined
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using boundary integrals. The main goal of modification

was inclusion of the shape of boundary in mathematical

formalism of BIE. The shape of boundary is defined by

parametrical linear (or non-linear) functions. The PIES for

polygonal domains is presented by the following formula [7]:

1

2
ul(sk) =

n
∑

j=1

{ sj
∫

sj−1

U
∗

lj(sk, s)pj(s)ds−

−
sj
∫

sj−1

P
∗

lj(sk, s)uj(s)

}

Jj ,

(1)

where: l = 1, 2, ..., n, sl−1 ≤ sk ≤ sl, sj−1 ≤ s ≤ sj, Jj
is the Jacobian, n is the number of parametric segments that

creates polygonal boundary of domain in 2D. In PIES defined

in the parametric reference system, sl−1 and sj−1 correspond

to the beginning of l-th and j-th segment, while sl and sj
to their ends.

Integrands U
∗

lj(sk, s) and P
∗

lj(sk, s) in (1) are presented

in the following form:

U
∗

lj(sk, s) =
1

2π
ln

1
√

S2
1 + S2

2

,

P
∗

lj(sk, s) =
1

2π

S1n
(j)
1 + S2n

(j)
2

S2
1 + S2

2

,

(2)

where: S1 = S
(1)
l (sk)−S

(1)
j (s) and S2 = S

(2)
l (sk)−S

(2)
j (s).

Expressions S
(i)
n (s) (n = j, l, i = 1, 2) are parametric linear

functions

S(i)
n (s) = a(i)n s+ b(i)n , (3)

which describe particular segments of polygonal domain.

Coefficients a
(i)
n and b

(i)
n are obtained in an easy way by

simple algorithm utilizing corner points of polygon.

Similarly to the previous researches [1], [3], [6], the

pseudospectral method [22] was applied to numerical solving

of the PIES (1). Boundary functions are approximated by the

following series:

uj(s) =

N
∑

k=0

u
(k)
j L

(k)
j (s),

pj(s) =

N
∑

k=0

p
(k)
j L

(k)
j (s),

(4)

where u
(k)
j and p

(k)
j are unknown coefficients on segment

j, N - is the number of terms in approximating series

(4), L
(k)
j (s) - the base functions (Lagrange polynomials) on

segment j.

Finally, an algebraic version of PIES (1) is transformed

into system of algebraic equations Ax = b. To solve the sys-

tem, Gaussian elimination with partial pivoting and iterative

refinement is used. Solutions on the boundary are obtained

after solving the system.

III. THE FAST PIES FORMULATION

The FMM is applied to accelerate the solving of equation

(1). The main idea of the FMM is to transform calculating

interactions between segments into interactions between the

cells that create the hierarchical structure (tree) with the

smallest cells (called leaves) containing a number of seg-

ments. Because the PIES for 2D problems is defined on

parametric line s (Fig. 1), the tree structure is created on

the basis of that line, unlike in the FMM-BEM [21], where

whole plane is used. Example of the tree structure for the

fast PIES is presented in Fig. 2.
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Fig. 1. Mapping of the shape of the boundary into parametric reference
system

On the basis of the tree the following steps of the FMM

procedure are performed: multipole expansion (calculation

of moments), moment-to-moment translation, moment-to-

local translation and local-to-local translation. During the

computations, the complex notation is introduced, due to

convienient describing of points on the plane. They are

reduced to the form of P
(c)
1 = P

(1)
1 + iP

(2)
1 (Fig. 1), where

(c) - complex, (1) - coordinate in direction x(1), (2) -

coordinate in direction x(2), i =
√
−1.
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Fig. 2. Example of the tree structure for the fast PIES

1) Multipole expansion: At first, we consider the integral

connected with the kernel U
∗

lj(sk, s). Transformations for

the kernel P
∗

lj(sk, s) are presented in the last subsection.

Considering the complex notation in the kernel (2), it can be
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noted, that:

U
∗

lj(sk, s) = − 1

2π
ln
√

S2
1 + S2

2 =

= − 1

2π
ℜ
{

ln
∣

∣

∣
S
(c)
l − S

(c)
j

∣

∣

∣

}

= ℜ
{

U
∗(c)

lj (sk, s)
}

,

(5)

where S
(c)
l = S

(1)
l + iS

(2)
l , S

(c)
j = S

(1)
j + iS

(2)
j and

U
∗(c)

lj (sk, s) = − 1
2π ln

∣

∣

∣
S
(c)
l − S

(c)
j

∣

∣

∣
, ℜ - real part of complex

number. The collocation point sk is located in the segment

S
(c)
l , and observation point sj in the segment S

(c)
j .

Assuming that introduced point sc (located in the segment

S
(c)
c ), which is the key element of the FMM, is close to the

point sj (Fig. 1), the kernel can be expanded about S
(c)
c using

the Taylor series expansion:

U
∗(c)

lj (sk,s) =
1

2π

{

− ln
∣

∣

∣
S
(c)
l − S(c)

c

∣

∣

∣
+

+

∞
∑

k=1

(k − 1)!
[

S
(c)
l − S

(c)
c

]k

[

S − S
(c)
c

]k

k!

}

.

(6)

In order to simplify the calculations we should change the

base of integration s into S similarly to (3): S = ajs + bj ,

where aj =
P

(c)

j
−P

(c)

j−1

dj−1
and bj = P

(c)
j−1 − (P

(c)

j
−P

(c)

j−1
)sj−1

dj−1
,

j = 1, 2, ..., n. Therefore, new limits of integration are P
(c)
j−1

(lower) and P
(c)
j (upper). We also need to change ds by dS:

dS

ds
= aj => ds =

dS

aj
.

Substituting the kernel U
∗(c)

lj (sk, s) into integral (1) and

Wj = aj , we obtain the following expression:

sj
∫

sj−1

U
∗(c)

lj (sk, s)pj(s)ds =

=

P
(c)
j
∫

P
(c)
j−1

1

2π
pj (S)

{
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∣

∣

∣
S
(c)
l − S(c)

c

∣

∣

∣

1

Wj

+

+
∞
∑

k=1

(k − 1)!
[

S
(c)
l − S

(c)
c

]k

[

S − S
(c)
c

]k

k! ·Wj

}

dS =

=
1

2π

∞
∑

k=0

Uk(S
(c)
l , S(c)

c )Mk(S
(c)
c ),

(7)

where Mk(S
(c)
c ) are called moments about S

(c)
c :

Mk(S
(c)
c ) =

P
(c)

j
∫

P
(c)

j−1

[

S − S
(c)
c

]k

k!

pj(S)

Wj

dS.

They are independent of the collocation point sk and should

be computed once only. Expressions Uk(S
(c)
l , S

(c)
c ) have the

following form:

Uk(S
(c)
l , S(c)

c ) =







− ln
∣

∣

∣
S
(c)
l − S

(c)
c

∣

∣

∣
for k = 0

(k−1)!
[

S
(c)

l
−S

(c)
c

]k for k ≥ 1

where sc are mid-point of leaves.

2) Moment-to-moment translation: If we want to move

the point sc to a new location s′c (when we change the level

of the tree during computations), we can use the following

expression to find new moments about s′c:

Mk(S
′(c)
c ) =

P
(c)

j
∫

P
(c)

j−1

[

S − S
′(c)
c

]k

k!
· pj(S)

Wj

dS. (8)

Taking into account, that:

[

S − S
′(c)
c

]k

k!
=

[

(S − S
(c)
c ) + (S

(c)
c − S

′(c)
c )

]k

k!

and applying the binomial formula:

(a+ b)n =

n
∑

m=0

(

n

m

)

ambn−m
(9)

at last we obtain moments in the point s′c:

Mk(S
′(c)
c ) =

k
∑

m=0

[

S
(c)
c − S

′(c)
c

](k−m)

(k −m)!
Mm(S(c)

c ) (10)

using a finite number of term in the translation.

3) Moment-to-local translation: Assuming, that the point

sel is close to the collocation point sk (see Fig. 1), the

equation (7) can be expanded about S
(c)
el (the segment, where

the point sel is located) using the Taylor series expansion:

sj
∫

sj−1

U
∗(c)

lj (sk,s)pj(s)ds =

=
1

2π

∞
∑

l=0

Ll(S
(c)
el , S

(c)
c )

[

S
(c)
l − S

(c)
el

]l

l!

(11)

where:

L0(S
(c)
l , S(c)

c ) =− ln
∣

∣

∣
S
(c)
el − S(c)

c

∣

∣

∣
M0(S

(c)
c )+

+

∞
∑

k=1

(k − 1)! ·Mk(S
(c)
c )

[

S
(c)
el − S

(c)
c

]k

and

Ll(S
(c)
l , S(c)

c ) = (−1)l
∞
∑

k=0

(k + l − 1)! ·Mk(S
(c)
c )

[

S
(c)
el − S

(c)
c

]k+l
for l ≥ 1.

Points sel, similarly to sc, are mid-points of leaves. Described

procedure is also called local expansion.

4) Local-to-local translation: Similarly to moment-to-

moment translation, the point sel can be moved to new

location s′el (when we change the level of the tree during

computations). It is performed using the binomial formula

(9) and the following transformation:

∞
∑

l=0

l
∑

m=0

=

∞
∑

m=0

∞
∑

l=m

.
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At last we obtain the following local-to-local translation:

sj
∫

sj−1

U
∗(c)

lj (sk, s)pj(s)ds =
1

2π

∞
∑

l=0

(−1)l·

·
{

∞
∑

k=0

∞
∑

m=l

(k +m− 1)! ·Mk(S
(c)
c )

[

S
(c)
el − S

(c)
c

]k+m
·

·

[

S′(c)
el − S

(c)
el

]m−l

(m− l)!

}

·

[

S
(c)
l − S′(c)

el

]l

l!
.

(12)

5) Translations for the kernel P
∗

lj(sk, s): The kernel

P
∗

lj(sk, s) in the complex notation can be computed on the

basis of the following expression:

P
∗(c)

lj (sk, s) =
∂U

∗(c)

lj (sk, s)

∂n(c)
= n(c)

∂U
∗(c)

lj (sk, s)

∂S
, (13)

where n(c) = n1 + in2 - normal vector to segment j in the

complex notation.

Hence

P
∗

lj(sk, s) = ℜ
{

P
∗(c)

lj (sk, s)
}

=

n1ℜ







∂U
∗(c)

lj (sk, s)

∂S







− n2ℑ







∂U
∗(c)

lj (sk, s)

∂S







,
(14)

where ℜ,ℑ - real and imagine part of complex number.

Finally, after calculating the derivative (13) we obtain:

sj
∫

sj−1

P
∗(c)

lj (sk, s)uj(s)ds =

=
1

2π

∞
∑

k=1

Pk(S
(c)
l , S(c)

c )Nk(S
(c)
c ),

(15)

where

Nk(S
(c)
c ) =

P
(c)
j
∫

P
(c)

j−1

[

S − S
(c)
c

]k−1

(k − 1)!

uj(S)n
(c)

Wj

dS.

Expressions Nk(S
(c)
c ), similarly to Mk(S

(c)
c ) (7), are called

moments about S
(c)
c and they are independent of the colloca-

tion point sk and should be computed once only. Expressions

Pk(S
(c)
l , S

(c)
c ) have the following form:

Pk(S
(c)
l , S(c)

c ) =
(k − 1)!

[

S
(c)
l − S

(c)
c

]k
for k ≥ 1,

where sc are mid-point of leaves.

It can be noted, that all translations described in pre-

vious subsections remain exactly the same for the kernel

P
∗(c)

lj (sk, s), except for the fact that N0(S
(c)
c ). Therefore,

we can directly applied them for the moments Nk(S
(c)
c ).

6) The fast PIES algorithm: The fast PIES algorithm runs

in several steps. The first step is to determine the structure of

the tree. On the basis of 2D problems mapped into parametric

reference system (Fig. 1) the structure of the tree is created.

Level 0 cell covers the whole problem. It is the straight line

where the PIES is defined. The length of this line is equal to

the sum of all segments, which created the boundary of the

problem. Level 0 parent cell is divided into two equal child

cells of level 1. Then, dividing is continued in the same way

for each level parent cells. The division is carried out until

the number of segments in a cell is less than or equal to the

predefined maximum number of segments in a cell. Each

cell, which has no children, is called a leaf. The division is

completed if at the highest level we obtained leaves only or

predefined maximum number of levels is reached.

The next step is called upward pass. Starting from the

highest number level, moments in all leaves are computed

(up to k terms in the Taylor series expansion). Then, tracing

the tree structure upward and using moment-to-moment

translation, all moments are computed in each parent cell,

up to the level 2 (Fig. 3).

s1

s''el sc

s'el

sc

s'el

s''c

moment-to-moment

translations

sel

s''el

s'c s'c

local-to-local

translations

moment-to-local

translation

Level

2

3

4

1

0

local expansion

Fig. 3. Translations in the fast PIES

The next step is called downward pass. To clearly de-

scribed this pass, we should define a few terms connected

with cells neighbourhood. Two cells are adjacent at level i if

they have common end. Two cells are well separated at level

i if they are not adjacent at level i, but their parent cells are

adjacent (at level i − 1). Then the interaction list of cell K

is created using the list of well-separated cells from a level

i cell K . Two cells are far cells if their parent cells are not

adjacent.

Coefficients of local expansion are computed starting from

the level 2 and tracing the tree structure downward to

all leaves (Fig. 3). Coefficients of local expansion at cell

K are the sum of the contributions from the cells in the

interaction list of cell K (computed using moment-to-local

translation) and from all the far cells (computed using local-

to-local translation). For a cell K at level 2, only moment-to-

local translation is used to compute coefficients of the local

expansion. At the highest number level, contributions from

leaf K and its adjacent cells are computed directly, as in the

conventional PIES. Finally, we obtain a vector, which is the

result of multiplication matrix A by a vector x and there is no

need to store the entire matrix A in the computer’s memory.

This approach requires the use of iterative solvers for system

of equations (eg. GMRES).

IV. TESTING EXAMPLE

The following example shows the accuracy and efficiency

of the fast PIES in solving 2D potential problems. Intel

Core i5-4590S (4 cores, 4 threads, 3.0 GHz, 6MB cache

memory) with 8 GB RAM was used during tests. Both the

fast and conventional PIES was compiled using g++ 5.4.0
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with -O2 optimization. Numerical tests were carried out on

64-bit Ubuntu Linux operation system (kernel 4.4.0).

The testing example concerns the problem described by

Laplaces equation. The shape of the boundary is shown in

Fig. 4. It is simple boundary problem, however in order

to increase its complexity, we assumed that the edge looks

like a gear with 256 teeth. We used 512 linear segments to

model the problem using both version of the PIES. Boundary

conditions are identical on each tooth and they are presented

in Fig. 4 (where p Neumanns and u Dirichlets boundary

conditions). On each segment we have defined the same

number of collocation points (from 2 to 8) and finally have

solved the system of 1024 to 4096 algebraic equations. We

assumed value of GMRES convergence criterion (GMRES

tolerance) equal to 1e-8 and the number of terms in Taylor

series is 15.

105 mm

10
0 

m
m

u=10
p=1

Fig. 4. The shape of modelled problem

TABLE I
THE FAST PIES VS CONVENTIONAL PIES: CPU TIME AND RAM

OCCUPANCY

No. of CPU time [s]
Speed-up

RAM occupancy [MB]

equations fast PIES PIES fast PIES PIES

1024 0.31 3.06 9.87 1 37

2048 1.18 15.16 12.85 3 112

3072 2.11 43.49 20.61 7 228

4096 3.58 94.28 26.34 12 396

Table I presents obtained results of accelerating calcu-

lations in the fast PIES compared to conventional PIES.

Growing number of equations results in small increase of

computation time in the fast PIES, contrary to conventional

PIES. The fast PIES also needs more than 30 times less RAM

during computations.

Relative error norm L2 between solutions obtained by the

fast and conventional PIES is presented in Table II. The

value of L2 for GMRES tolerance equal 1e-8 do not exceed

0.001% in all cases. Decreasing tolerance to 1e-6 results in

grow of solutions errors (in the worst case L2 norm is less

TABLE II
ACCURACY OF THE FAST PIES SOLUTIONS VS VALUE OF GMRES

CONVERGENCE CRITERION

No. No. of iterations CPU time [s] Rel. error norm [%]

of for GMRES tol. for GMRES tol. for GMRES tol.

eq. 1e-8 1e-6 1e-8 1e-6 1e-8 1e-6

1024 38 9 0.31 0.25 8.36e-5 8.42e-4

2048 150 114 1.18 0.95 9.14e-4 9.26e-4

3072 184 144 2.11 1.72 6.82e-5 0.031

4096 291 176 3.58 2.61 2.41e-4 0.048

than 0.05%), however the number of iterations is reduced, as

well as computation time.
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Fig. 5. Comparison of the CPU time used by the fast PIES and conventional
PIES

Fig.5 presents comparison of used CPU time between

conventional PIES and fast PIES. It should be noted, that

the shape of plotted lines is consistent with theoretical

considerations. Conventional PIES needs O(N2) operations

to compute their coefficients and another O(N3) operations

to solve the system by the direct solver. Application of the

fast PIES is definitely more efficient.

Additionally, we solve the example using a bit old appli-

cation of the FMM-BEM, which has been written in fortran

by the authors of [21]. We want to find solutions comparable

with the fast PIES, therefore the mesh in the FMM-BEM is

composed of 1024, 2048, 3072 or 4096 linear elements (each

teeth is describe by 4, 8, 12 or 16 elements). The example

of discretization (for 1024 elements mesh) of a few teeth of

the gear is presented in Fig. 6. Tolerance of GMRES is 1e-8

and the number of terms in Taylor series is 15.

TABLE III
THE FAST PIES VS THE FMM-BEM: CPU TIME AND RAM OCCUPANCY

No. of CPU time [s] RAM occupancy [MB]

equations fast PIES FMM-BEM fast PIES FMM-BEM

1024 0.31 0.78 1 5

2048 1.18 5.01 3 11

3072 2.11 24.17 7 18

4096 3.58 52.12 12 25

Table III presents obtained results of accelerating calcula-

tions in the fast PIES compared to the FMM-BEM. Growing

number of equations results in small increase of computation

time in the fast PIES contrary to the FMM-BEM. However,
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Fig. 6. Example of the FMM-BEM discretization for 1024 elements mesh

the problem of the FMM-BEM is rather connected with

too big size of allocated RAM compared to really used.

Therefore, we can use maximum 70 elements in a cell.
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Fig. 7. Comparison of the CPU time used by the fast PIES and the FMM-
BEM

Fig.7 presents comparison of used CPU time between the

fast PIES and the FMM-BEM. Application of the fast PIES

is more efficient than the FMM-BEM. However, we should

highlight the fact, that the FMM-BEM program is a bit old.

Additionally, relative error norm L2 computed between the

FMM-BEM and the fast PIES is smaller than 0.1%.

V. CONCLUSION

The paper presents possibility of acceleration of computa-

tion and reduction RAM occupancy for numerical solving of

boundary value problems using the PIES. Verification of this

concept required inclusion of the FMM into conventional

PIES. The numerical example shows significant reduction

of computation time of the fast PIES. The speed-up in

comparison to conventional PIES increases with the size

of the considered problem. We noted almost no difference

between accuracy of solutions obtained by the fast PIES and

conventional one. The fast PIES is also slightly faster than

the FMM-BEM, while accuracy of obtained results is almost

the same.

This paper is our first attempt to use the fast PIES for

solving 2D potential boundary value problems. The presented

technique of acceleration of computations should be extended

to the problems modelled by non-linear segments. Obtained

results suggest that chosen direction of studies should be

continued.
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[16] A. Kużelewski, E. Zieniuk and A. Bołtuć, “Application of CUDA
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