

Abstract— The increasing number of smartphone over the

last few years reflects an impressive growth in the number of

advanced malicious applications targeting the smartphone

users. Recently, Android has become the most popular

operating system opted by users and the most targeted platform

for smartphone malware attack. Besides, current mobile

malware classification and detection approaches are relatively

immature as the new advanced malware exploitation and

threats are difficult to be detected. Therefore, an efficient

approach is proposed to improve the performance of the mobile

malware classification and detection. In this research, a new

system call classification with call logs exploitation for mobile

attacks has been developed using tokenization approach. The

experiment was conducted using static and dynamic-based

analysis approach in a controlled lab. System calls with call logs

exploitation from 5560 Drebin samples were extracted and

further examined. This research paper aims to find the best n

value and classifier in classifying the dataset based on the new

patterns produced. Naïve Bayes classifier has successfully

achieved accuracy of 99.86% which gives the best result among

other classifiers. This new system call classification can be used

as a guidance and reference for other researchers in the same

field for security against mobile malware attacks targeted to

call logs exploitation.

Index Terms— Android mobile malware, mobile malware

classification, system call sequence, tokenization.

I. INTRODUCTION

HE invention of smartphone facilitates human daily life.

Smartphone that offers multiple functionalities has now

becomes a major device for communication. The

smartphone also integrates multiple wireless networking

technology to support other functionality and services such

as social media, GPS, phone call, SMS, MMS, and game

play with high graphic quality [1]. A research reported by e-

marketer shows the number of smartphone users worldwide

Manuscript received July 16, 2017; revised August 8, 2017. This work

was funded by Ministry of Higher Education (Malaysia), FRGS grant:

[FRGS/FST/32/50114].

I. F. Ahmad is with the Faculty of Science and Technology (FST),

Universiti Sains Islam Malaysia (USIM), Bandar Baru Nilai, 71800 Nilai,

Negeri Sembilan, Malaysia. (e-mail: intan_lavender@yahoo.com).

F. Ridzuan is with the Faculty of Science and Technology (FST),

Universiti Sains Islam Malaysia (USIM), Bandar Baru Nilai, 71800 Nilai,

Negeri Sembilan, Malaysia. Phone: +(60)6-7986443; (e-mail:

farida@usim.edu.my).

M. M. Saudi, Sakinah Ali Pitchay, Nurlida Basir and N.F. Nabila are

with the Faculty of Science and Technology (FST), Universiti Sains Islam

Malaysia (USIM), Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan,

Malaysia (e-mail: {madihah, sakinah.ali, nurlida, fatin}@usim.edu.my).

continues to increase every year as shown in Figure 1 [2].

Year 2016 shows the number of smartphone users

forecasted to reach 2.1 billion. By year 2020, this number is

expected to reach around 2.87 billion smartphone users.

Moreover, the increasing number of smartphones gives a

huge impact to the increasing number of malicious

applications [1]. Therefore, protecting smartphone users

from malware attack has become a major challenge.

Fig. 1. Number of Smartphone Users Worldwide from Year 2014-2020 (in

billions).

Recently, Android is the most popular operating system

opted by users [3]. Android users can easily download

thousands of applications in markets and these applications

allow users to freely conduct any customizations and

extensions. Android allow users to install applications from

various sources such as Google Playstore, third-party

markets, Torrents and direct download [4]. This leaves an

open door for attacks on user’s security environment hence

allows the attackers to embed malicious code into the

applications. Ignorant or non-illiterate users could become

victims of these attacks by unconsciously executing the

malicious applications and finally their devices will be

infected by the malware.

 Large number of mobile malware attack are reported

each day and most of the attack are motivated by profit [1].

On March 2016, a report was released by McAfee Lab

which shows more than 12 billion mobile malware cases are

reported and it is continuously increasing every year [5]. A

recent case was reported on May 2017 where the world’s

biggest cyberattack (ransomware attack) has hit more than

150 countries and has paralyzed 300,000 machines from

Android Mobile Malware Classification using

Tokenization Approach based on System Call

Sequence

Intan Nurfarahin Ahmad, Farida Ridzuan, Madihah Mohd Saudi, Sakinah Ali Pitchay, Nurlida Basir

and N. F. Nabila

T

Proceedings of the World Congress on Engineering and Computer Science 2017 Vol I
WCECS 2017, October 25-27, 2017, San Francisco, USA

ISBN: 978-988-14047-5-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2017

various global companies such as FedEx, Nissan, and

Hitachi [6]. Other than that, Check Point’s research team

recently discovered an adware known as “Judy”. It is a

malware found in official Google Playstore which was

released by the Korean company named as Kiniwini. Judy

communicates using Command and Control (C&C) server. It

generates a huge volume of fraudulent advertisement and

forces victims to click it [7].

Malware analysis is a popular research area but with many

unsolved problems. Many researchers have proposed

methods for classification and detection of Android mobile

malware such as identification of expert features, system call

behaviour, permission, and API usage. Approaches for

mobile malware classification and detection can be

categorized into two techniques which are static and

dynamic-based analysis approach. Generally, static-based

approach involves extracting information from the

application’s manifest file without executing it [8].

Meanwhile, dynamic-based analysis extracts the malware

behaviour during its execution in emulator environment.

This approach allows researcher to obtain additional,

detailed information from the suspected applications [8].

Previous works which conduct dynamic-based analysis

approach managed to generate behaviour patterns from

malicious applications [9], [10], [11]. However, most of

them are still lacking in efficiency and accuracy [12].

Efficiency and accuracy are two important characteristics in

performing mobile malware classification and detection,

thus a suitable approach is needed in order to optimize the

performance [13].

In this paper, a hybrid approach which combines both

static-based (permissions features) and dynamic-based

(system call sequences features) analysis are implemented.

Hybrid-based analysis is used to extract permissions and

system calls features related to Android call logs

exploitation. Tokenization approach is used to build a new

classification model which is expected to produce unique

behaviour patterns based on system call sequence.

Combination of hybrid-based analysis and implementation

of tokenization approach for Android mobile malware

classification is proposed to increase the performance of the

malware classification and detection hence producing a

higher result in accuracy.

This paper is organized as follows. Section 2 presents the

previous works related to Android mobile malware

classification and detection techniques. Section 3 presents

the research methodology and the proposed mechanism,

including the processing of permissions and system call

sequences extraction. Section 4 presents the overall

experiment results and finally, Section 5 presents the

summary and potential future works for this research.

II. RELATED WORK

Malware analysis is a very time-consuming activity and

one should have an in-depth knowledge and intelligence to

handle it. A good structure of malware analysis approach is a

great weapon to fight against the dark side of the information

society [14]. Malware analysis usually involves static and

dynamic-based analysis or combination of both, known as

hybrid analysis [4].

Static-based analysis performs observation based on

source codes or binaries without actually running the

program. The results usually show the suspicious patterns

and behaviours that lies in the program [8]. For Android

malware detection, the researcher usually extracts features

such as Requested Permission, API calls, Operation Code

and system call [15]. These features are used to detect

malicious payload and profile malware threats [15]. MAMA

(Manifest Analysis for Malware Detection in Android) was a

technique proposed by the authors to extract several features

by analysing the Manifest file of the Android applications.

They have reported to successfully achieve a high true

positive rate which is 94.83% [16]. Other than that, Droid

Mat was developed to detect Android malware with different

intentions. They analyse 238 Android malware and focus on

extracting API call and manifest file. Other researcher uses

K-means and K-Nearest Neighbour as the classifier and the

result shows 97.87% of classification accuracy [17]. An

experiment by PUMA defines user permissions as their

feature and managed to produce 86% accuracy rate [18].

Meanwhile, an experiment by Drebin uses several features

such as hardware components, requested permissions,

application components, filtered intents, API calls and

network address. They managed to produce 94% accuracy

based on different malware families [19].

 Static-based analysis, however, is not effective against

malware that employ cover-up techniques, such as code

polymorphism and obfuscation. Moreover, this approach is

slightly unstructured and rely heavily on experience and

personal skills [8]. Therefore, dynamic-based analysis also

known as behavioural-based analysis is the alternative

approach to counter the weaknesses of the static-based

analysis. Dynamic-based analysis observes the suspicious

behaviour in a running application. A CopperDroid uses

system call and binder information to see the bad behavior

on suspected application [10]. An experiment known as

CrowDroid has created four artificial malwares and obtained

100% classification accuracy based on its system call

features. However this research focuses only on author-

created malware and the result shows high false positive for

real world malware [9]. Other than that, MALINE tools were

used to detect malicious system call patterns on 4289

android samples. This experiment resulted 93% rate of

accuracy. The result for their experiment were evaluated

using histogram and Markov chain approach [20].

To enhance the accuracy of the detection, researchers

nowadays use the hybrid-based features analysis approach.

AASandbox performed a static and dynamic analysis to

extract and analyse Android features such as permission and

java code from the APK file [21]. Droid-Sec implemented

hybrid-based analysis and the result shows 96.5% true

positive based on 250 benign and 200 malicious samples

[22]. A ProfileDroid has successfully discovered new

unknown behaviours of mobile malware characteristics

based on hybrid-base analysis [23]. Although these

researches produced high positive rates of classification and

detection, but most of the behavioural-based patterns

produced by these researchers are inconsistent in terms of its

string size and data flexibility. Besides, they also suffer from

Proceedings of the World Congress on Engineering and Computer Science 2017 Vol I
WCECS 2017, October 25-27, 2017, San Francisco, USA

ISBN: 978-988-14047-5-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2017

lack of ability in handling huge amounts of features

collected from the applications. These weaknesses can lead

to low classification and detection accuracy rate. Therefore,

a suitable approach is needed to increase the performance of

the mobile malware classification and detection rate.

III. RESEARCH METHODOLOGY

This experiment proposes an Android mobile malware

classification based on system call that is expected to exploit

call logs. The tokenization approach is used to produce a

unique system call sequence patterns. This research

implements a hybrid-based analysis approach where

permission feature is extracted during static analysis and

system call feature is extracted during dynamic analysis. An

initial experiment was conducted using 5560 Android

malware samples from Drebin dataset [19]. A controlled

laboratory environment is developed as illustrated in Figure

2. In this experiment, an emulator from Genymotion [24]

was used with Android version of 4.1.1 and API level 16.

This emulator runs in Windows 8 with 8GB of RAM.

Fig. 2. Lab Architecture

A. Permission-Based Analysis Phase

The permission-based analysis is a static analysis

approach. In this phase, all permissions related to call logs

exploitation were extracted as shown in Figure 3.

Fig. 3. Permission-Based Analysis

 First, 5560 malicious samples from Drebin [19] are used

for static-based analysis. In this stage, “Virustotal” is an

online tool used to retrieve requested built-in Android

permissions from each sample. Application with at least one

specific permission related to user call logs exploitation will

then be used for further analysis. Table 1 shows the list of

permissions expected to trigger user call logs exploitation.

These permissions are chosen based on its function and

ability to perform suspicious activities in user call logs.

After going through permission-based analysis, malicious

applications that are suspected to exploit call log will then

go for the dynamic-based analysis.

TABLE I

PERMISSIONS THAT EXPECTED TO EXPLOIT CALL LOGS

Permissions Function Category

CALL_PHONE Malicious apps

may place

unnecessary and

illegal calls

Service that

cost user’s

money

CALL_PRIVILEGED Malicious apps

may place

unnecessary and

illegal calls to

emergency

services

Service that

cost user’s

money

PROCESS_OUTGOING

_CALLS

Malicious apps

can automatically

make a phone call

Service that

cost user’s

money

READ_CALL_LOG Malicious apps

able to read, save

and share call log

data without user

notice

Service that

gather

user’s

personal

information

READ_CONTACTS Malicious apps

able to read user’s

contact

Service that

gather

user’s

personal

information

READ_PHONE_STATE Malicious apps

able to access

features such as

phone number and

serial number of

the phone

Service that

gather

user’s

personal

information

B. System Call-Based Analysis Phase

The system call–based analysis phase consists of two main

processes which are system call recorder and system call

analyzer as shown in figure 4. In the first process, system

call sequences of all suspected applications are extracted.

This process is conducted in Genymotion VM environment

[24]. The system call can only be triggered through user

interaction with the running application. Therefore, monkey

tool is used to generate pseudo-random gestures such as

keystrokes, touches, and gestures on a devices or on an

emulator [20]. With this tool, researcher can obtain

consistent result as it allows user to manipulate the command

based on requirement. Next, each application will go

through 1000 random events or gestures generated at a time.

The process of the system call recorder involved the

following steps:

 Suspected application is installed in the emulator

 ADB shell monkey is used to trigger system call event

 Strace tools is used to record the system call

 The extracted system call is stored as Strace log for

further process

Proceedings of the World Congress on Engineering and Computer Science 2017 Vol I
WCECS 2017, October 25-27, 2017, San Francisco, USA

ISBN: 978-988-14047-5-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2017

Finally, all recorded system calls for each suspected

malicious application are stored as Strace log file for further

analysis.

The system call analyzer consists of two main sub-

processes. Firstly, the Strace log files are transferred to

system calls sequenced patterns database. Each of the

recorded system call is noted as 1 to indicate the presence of

the system call while 0 indicates the absence of the system

call. This step will produce string of binary number to

represent the initial system call patterns for each application.

Next, each of the binary patterns will be compared

individually to avoid redundancy. Only unique patterns of

system call sequences expected to exploit call logs are

produced.

Fig. 4. System Call-Based Analysis

C. Tokenization of System Call Sequence Phase

In this phase, the extracted malicious system call sequence

is converted into new unique patterns using tokenization

approach. Unlike previous research, the covering algorithm

successfully produced 60 patterns from malicious system

call sequence but shows inconsistencies for the pattern’s

string size [1]. The system calls trigger was different for

each application hence various system call string length were

produced. Therefore, tokenization approach is implemented

in this research with the aim to produce a consistent

pattern’s string size with high data processing flexibility.

Figure 5 shows the working flow of the system call sequence

classification that uses tokenization approach.

Fig. 5. System Call Sequence Classification using Tokenization approach

Tokenization approach consists of three main processes.

First, the raw system call sequence extracted during the

dynamic analysis are converted into binary value. Next, the

binary patterns are then converted into hexadecimal value.

This process will reduce the string size and produce

consistent patterns string. Finally, tokenization approach is

implemented to the new hex-value patterns to classify or

break them up into a smaller pieces of input string [25].

Figure 6 shows the processes of the tokenization approach

implemented in this experiment. The hex-value patterns are

divided into a five n different dataset includes n=1, n=2,

n=3, n=4 and n=5 where n indicates the number of

tokenization group.

Fig. 6. Tokenization Process for System Call Sequence Classification

D. Behavior-Based Classification Evaluation Phase

This phase will evaluate the new malicious system call

patterns expected to exploit call logs. The unique malicious

system call patterns are further classified as malicious type

or benign type malware to find the optimum n-value,

classifier and the accuracy of the classification performance.

Four classifiers which are SVM, Random Forest, Naïve

Bayes, and J48 were run using WEKA 3.8.10 [26]. These

classifiers are widely used by previous researchers [11] [19]

[27] as they are able to deal with large instances and features

such as in text classification, patterns analysis and

bioinformatics [28].

The new system call patterns are evaluated based on its

classification accuracy. This classification accuracy is

determined based on the number patterns that are correctly

classified as malicious patterns. The best n value and

classifier are chosen based on the number of system call

patterns that generates the highest classification accuracy.

IV. RESULT AND DISCUSSION

In this section, results related to samples extraction

analysis and system call classification are presented and

discussed.

A. New Unique Patterns

For this experiment, static and dynamic-based analysis are

performed on 5560 samples of malicious application

collected from Drebin [19]. Specific features were extracted

in different phases. The first phase is the permission-based

analysis where any application with the permissions features

related to call logs exploitation as shown in Table 1 are

categorized as malicious application. Next, a deep analysis

Proceedings of the World Congress on Engineering and Computer Science 2017 Vol I
WCECS 2017, October 25-27, 2017, San Francisco, USA

ISBN: 978-988-14047-5-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2017

or dynamic analysis is carried out on the suspected malicious

applications. In this phase, system calls from running

applications are extracted. This phase will identify the

behavior of each application based on user interaction. The

extracted raw system calls will then be transferred to the

system call sequence database. Next, each system call

sequence log is compared to one another to eliminate

redundancy, thus only unique system call patterns remained.

From 5560 malicious application samples used in this

experiment, 464 patterns of malicious system call sequence

expected to exploit call logs were generated.

A tokenization approach is implemented in this

experiment to reduce the pattern’s string size and produce a

consistent system call string length for each pattern.

Furthermore, this approach increases the data flexibility by

implementing a unique hex-value for each pattern hence

optimizing the performance of mobile malware classification

and detection. Figure 7 shows the examples of system call

patterns in binary value which have been converted to hex-

values.

Fig. 7. Examples of 464 of malicious system call patterns conversion of

binary value to hexadecimal value

B. Behavior-Based Classification Accuracy

In this experiment, four popular classifiers which are

SVM, Random Forest, Naïve Bayes, and J48 were used to

classify n=5 hex-value to different dataset produced during

tokenization phase including the patterns in binary value.

The classifier is validated using cross-validation. The default

value is set as 10 where the cross validation is divided into

10 subsets and the holdout method is repeated for 10 times,

where 9 subsets are used for training and the last piece is

used for testing. This can estimate how well the learned

model generalizes. 464 malicious patterns and the

classification performance are shown in Figure 8.

 This experiment aims to classify the system call patterns

into malicious or benign application. Based on Figure 8,

hex-value of the system call patterns using Naïve Bayes

classifier where n=2 resulted the highest classification

accuracy which is 99.86%. Interestingly, when patterns are

classified higher than n=2, the accuracy shows all classifiers

are decreased. This is due to the increasing number of

groups for each pattern produced in tokenization phase

generates a sparse vector element [28]. This element mostly

held zero values, resulting in lower classification accuracy

for each pattern. Other than that, the classification accuracy

drops drastically once the patterns are converted from binary

patterns to n=1 hex value patterns. The conversion of binary

value to hexadecimal value had shorten the pattern’s string

length. To make the patterns size consistent for each

application, java programming was set up with default one-

dimensional array value based on number of system calls

features extracted. The dataset n=1 hex value patterns was

generated based on its default one-dimensional array value.

Due to this, a high spare vector element had been generated

in the dataset thus produce low classification accuracy for

dataset n=1 hex value patterns [28].

Fig. 8. Classification Accuracy

In terms of the classifier used, Naïve Bayes had

successfully produced the highest classification accuracy

compared to another classifier. This is due to the nature of

Naïve Bayes which is able to handle huge amount of dataset

and it is not sensitive to irrelevant features [29]. In this

experiment, the binary patterns can produce high

classification accuracy, but by implementing tokenization

approach, the result is seemed to improve and increased up

to 99.86% of accuracy rate with n=2 hex value is chosen as

the best dataset.

C. Additional Discussion

During the system call-based analysis phase, the dynamic

analysis was conducted in control lab environment. To

sustain the consistencies of the result from each suspected

sample, the emulator is set up as fix variable where it uses

4.1.1 Android version and 16 API level. However, from the

experiment, not all samples can be executed. Some of them

can be installed and run, while some of them can only be

installed but unable to be executed (run in the background).

On the other hand, some of them cannot be installed or

executed in the emulator. The number of samples that having

these conditions can be refer in Table 2.

This condition might occurs due to the period of samples

collection from Drebin which is from August 2010 to

October 2012 [19]. At that point, most of the Android

devices are using lower than 4.1.1 Android version and API

level 16. Therefore, some of the samples collected might

only be compatible with the older and lowest version of

Android and API level, thus making it unsuitable with this

experiment environment. Therefore, only compatible

samples were used for deep analysis.

Proceedings of the World Congress on Engineering and Computer Science 2017 Vol I
WCECS 2017, October 25-27, 2017, San Francisco, USA

ISBN: 978-988-14047-5-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2017

TABLE II

List of Samples Condition

Condition No. of

Samples

Explanation

Installed

and

Executed

5122 Compatible with

proposed experiment

environment

Installed

and run in

background

357 Lower API level or

Android Version

Unable to

be installed

81 Lower API level or

Android Version

V. CONCLUSION

This paper presents an Android mobile malware

classification based on system call sequence patterns

expected to exploit user call logs using tokenization

approach. This experiment is successfully produce a new

system call sequence unique patterns that shows specific

behavior of the malicious application that exploit call log.

The utilization of tokenization approach is seemed as a new

approach to increase the mobile malware classification and

detection performance. Besides, this approach has

successfully produced a unique and consistent string length

for each pattern. The size of patterns stored for data

processing is also reduced, thus higher efficient performance

of the classification and detection can be achieved. The

experiment resulted 2-n hex-value patterns using Naïve

Bayes managed to produce the highest accuracy with

99.86%. For future work, the proposed approach could be

implemented in developing a powerful tool for Android

malware detection. This approach can also be used as a basis

research for other researchers to implement it with different

Android application features.

ACKNOWLEDGMENT

The authors would like to express their gratitude to

Ministry of Higher Education Malaysia and Universiti Sains

Islam Malaysia (USIM) for the support and facilities

provided.

REFERENCES

[1] M. M. Saudi, F. Ridzuan, N. Basir, N. F. Nabila, S. A. Pitchay,

and I. N. Ahmad, “Android Mobile Malware Surveillance

Exploitation Via Call Logs : Proof of Concept,” UKSIM ’15

Proc. 2015 17th UKSIM-AMSS Int. Conf. Model. Simul., pp.

176–181, 2015.

[2] e-marketer, “Slowing Growth Ahead for Worldwide Internet

Audience,” 2016.

[3] M. Dimjasevic, S. Atzeni, I. Ugrina, and Z. Rakamaric, “Android

Malware Detection Based on System Calls,” Uucs, 2015.

[4] X. Wang, Y. Yang, and Y. Zeng, “Accurate mobile malware

detection and classification in the cloud,” Springerplus, vol. 4,

no. 1, p. 583, 2015.

[5] McAfee Labs, “McAfee Labs Threats Predictions Report,” 2016.

[6] J. Wattles and J. D. Cnnmoney, “Ransomware attack : Who â€TM

s been hit,” CNNtech, 2017. [Online]. Available:

http://money.cnn.com/2017/05/15/technology/ransomware-whos-

been-hit/index.html.

[7] T. S. Dutta, “Warning ! Millions Of Android Smartphones Hit By

This Malware Warning ! Millions Of Android Smartphones Hit

By ‘ Judy ’ Malware,” techviral, 2017. [Online]. Available:

https://techviral.net/android-smartphones-hit-malware/.

[8] Y. Lin, C. Huang, Y. Chang, and Y. Lai, “Three-Phase Detection

and Classification for Android Malware Based on Common

Behaviors,” vol. 12, no. 3, pp. 157–165, 2016.

[9] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid:

Behavior-Based Malware Detection System for Android,” Proc.

1st ACM Work. Secur. Priv. smartphones Mob. devices - SPSM

’11, p. 15, 2011.

[10] A. Reina, a Fattori, and L. Cavallaro, “A system call-centric

analysis and stimulation technique to automatically reconstruct

android malware behaviors,” ACM Eur. Work. Syst. Secur.

(EuroSec)., pp. 1–6, 2013.

[11] W. Yu, H. Zhang, L. Ge, and R. Hardy, “On behavior-based

detection of malware on Android platform,” GLOBECOM - IEEE

Glob. Telecommun. Conf., pp. 814–819, 2013.

[12] G. Suarez-tangil, J. E. Tapiador, P. Peris-lopez, and J. Blasco,

“Expert Systems with Applications D ENDROID : A text mining

approach to analyzing and classifying code structures in Android

malware families,” Expert Syst. Appl., 2013.

[13] I. Santos, X. Ugarte-pedrero, F. Brezo, and P. G. Bringas,

“NOA : AN INFORMATION RETRIEVAL BASED

MALWARE DETECTION SYSTEM Jos ´ e Mar ´ ıa G o,” vol.

32, pp. 1001–1030, 2013.

[14] H. Dornhackl, K. Kadletz, R. Luh, and P. Tavolato, “Automatic

Intelligent Analysis of Malware Behaviour,” vol. 8, no. 4, pp.

1225–1229, 2015.

[15] S. Y. Yerima, S. Sezer, G. McWilliams, and I. Muttik, “A New

Android Malware Detection Approach Using Bayesian

Classification,” 2013 IEEE 27th Int. Conf. Adv. Inf. Netw. Appl.,

pp. 121–128, 2013.

[16] B. Sanz, I. Santos, X. Ugarte-pedrero, C. Laorden, J. Nieves, and

P. Garc, “International Joint Conference SOCO’13-CISIS’13-

ICEUTE’13,” vol. 239, pp. 469–478, 2014.

[17] Y. Wang, J. Zheng, C. Sun, and S. Mukkamala, “Quantitative

security risk assessment of Android permissions and

applications,” Lect. Notes Comput. Sci. (including Subser. Lect.

Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7964 LNCS,

no. September 2012, pp. 226–241, 2013.

[18] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P. G. Bringas,

and G. Álvarez, “PUMA: Permission usage to detect malware in

android,” in Advances in Intelligent Systems and Computing,

2013, vol. 189 AISC, pp. 289–298.

[19] D. Arp, M. Spreitzenbarth, H. Malte, H. Gascon, and K. Rieck,

“Drebin: Effective and Explainable Detection of Android

Malware in Your Pocket,” Symp. Netw. Distrib. Syst. Secur., pp.

23–26, 2014.

[20] M. Dimjaˇ, S. Atzeni, I. Ugrina, Z. Rakamari, and M. Dimjaˇ,

“Android Malware Detection Based on System Calls Android

Malware Detection Based on System Calls,” 2015.

[21] T. Bläsing, L. Batyuk, A. D. Schmidt, S. A. Camtepe, and S.

Albayrak, “An android application sandbox system for

suspicious software detection,” Proc. 5th IEEE Int. Conf.

Malicious Unwanted Software, Malware 2010, pp. 55–62, 2010.

[22] Z. Yuan, Y. Lu, Z. Wang, and Y. Xue, “Droid-Sec,” in

Proceedings of the 2014 ACM conference on SIGCOMM -

SIGCOMM ’14, 2014, pp. 371–372.

[23] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “ProfileDroid:

Multi-layer Profiling of Android Applications,” Proc. 18th Annu.

Int. Conf. Mob. Comput. Netw., pp. 137–148, 2012.

[24] “Genymotion,” 2014. [Online]. Available:

https://www.genymotion.com/.

[25] C. D. Manning, P. Raghavan, and H. Schütze, An introduction to

information retrieval, vol. 21. 2009.

[26] Machine Learning Group at University of Waikato, “Weka 3:

Data Mining Software in Java,” 2014. [Online]. Available:

http://www.cs.waikato.ac.nz/ml/weka/indehtml.

[27] B. Wolfe, K. O. Elish, and D. Yao, “Comprehensive Behavior

Profiling for Proactive Android Malware Detection,” pp. 328–

344, 2014.

[28] M. Z. Mas’ud, S. Sahib, M. F. Abdollah, S. R. Selamat, and R.

Yusof, “An evaluation of n-gram system call sequence in mobile

malware detection,” ARPN J. Eng. Appl. Sci., vol. 11, no. 5, pp.

3122–3126, 2016.

[29] E. Keogh, “Naïve Bayes Classifier,” 2006.

Proceedings of the World Congress on Engineering and Computer Science 2017 Vol I
WCECS 2017, October 25-27, 2017, San Francisco, USA

ISBN: 978-988-14047-5-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2017

