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Abstract— In this paper, the differential calculus was used to 

obtain some classes of ordinary differential equations (ODEs) 

for the probability density function, quantile function, survival 

function, inverse survival function, hazard function and 

reversed hazard function of the Gumbel distribution. The 

stated necessary conditions required for the existence of the 

ODEs are consistent with the various parameters that defined 

the distribution. Solutions of these ODEs by using numerous 

available methods are new ways of understanding the nature of 

the probability functions that characterize the distribution. The 

method can be extended to other probability distributions, 

functions and can serve an alternative to approximation and 

estimation.        

      

Index Terms— Survival function, Gumbel distribution, 

hazard function, calculus, differentiation, probability density 

function 

I. INTRODUCTION 

UMBEL distribution is often used in modeling the 

distribution of the minimum and maximum of different 

distributions. The distribution was proposed by Gumbel [1-

2] and had undergone modifications such as its 

generalization [3-4], beta Gumbel distribution [5], 

exponentiated Gumbel distribution [6], Kumaraswamy 

Gumbel distribution [7], exponentiated generalized Gumbel 

distribution [8], McDonald Gumbel distribution [9] and 

transmuted exponentiated Gumbel distribution [10]. Some 

aspects of the distribution studied by several authors which 

include: Bayesian analysis [11] and interval estimation [12].       

                                                                                                                                              

The distribution has been applied in different fields and 

areas such as: modeling annual distribution of flood [13-14], 

fitting extreme wind speeds [15-17], modeling and 

predicting storm [18], modeling the frequency of 

earthquakes [19], extreme rainfall data analysis by [20-22], 

estimate the probability of pipe wall perforation [23], 

extreme tsunami heights [24], irrigation analysis [25], 
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estimation of the mean weight of fish in aquaculture cages 

[26], modeling and estimating risk of disease transmission 

[27] and modeling corrosion [28].                                                                                                                                                      

   The aim of this research is to develop ordinary differential 

equations (ODE) for the probability density function (PDF), 

Quantile function (QF), survival function (SF), inverse 

survival function (ISF), hazard function (HF) and reversed 

hazard function (RHF) of Gumbel distribution by the use of 

differential calculus. Calculus is a very key tool in the 

determination of mode of a given probability distribution 

and in estimation of parameters of probability distributions, 

amongst other uses. The research is an extension of the ODE 

to other probability functions other than the PDF. Similar 

works done where the PDF of probability distributions was 

expressed as ODE whose solution is the PDF are available. 

They include: Laplace distribution [29], beta distribution 

[30], raised cosine distribution [31], Lomax distribution 

[32], beta prime distribution or inverted beta distribution 

[33].      

 

II. PROBABILITY DENSITY FUNCTION 

 The probability density function of the Gumbel 

distribution is given as;            
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To obtain the first order ordinary differential equation for 

the probability density function of the Gumbel distribution, 

differentiate equation (1), to obtain;      
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The condition necessary for the existence of equation is 

0, , .x                                                                               

Simplify using equation (1);            
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Differentiating equation (3) leads to             
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The condition necessary for the existence of equation is 

0, , .x                                                                      

Equation (3) can be written as;                       
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Substituting equations (6) and (7) into equation (4) gives       
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The second order ordinary differential equation for the 

probability density function of the Gumbel distribution is 

given by;       
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                                                                                 (11)
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III. QUANTILE FUNCTION 

The Quantile function of the Gumbel distribution is given as;

 ( ) ln( ln )Q p p                             (14) 

To obtain the first order ordinary differential equation for 

the Quantile function of the Gumbel distribution, 

differentiate equation (14), to obtain;             

 ( )
ln

Q p
p p


                                        (15) 

The condition necessary for the existence of equation is 

0,0 1.p                                                                         

Differentiate equation (15), to obtain;            
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The condition necessary for the existence of equation is 

0,0 1.p                                                           

Squaring both sides of equation (15), one obtains           
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Also dividing both sides of equation (15) by p ;           
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Substituting equations (18) and (19) into equation (16) gives        
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The second order ordinary differential equation for the 

Quantile function of the Gumbel distribution is given by;   

 
2( ) ( ) ( ) 0pQ p pQ p Q p              (21)

 (0.1) 0.834Q                                 (22)

 (0.1) 4.343Q                                        (23)

                                   

IV. SURVIVAL FUNCTION 

 The survival function of the Gumbel distribution is given as;

 ( ) 1 exp exp
t

S t
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        (24) 

To obtain the first order ordinary differential equation for 

the survival function of the Gumbel distribution, 

differentiate equation (24), to obtain;    
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The condition necessary for the existence of equation is 

0, ,t   .                                                             

Equation (24) can be written as;                 
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Substituting equation (26) into equation (25), one gets   
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Differentiate equation (27) to have    
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The condition necessary for the existence of equation is 

0, ,t                                                           
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Equation (27) can be simplified to become;       
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Substituting equation (30) into equation (29) yields    
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The second order ordinary differential equation for the 

survival function of the Gumbel distribution is given by;      
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V. INVERSE SURVIVAL FUNCTION 

The inverse survival function of the Gumbel distribution is 

given as;         

 ( ) ln( ln(1 ))Q p p                      (35) 

To obtain the first order ordinary differential equation for 

the inverse survival function of the Gumbel distribution, 

differentiate equation (35), to obtain;            
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The condition necessary for the existence of equation is 

0,0 1.p                                                       

Differentiating equation (36), we obtain;     
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                                                                              (37) 

The condition necessary for the existence of equation is 

0,0 1.p                                                           

Squaring both sides of equation (36) leads to             
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Also dividing both sides of equation (36) by 1 p ;         

 
2

( )

(1 ) ln(1 )

Q p

p p p




 
                     (40) 

Substituting equations (39) and (40) into equation (37) gives        
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The second order ordinary differential equation for the 

inverse survival function of the Gumbel distribution is given 

by;               

 
2(1 ) ( ) (1 ) ( ) ( ) 0p Q p p Q p Q p            (42)

 (0.1) 2.25Q                                     (43)

  (0.1) 10.5458Q                                 (44)

                   

VI. HAZARD FUNCTION 

  The hazard function of the Gumbel distribution is given as; 
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To obtain the first order ordinary differential equation for 

the hazard function of the Gumbel distribution, differentiate 

equation (45), to obtain;       
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                                                                                       (47) 

The condition necessary for the existence of equation is 

0, ,t   .                                                  

 
1

( ) 1 exp ( ) ( )
t

h t h t h t


 

    
        

   
    (48) 

Differentiating equation (48), one gets         
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The condition necessary for the existence of equation is 

0, ,t   .                                                                         

The following equations obtained from the simplification of 

equation (48) are needed to simplify equation (50);       
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Substituting equations (51) and (54) into equation (50) gives       
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  

    
      

    

        (55)

               
2 2

2

( ) ( ) ( ) ( )
( ) ( ) ( )

( )

h t h t h t h t
h t h t h t

h t   

 
          (56) 

The second order ordinary differential equation for the 

hazard function of the Gumbel distribution is given by;      
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                    (57)

 

1
exp exp

(0)

1 exp exp

h

 

  





   
     

   
   
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        (58)

 
1

(0) 1 exp (0) (0)h h h
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 

   
       

   
        (59)  

                                                             

VII. REVERSED HAZARD FUNCTION 

 The reversed hazard function of the Gumbel distribution is 

given as;          

 
1

( ) exp
t

j t


 

 
  

 
                         (60) 

To obtain the first order ordinary differential equation for 

the reversed hazard function of the Gumbel distribution, 

differentiate equation (60), to obtain;      

 
2

1
( ) exp

t
j t



 

 
    

 
                     (61) 

The condition necessary for the existence of equation is 

0, ,t   .                                                  

 
1

( ) exp
t

j t



 

 
    

 
                     (62)

 ( ) ( )j t j t                                             (63) 

The first order ordinary differential equation for the reversed 

hazard function of the Gumbel distribution is given by;      

 ( ) ( ) 0j t j t                                         (64)

  
1

(0) expj


 

 
  

 
                                 (65)

                                                                                                                

The ODEs of all the probability functions considered can be 

obtained for the particular values of the distribution. Several 

analytic, semi-analytic and numerical methods can be 

applied to obtain the solutions of the respective differential 

equations [34-48]. Also comparison with two or more 

solution methods is useful in understanding the link between 

ODEs and the probability distributions. 

            

VIII. CONCLUDING REMARKS 

 In this work, differentiation was used to obtain some 

classes of ordinary differential equations for the probability 

density function (PDF), quantile function (QF), survival 

function (SF), inverse survival function (ISF), hazard 

function (HF) and reversed hazard function (RHF) of the 

Gumbel distribution. The work was simplified by the 

application of simple algebraic procedures. In all, the 

parameters that define the distribution determine the nature 

of the respective ODEs and the range determines the 

existence of the ODEs.  
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