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Abstract—Convolutional neural network (CNN) is a machine 

learning algorithm that plays an important role in image 

recognition and classification applications. In order to enable 

the IoT endpoint SoC with limited computing capability to 

support CNN algorithm, a multifunctional CNN accelerator is 

proposed which implements major computing components in 

CNN by hardware. Each computing module is arbitrarily 

combined by parameter configuration to complete the complex 

network calculation. In this paper, a SoC with Cortex-M3 

kernel is implemented in FPGA as a test platform to verify the 

performance of the designed accelerator. Evaluation of design 

scheme is performed by comparing the execute time of the 

Lenet-5 network on the designed SoC, Intel 7500, Samsung 

S5P6818 and Allwinner H3. The comparison results show that 

the compact accelerator proposed in this paper makes the CNN 

computing power of the SoC based on the Cortex-M3 kernel 

exceeds the Cortex-A53 kernel, and its CNN computing power 

per unit frequency reaches 6 times that of the Intel 7500. 

 
Index Terms— CNN accelerator, IoT endpoint SoC, 

Multifunctional, Lenet-5 

 

I. INTRODUCTION 

ost recently, with the evolution of internet of things 

(IoT) technology and rapid development of artificial 

intelligence (AI), smart IoT with the advantage of AI 

and IoT technology has gradually become a research hotspot. 

Combining big data with the complex algorithm, smart IoT 

technology brings profound changes to the IoT as well as puts 

forward new challenges to the organization structure of the 

IoT systems [1]. Although the edge computing theory can 

guide us to solve this severe problem, unfortunately, a great 

deal of IoT endpoint SoC have limited computing power in 

order to pursue compact structure and low power 

consumption. That is not enough to meet the computing 

capabilities and requirements of the AI algorithm such as 

CNN [2]. Not only that, researchers who dedicated to the AI 

computation acceleration have not paid enough attention to 

AI acceleration in IoT devices. It is of great practical 
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significance to design a compact CNN accelerator suitable 

for SoC of the IoT endpoint. 

CNN is an alternative type of neural network that can be 

used to reduce spectral variations and model spectral 

correlations which exist in signals [3]. Nowadays, the 

research on CNN acceleration based on ASIC/FPGA can be 

divided into two categories, including unfold the network 

structure through hardware or only accelerate the convolution 

operation. In reference [4-6], the vast majority of the 

structure in networks is expanded and implemented by 

hardware to speed up the computation of CNN networks. 

This measure can always get maximum acceleration 

performance but with reduced flexibility and resource 

consumption. Hence, it is not applicable to the IoT where the 

resource is tightly constrained. In reference [7], a convolution 

cell is added to the CPU kernel, enabling the processor to 

accelerate the calculation of CNN through convolution 

instructions. Although this method makes the circuit compact 

but its speed-up ratio is fairly low. 

Based on the comprehensive consideration of the circuit 

area and acceleration performance, a compact CNN 

accelerator is proposed and designed in this paper. Our 

design includes a convolution data loading module with low 

bandwidth occupation, a high throughput storage unit and 

four multifunction convolution network accelerating chains. 

The rest of the article is organized as follows: 

1) The framework and crucial parts of the CNN accelerator 

are introduced in section II that includes the design of storage 

channel, a matrix convolution unit with low bandwidth 

occupation and the implementation of multifunction 

convolution network accelerating chain. 

2) Based on the Cortex-M3 kernel, a SoC with CNN 

accelerator is designed as the verification platform. Beyond 

that, the Lenet-5 network is transplanted on the designed 

platform to evaluate the acceleration performance of the 

accelerator. 

3) After completing the verification platform construction 

and Lenet-5 transplantation, we have demonstrated the 

acceleration performance and resource consumption of the 

CNN accelerator in section IV. 

4) Finally, section V concludes this paper and proposed 

future work is discussed at the end of this article.  

II. CNN ACCELERATOR DESIGN 

A. Accelerator structure 

CNN is a class of deep and feed-forward artificial neural 

networks, most commonly applied to analyzing visual 

imagery. The primary arithmetic element of CNN includes 

2D-matrix convolution, nonlinear activation and pooling 

operation. According to statistics, convolution operation 
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takes about 90% of the total network computing time [8]. 

Based on the characteristics of CNN and combined with the 

requirements of the compact structure and low power 

consumption of IoT system, we design an efficient CNN 

accelerator for IoT system. The overall structure of the 

designed unit is shown in the Fig. 1. 

The accelerating module contains the source matrix data 

loading module, a convolution kernel cache, two ping-pong 

buffer blocks and four accelerated computing chains. By 

using these modules, the designed accelerating module can 

complete convolution, activation and subsampling operation 

with four convolution kernels simultaneously. 

B. Design of storage channel 

CNN computing requires a large amount of data access and 

design of the storage channel for the unit directly affect the 

acceleration performance. The accelerator in this paper 

includes a source matrix read-channel (Src A), four 

convolution kernel matrix read-channels (Src B), four 

accumulative value read-channels (Src C) and four 

calculation results store-channels (Result). According to the 

calculation process of the CNN, the occupancy order of the 

data bus is shown in Fig. 2 

It is apparent from Fig. 2 that there is a data bus 

competition relationship among Src A, Src C and Result. On 

top of this, data access of the four accelerating chains will 

occupy 128-bit memory bandwidth, which poses a great 

challenge to the design of memory. 

To solve the bus competition among these three channels, 

two separate storage units are used which can map Src A, Src 

B and Src C to different storage areas through parameter 

configuration. Simultaneously, for storing the 128-bit width 

data generated by four accelerating chains in real time, a 

memory unit is designed in this paper that uses four dual-port 

RAM (DP-RAM) to form a dual port storage block that is 

shown as Fig. 3. One port of the DP-RAM block used to save 

the calculation results or to read the Src C, while the other 

port is configured as Src A reading-channel or connecting 

with SoC bus according to the configuration. 

C. Convolution data loading unit with low bandwidth 

occupation  

As the critical part in CNN, 2D matrix convolutions 

account for more than 90% of the total computation. A large 

amount of data is required in the calculation of 2D matrix 

convolution that consumes tremendous bus bandwidth, thus 

affecting the data processing efficiency of the whole system. 

In this paper, a matrix data reading unit with low bandwidth 

occupation is designed to improve the throughput of the data, 

which takes advantage of high data repetition rate of 2D 

matrix convolution. 

The loading unit of convolution matrix consists of a matrix 

data reading unit and a cyclic queue, where matrix data is 

read by column priority. We take a matrix with 5*5 size and a 

convolution kernel with 3*3 size as an example; its 

convolution data loading process is shown in the Fig. 4. 

It can be seen from the Fig. 4 that the convolution of an 

image with a 5*5 size and a kernel of 3*3 needs to read 45 

data from the source address, which is far less than the 81 

data needed for actual computing and its advantage is more 

obvious when the width of source matrix is larger. Assuming 

that source matrix is N*N, the size of the convolution kernel 

is k*k and total amount of data to read by using this 

convolution data loading unit can be expressed as: 

 ( ( ) ) ( 1) ( 1)k*k+ N-k *k * N-k+ =N*k* N-k+  (1) 

The actual amount of data needed for convolution is: 

 ( 1) ( 1)k*k* N-k+ * N-k+  (2) 

In conclusion, the bandwidth optimization rate   when 

using this module to read data is: 

 

( 1)
1

( 1) ( 1)


N*k* N-k+
= -

k*k* N-k+ * N-k+  (3) 

Src B load Src A load

Src C load

Result store

load kernel

start end

load data and calculate  
Fig. 2. The schematic diagram of the occupancy  

of the data bus 

 

 

Fig. 1. The architecture of the accelerator 
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Fig. 3. The structure of the DP-RAM memory block 
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Fig. 4. A demonstration diagram of the reading of  

the convolution data of the 5*5 matrix 
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Taking the first level of Alexnet network as an example, 

where N is 224 and K is 11, so   is equal to 90.485% [10]. 

Analogously, the optimization rate of the first layer in 

Lenet-5 is 64.46%. 

D. Design of multi-function configurable acceleration module 

The core of the accelerating unit designed in this paper is 

four multi-function configurable accelerating chains. Each 

accelerating chain can be divided into four functional 

modules: convolution, floating-point addition, activation and 

subsampling. These chains can complete any combination of 

these four functions according to the configuration to realize 

the design of multi-function configurable accelerating 

module. The functions of these chains include matrix point 

product, matrix convolution, matrix addition, activation, 

matrix transposing and matrix subsampling. Some 

configuration parameters and example configurations of 

several different functions are shown in Table I. 

III. VERIFICATION PLATFORM CONSTRUCTION 

A. Design of verification platform based on Cortex-M3 

A MCU kernel launched by ARM, Cortex-M3 (CM3) 

achieved a good balance between power and performance, its 

Dhrystone score is 1.25 DMIPS/MHz which is enough to 

meet the processing requirement of IoT node devices. 

In order to evaluate the performance of the designed unit, 

an IoT SoC with the CNN accelerating module based on the 

CM3 kernel is designed. The SoC structure is shown in the 

Fig. 5. 

The SoC built includes necessary modules such as 128KB 

RAM, 128KB ROM and common peripherals such as GPIO 

and UART. AHB and APB are used as the interconnected bus 

for SoC, where, high-speed devices such as DMA and CNN 

accelerator are connected with the kernel through AHB bus 

and low-speed devices such as GPIO are bridged through the 

APB bus. 

B. Implementation of Lenet-5 network 

The Lenet-5 which proposed in 1994 is considered to be 

one of the earliest and most classical convolution neural 

networks. With the deepening of CNN research, a series of 

more effective CNN structures have been put forward but as a 

classic structure, Lenet-5 is still widely used to evaluate the 

performance of CNN acceleration units.  

The structure of Lenet-5 is shown in Fig. 6. Its structure 

can be divided into five hidden layers, which are the 

convolution layer with six convolution kernels, a 

subsampling layer S1, a partially connected layer containing 

sixteen convolution kernels, a subsampling layer S2 and a 

fully connected layer which contains ten convolution kernels. 

More information about the Lenet-5 structure can be referred 

in [9]. 

In Lenet-5, the calculation of the partially connected layer 

is the most complicated because results of this layer are 

related to the multiple or all output of the previous layer, so 

we mainly focus on the implementation of that layer. 

Accelerator designed in this paper has the function of 

convolving the source data with four kernels simultaneously 

and can also add the convolution result with another matrix. 

Based on this feature, we implemented partially connected 

layer as shown in Fig. 7. 

The table on the left of Fig. 7 describes the relationship 

between the partially connected layer and the previous layer. 

TABLE I 

PARAMETER CONFIGURATION TABLE FOR TWO FUNCTIONS 

Name Range Description 
Lenet5 

1st layer 

8*8 

dolt_mult 

Mode 0~15 

Bit0:conv work 

Bit1:float add 

Bit2:relu work 

Bit3:pooling work 

15 1 

Ch_num 1~4 
Accelerating chain 

number 
4 4 

Src_width 0~255 Src matrix width 32 8 

Pool_width 1~8 Pooling unit width 2 -- 

Out_num 0~65535 Result number 784 64 

Unit_width 0~32 Kernel width 5 8 
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Fig. 5. SoC structure based on CM3 
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Fig. 7. The calculation process of partial connecting layer 
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Fig. 6. The structure of Lenet-5 network 
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As shown in the graph, we extract the six matrices from the 

S1 layer in turn and convolution with the corresponding 

matrix kernels respectively according to the connection 

relationship of the Lenet-5 C2 layer. For 2th to 6th matrices of 

S1, in addition to convolution with the kernels it should also 

be added to the previous round of computation. 

Through the analysis of the structure of the Lenet-5 

network using the accelerator designed in this paper to 

complete the Lenet-5, the concrete realization process can be 

segmented into four steps as Table II. 

IV. TEST RESULTS AND ANALYSIS 

A. Performance analysis of acceleration unit 

In this paper, we select a desktop processor and two 

high-performance application processors as performance 

evaluation objects. In order to estimate the execution time of 

Lenet-5 network on different hardware and software 

platforms, we use C language to realize forward propagation 

of Lenet-5. The forward propagation program of Lenet-5 is 

run on Intel 7500, Cortex A7 and Cortex A53 to compare 

with SoC designed in this paper respectively. The execute 

time of each platform is shown in Table 3. The program 

written in this article only uses the single thread so for 

multi-core processors only one core is used. 

According to the results, we can see that the use of the 

accelerator designed makes a compact IoT SoC with the 

50MHz obtain more powerful CNN calculation capability 

than the Cortex A53 kernel. Its CNN computing power under 

unit frequency is 6 times that of Intel 7500. 

B. Analysis of resource consumption 

To design a CNN accelerator suitable for IoT systems 

compact structure is a key principle during design process. In 

order to complete the evaluation of resource consumption of 

the accelerating module, we have implemented our designed 

circuit on FPGA. The model of FPGA is Xilinx Zynq7020, 

and the synthesize tool is Vivado 17.2. The resource 

consumption comparison between the designed module in 

this paper and the reference [6, 4] is shown in Table IV. 

Compared with the other two designs, the accelerating unit 

of our proposed structure does not pursue high acceleration 

performance but rather it obtains most suitable acceleration 

ratio with small resource consumption and conforms to 

design concept of IoT devices. 

V. CONCLUSION 

In this paper, we have proposed and implemented a 

compact CNN accelerator to improve the CNN computing 

power of endpoint devices in IoT applications. The 

experimental results reveal that the proposed acceleration 

module can make SoC of Cortex-M3 kernel get more neural 

network computation ability than Cortex A53 at the cost of 

small resource consumption. However, our design still uses 

floating-point data in the process of CNN computing. In fact, 

according to the current research, the use of fixed-point type 

data can further reduce the consumption of resources with 

little loss of recognition accuracy [11]. In future, we seek to 

further develop and achieve this goal. 
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TABLE II 

THE COMPUTING PROCESS OF LENET-5 USING THE ACCELERATION UNIT 

Layer Calculation Methods Description 

C1 & S1 0 5 0 5

1 1 1 1
[ ～ ] [ [ * [ ～ ] ] ]S S pool r el u S K K  

Convolution 

and 

subsampling 

C2 & S2 

0 15 0 0 15

2 2 1 2 2
[ ～ ] * [ ～ ]S S S K K  

0 15 1 0 15 0 15

2 2 1 2 2 2 2
[ ～ ] * [ ～ ] [ ～ ]S S S K K S S   

.... 
0 15 15 0 15

2 2 1 2 2

0 15

2 2

[ ～ ] [ [ * [ ～ ]

[ ～ ] ]

S S pool r el u S K K

S S





 

Partially 

connection and 

subsampling 

S3 0 15

3 2 2
[ ～ ]S S S  Expansion 

S4 0 9 0 9

4 4 3 3 3
[ ～ ] * [ ～ ]S S S K K  Full connection 

 

TABLE III 

COMPARISON OF LENET EXECUTE TIME UNDER DIFFERENT PLATFORMS 

SoC 
Core 

Frequency 

Latency/ 

Image  

Acceleration ratio of 

unit frequency 

Intel i5 7500 3.5GHz 1ms 6.36 

Samsung 

S5P6818 
1.4GHz 12.3ms 31.3 

AllWinner 

H3 
1.6GHz 15.3ms 44.5 

Ours 50MHz 11ms -- 

 

TABLE IV 

RESOURCE CONSUMPTION ASSESSMENT OF ACCELERATION UNIT 

 LUT FF BRAM DSP 

Ours 5717 6207 39 20 

[6] 29867 35489 85.5 190 

[4] 186251 205704 1024 2240 
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