
Diagnosis of Shorted-Turns Faults in Electrical
Machine using Neural Network

O. dunAyo. IMORU, Member, IAENG, Fulufhelo V. Nelwamondo, Adisa A. Jimoh,Tshilidzi Marwala,

Abstract—This paper discusses the diagnosis of shorted-turn
faults in the electrical machine using Neural Networks (NN).
This leads to a design process of a work-flow for the NN. The
work-flow has three stages: data acquisition, training algorithm
and diagnosis and detection of machine condition. Samples
data of electrical machine in healthy and shorted-turn fault
conditions were collected by interfacing data acquisition device
with a computer laboratory. A two-layer feed-forward network
with back-propagation algorithm is created and configured with
data collected for NN training. The network model gives a high
correlation coefficient of R = 0.9992, R = 0.99917 and R =
0.99923 in the training, validation and test phase respectively
as well as the overall correlation which is R = 0.9992. This
connotes that the NN model gives a high correlation coefficient
between predicted outputs (NN) and targets (Fault Index (FI)).
Using the NN model, the healthy and shorted-turn electrical
machine are predicted correctly and this is compared with the
diagnosis done using FI. Thus, with an NN, a robust and reliable
method to diagnose shorted-turn fault in the electrical machine
can be achieved.

Index Terms—electrical machine, fault diagnosis, fault index
(FI), neural network(NN), shorted-turn

I. INTRODUCTION

WHEN there is a presence of disturbance that alters
the performance of a normal operation on or in the

electrical machine, then a fault is suspected. Such faults
lead to various manifestations which include, pulsations
in torque and speed, unbalanced line currents, unbalanced
air-gap voltages, decreased efficiency and average torque,
excessive heating, and consequently increased losses. The
high dependency on electrical machines, especially in critical
applications in the industries often results in very expensive
shut-down time due to such failure and loss of valuable lives
[1]. In most manufacturing and processing operations, ap-
proximately 50 % of the operational cost could be attributed
to maintenance [2].

Over ninety percent of all electrical machines used world-
wide in the industry are induction machine. It is very im-
portant to make sure that these machines do not breakdown,
especially to ensure the continuity of production and process
chains in many industries. The risk of failure of this type of
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machine could be avoided if the proper diagnostic scheme is
designed and implemented to detect failure/impending faults
at an incipient stage. This would prevent production shut-
downs, huge financial loss, sudden disruption of the machine
and personal injuries if these faults were to be detected at
the incipient stage. The relevant literature, indicates that early
fault detection of induction machines is not only important
in minimising damage and reducing energy consumption, but
also preventing the spread of failure or limiting its escalation
in terms of severity [3], [4], [5]. Hence, fault diagnosis,
condition monitoring and prognosis of electrical machines is
essential to prevent costly interactions due to failures or faults
in the machine. There are many methods of faults detection
and diagnosis for the machine, however, a machine learning
technique, such as neural networks would require further
investigation to adequately detect and diagnose shorted-turn
faults. [6], [2], [7], [3], [8].

II. LABORATORY SET-UP FOR DATA CAPTURING FOR
NEURAL NETWORK TRAINING

Laboratory experiments were carried out on two sets of
identical induction machines with the rating parameters
1.5kW , 380V/220V, 50Hz, 4-pole as shown in Figure 1.
Switches are connected to the stator winding on phase A
of one of the machines to create a shorted-turns fault in
the winding faults on the phase. When the switch is in
”OFF” position, and the machine is operating at the no-fault
condition, the data obtained during this time are captured
as healthy(normal) condition. When the switch is in ”ON”
position, and the machine is still operating, a shorted-turn
fault is created and the data obtained are captured shorted-
turns fault conditions. The data are captured by the HIOKI
3197-Power Quality Analyser measuring device and are
interfaced with the computer for application further analysis.
When the machine is in operation, about 2056 samples
of data (stator currents and voltages) is captured from
the HIOKI Power Quality Analyser. This is the number
of samples captured for a 50Hz supply according to the
instruction manual of the HIOKI power quality analyser.
The data is recorded in the computer interfacing the HIOKI
and this represents the sets of data for the induction machine
healthy state. In a similar manner, when the switch (ON)
for the shorted-turn faulty state, about 2056 samples of
data (stator currents and voltages) is also captured from the
HIOKI Power Quality Analyser. These data is also recorded
in the computer interfacing the HIOKI and it represents
the sets of data for the induction machine with a stator
(winding) shorted-turns fault conditions. Figure 2 shows
the comparison of the phase-A current of both healthy and
faulty conditions on the machine. A close look at healthy
and shorted-turn fault condition is in agreement with a
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similar comparison carried out by [9], [8]. From Figure 2,
the peak value of the current for an induction machine in the
healthy condition is 2.32A and the peak of stator currents
for shorted-turns faults condition is 3.48A. There is an
increment of about 50% for shorted-turns. This abnormality
is observed and it could grow into more severe winding
faults which can destroy the machine if it continues to run.

Fig. 1. Experimental Set-up for data capturing [6]

Fig. 2. Comparison of Stator Currents of Healthy and shorted turns fault
Induction Machine

III. FAULT INDEX (FI) OF ELECTRICAL MACHINE

An algorithm to determine the Fault Index (FI) of an
electrical machine was developed by [10], [6]. Using the
application of district wavelet transform, the author(s) [10],
[6], [11] were able to generate the energy-frequency plots
for the stator currents captured from electrical machine
under some winding faults and healthy state conditions.
The severity of the state of the machine are classified into
Normal, Medium, or High, using the fault index (FI) as
stated in Equation 1. This was possible using the maximum
energy value, En, of the healthy (normal) condition and
the corresponding frequency, fn which were the set energy,
Et, and set frequency, ft, respectively. Whereas for any of
the fault conditions, the maximum energy value, Ef , and
corresponding frequency, ff , were also noted for each the
fault condition.

FI =
Ex

Et
(1)

Where Ex, represents either normal or faulty state peak
energy.
Figure 3 shows the results of the analysis carried out by
[6], [12] to also detect the shorted-turn faults in induction

machines using discrete wavelet transform. The maximum
values of the energy and corresponding frequency for each
condition obtained from the Figure 3 are presented in Table
I [6]. Using a computer with 2.60GHz core −i5− 4210M
processor, it takes approximately 38 secs for a healthy
electrical machine with no created faults to obtain the peak
energy value. In the case of a shorted-turns fault and phase to
ground, about 41 secs passed before it obtained the maximum
energy. The discrepancies found in the deviation from the
normal condition are used to classify the severity of the state
of the machine into Normal, Medium, or High, using the
fault index (FI). In the paper, the most severe faults are not
considered. In the next section, a neural network approach
is presented to diagnose shorted-turn as well as show some
relationships to neural network approach.

TABLE I
MAXIMUM VALUES OF THE ENERGY AND CORRESPONDING FREQUENCY

[6]

State of Ma-
chine

Max. En-
ergy (J)

Cor. Freq
(Hz)

Phenomena
Period

FI

Healthy 1507 0.02626 38.08 Sec 1.000
Shorted-Turns
Fault

3942 0.02432 41.12 Sec 2.616

Fig. 3. DWT-Energy plot for Healthy and shorted fault Conditions

IV. NEURAL NETWORK WORK FLOW ALGORITHM

The work flow for the neural network design process for
this research work has three primary stages as depicted in
Figure 4. The stages are IV-A data acquisition, IV-B training
algorithm and IV-C diagnosis and detection of machine
condition.

A. Data acquisition

This involves the collection of the electrical machine
data (stator currents and voltages) into the computer
for analysis and diagnosis purpose. For the purpose of
this research, a measuring device (HIOKI 3197-Power
Quality Analyser) that captures all the data required before
and after the fault condition has been acquired. The
frequency, fs of the captured signals is very important for
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Fig. 4. Neural network work flow algorithm

the analysis. In this case, the number data captured for
samples for 50Hz (i.e 20ms/cycle) is 2056samples/sec
based on the findings from the device manual (10cycle/sec).

B. Training Algorithm

After the collection of data stage, the next stage is the
training algorithm. This involves, neural network creation
on both healthy and shorted-turn data collected into the
computer. A two-layer feed-forward network with back-
propagation algorithm is created with input data as the 4112
sets of data (2056 each from healthy and shorted-turn data).
Using FI in information in Table I, a target of 1 is assigned
to healthy and 2.616 is assigned to shorted-turn conditions.
After a neural network has been created, it must be config-
ured. The configuration step consists of examining input and
target data, setting the network’s input and output sizes to
match the data, and choosing settings for processing inputs
and outputs that will enable best network performance. The
configuration step is normally done automatically, when the
training function is called. However, it can be done manually,
by using the configuration function [13]. The network learns
by training the data inputs and outputs. 70% of the total
samples which is about 2878 data samples is configured for
training, 15% which is about 617 data samples is configured
for validation and 15% which is the same as validation is

configured for testing. In other words, 70% will be used for
training, 15% will be used to validate that the network by
generalising and stopping training before it is overfitting. The
last 15% will be used as a completely independent test of
network generalisation. All these % values were obtained by
default selection from the NN-training tool. The training is
initialised and the network are updated each time an input is
presented to the network.

C. Diagnosis and Detection of Machine Condition

The diagnosis and the decision of the machine conditions
are the third stage of the Neural network workflow
algorithm. Once the network has been trained with the
machine parameters, it can be used to test other sets of
data to determine the condition of the machine from the
network. If the sets of data tested is close the targets-outputs
for healthy then it can be said that the machine is working
without fault. However, if the sets of data tested is close the
targets-outputs for shorted-turn, the machine is operating
with shorted-turn condition.

V. RESULTS AND DISCUSSION

When the work flow algorithm described in section IV
is properly followed, the network is trained and validated.
The network object can be used to calculate the network
response to any input. Figure 5 depicts the performance
plot of the network. It shows the value of the performance
function versus the iteration number (epoch). It plots train-
ing, validation, and test performances. It indicates how the
network mean squared Error (MSE) drops rapidly as it learns.
The blue line shows the decreasing error on the train data,
the green line shows the validation error. Train stops when
the validation error stop decreasing. The red line shows the
error on the test data indicating how well the network could
generalised the training data. Figure 6 shows the training

Fig. 5. Performance plot

state plot. It depicts the progress of other training variables,
such as the gradient magnitude, the number of validation
checks, etc. The error histogram plot in Figure 7 shows
the distribution of the network errors. Figure 8 depicts the
regression plot and it means the a regression plots between
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network outputs and network targets. The training, validation
and test phases that contain all networks for the NN model
generated are R = 0.9992, R = 0.99917 and R = 0.99923
respectively. The combination of the three phases give a
correlation of R = 0.9992. This implies that the model gives
high correlation coefficient between predicted outputs and
targets. Thus this is robust and precise to diagnose shorted-
turn fault in the electrical machine.

In addition to the aforementioned description of Figures 6

Fig. 6. The training state plot

Fig. 7. The error histogram plot

to 8, the output of the network is compared to the target (FI)
as shown in Figure 9. The FI (see Table I) for Healthy is 1
and then Neural network (NN) prediction for same sets of
data 2056 is approximately equal to 1. Similarly, the neural
network prediction for the same sets of data for machine with
shorted-turn faults is about the same as the FI which is 2.6.
Thus the network has shown in Figure 8 that it can be used
to estimate the network response to any input (either data
from healthy or shorted-turn fault). Furthermore, 200 samples
of data for is obtained for both machine with healthy and
shorted-turn conditions. This sets of data are taken outside
the ones used as inputs to the network. This is done in order
to validate the network created, configured and trained to
diagnose shorted-turn faults in the electrical machine. Figure

Fig. 8. The regression plot

Fig. 9. NN and FI comparison

10 depicts the comparison between the target (FI) and the
Neural Network prediction. It can be seen for each sets of
200 data samples for both machine with healthy and shorted-
turn conditions, the NN diagnosis the condition around the
target (FI) values assigned, 1 for healthy and 2.6 for shorted-
turn condition.

VI. CONCLUSION

This paper discusses the diagnosis of shorted-turn faults
in the electrical machine using Neural Networks (NN). We
believe that the method is generally applicable to all types
of electrical machines, even though we have concentrated on
induction machine to develop and test the method. A little
details about shorted-turn faults has been addressed and lab-
oratory experiments were carried out on two sets of identical
induction machines with the same rating. An algorithm had
earlier been developed by [10], [6] to determine the of an
fault state of electrical machine using FI. A neural network
(NN) approach is now developed to diagnose shorted-turn as
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Fig. 10. NN and FI comparison for any other data, e.g (200 sample) of
both machine with healthy and shorted-turn conditions each

well and also shows some relationships between FI and NN
approach. This leads to a design process of a work flow for
the NN. The work flow has three stages: data acquisition,
training algorithm and diagnosis and detection of machine
condition. The data acquisition involves collection of the
electrical machine data (stator currents and voltages) into the
computer for analysis and diagnosis purpose. The training
algorithm creation, configuration, training and validation of
NN from the machine data captured. The diagnosis and the
decision of the machine conditions implies, once the network
has been trained with the machine data captured, it can be
used to test other sets of data to determine the condition
of the machine. In order to test the NN, 200 samples of
data sets is taken outside the ones used in the network
and it is used on the network. When the sets of 200 data
samples gives an approximate value of 1, the machine is
operating in healthy condition. However, when the sample
data gives an approximate value of 2.6, then a shorted-
turn fault is detected. There is high correlation coefficient of
R = 0.9992, R = 0.99917 and R = 0.99923 in the training,
validation and test phases that contain all networks for the
NN model respectively in Figure 8. The overall correlation
for the (training, validation and test) phases is R = 0.9992.
This implies that the model gives high correlation coefficient
between predicted outputs and targets. Using the NN model,
the healthy and shorted-turn electrical machine conditions
are correctly predicted in Figure 10. Thus, this is robust
and reliable to diagnose shorted-turn fault in the electrical

machine.
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