

Abstract—Understandability is a software characteristic that

helps ease software maintenance and evolution. When

modifying or reusing software that is written by someone else,

software developers often have difficulties in trying to

understand what the existing software does and how. Such an

issue is commonly found in software-developing organizations.

This paper discusses an approach taken by an IT organization

in Thailand which attempts to enforce coding standards within

its iOS development team in order to promote software

understandability and maintainability. Among coding

standards, naming conventions are important but are most

often violated. This paper presents the development of a

naming convention checking framework that consists of tools to

automatically detect naming convention violations in Objective

C programs. The framework facilitates iOS developers in

modifying the programs so that they adhere to the naming

conventions. An experiment showed that the developers’

understanding in the programs that had been modified, as

suggested by the naming convention checking framework, did

improve at a statistical significance level of 0.05. This approach

can enhance program understandability and can be applied to

other software-developing organizations.

Index Terms—naming convention, Objective C,

maintainability, understandability

I. INTRODUCTION

NDERSTANDABILITY is a software characteristic

that helps ease software maintenance and evolution. It

is always the case that software has to undergo change to fix

errors, to handle new or changed user requirements or

software environments, or to prevent future problems. This

requires software developers to inspect code of existing

software and try to understand what functions it performs

and how. According to Boehm’s quality model [1], code

possesses understandability characteristic to the extent that

its purpose is clear to the inspector. To make the purpose

clear and understandable, there must be consistency,

structuredness, conciseness, and legibility in the code.

Understandability is a subattribute of maintainability.

Manuscript received June 22, 2018; revised July 30, 2018.
R. Nundhapana was with the Department of Computer Engineering,

Faculty of Engineering, Chulalongkorn University, and is currently with

Krung Thai Bank, Bangkok, 10110, Thailand (email:
ruchuta.nundhapana@ktb.co.th).

T. Senivongse is with the Department of Computer Engineering, Faculty
of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

(corresponding author phone: +66 2 2186996; fax: +66 2 2186955; e-mail:
twittie.s@chula.ac.th).

In software maintenance and evolution, it is likely that

software developers have to inspect and understand code

that is written by someone else. The original developers may

have been transferred to other software projects, have

changed positions or jobs, or have retired. It is common that

software that is in use today within organizations was

developed long time ago and all details might have been

forgotten. Software developers have to carefully study the

code in order to perform maintenance tasks.

It is often the case that software within organizations may

be written using different styles and conventions. This is

because organization-wide coding guidelines may not be in

place, or developers have different levels of experience or

are not strict with coding conventions of the computer

languages of use. Software developers should be concerned

with naming identifiers. Naming variables, constants,

methods, functions, and classes, for example, should follow

the organization’s guidelines or coding standards of the

languages. Identifiers should convey meaning of what a

program does and what data are used or produced. Having

various naming styles for identifiers makes it difficult for

software developers, who may themselves use different

styles, to understand the code written by other developers.

This paper presents a case of an IT organization in

Thailand. While beginning to move to Swift development,

its iOS application development team have been maintaining

a number of Objective C applications, adding new business

requirements or modifying them when the operating system

is upgraded. Initially, the team did not enforce any coding

standards and they usually had to spend time trying to

understand the code written by former team members. In

some cases, the developers found that it was difficult to

understand existing code and decided to develop the whole

application anew. However, redevelopment took time and

some original requirements might be missed out, making the

newly developed applications incomplete. Therefore, the

iOS development team recently began to enforce coding

standards. The team gathered Objective C coding guidelines

that are recommended by Apple [2] and by other sources [3],

[4], [5], with an emphasis on naming convention as well as

the use of magic numbers [6], [7] and literal strings [6], [8].

Also adding their own guidelines, the team established an

Objective C naming guideline that was used in the

development of a naming convention checking framework.

Using the tools in the framework, the team could

automatically check where naming conventions were

violated in the existing Objective C applications. The team

Enhancing Understandability of Objective C
Programs Using Naming Convention Checking

Framework

Ruchuta Nundhapana and Twittie Senivongse

U

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol I
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14048-1-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018

could revise the code to adhere to the guideline in order to

improve understandability and ease future maintenance.

This paper is organized as follows. Section II discusses

related work. Sections III and IV present the Objective C

naming guideline and the development of the naming

convention checking framework. An evaluation of the

framework is shown in Section V and the paper concludes in

Section VI.

II. RELATED WORK

Related work was reviewed in two aspects, i.e. coding

conventions and automatic checking tools.

On coding conventions, Smit et al. [6] suggested that

coding conventions may have impact on maintainability of

software. For example, the use of magic numbers (i.e. literal

values that appear in a program) and hard coded strings

could make the code difficult to read, understand, and

maintain. They conducted a survey of software engineers to

identify the relative importance of 71 coding conventions to

maintainability and measured the convention adherence of

four open-source Java projects. The result showed that the

most common violations were related to the use of magic

numbers and multiple literal strings as well as naming.

Butler et al. [9] argued that automatic checking of naming

conventions was limited to checking of typography. They

proposed a naming convention checking library for Java

fileds, formal arguments, and local variables, which allowed

the declarative specification of different conventions with

regard to typography and the use of abbreviations and

phrases (such as noun phrases and verb phrases). Another

work by Wang et al. [10] used lexical analysis and regular

expressions to extract identifiers in 48 open source projects

written in Java, C, and C++, and match them with identifier

naming conventions, i.e. Camel, Pascal, Hungarian,

Underline, and Capital. The result showed that Camel was

used the most frequently in these languages, and Java

projects had the highest consistency in the use of naming

conventions, followed by C and C++ projects.

On automatic coding convention checking tools,

Objective Clean [11] can check coding styles of Objective C

programs. A developer first has to take a survey to define the

rules about the coding styles that are to be applied to a

project. The rules are about usage of a space in a statement,

method parameter prefix, brace, and empty line only, i.e. it is

not for checking naming convention. At the end of the

survey, a configuration file is created, and the tool can be

used to set up the configuration file within a project. Then

developing the project on the Xcode IDE can adhere to the

rules. At build time, if the code violates one of the rules,

then Xcode will throw a build error and identify the

offending line. Another tool called Faux Pas [12] inspects

iOS or Mac app’s Xcode projects and warns about possible

bugs as well as about maintainability and style issues. With

regard to naming convention, its Unidiomatic Accessor

Naming rule produces a warning if the name of a getter

method starts with “get”, while the Identifier Naming rule

allows enforcing custom naming guidelines for different

kinds of identifiers via regular expressions.

Like Objective Clean [11], this paper presents a coding

convention checking tools and framework that can set up

convention rules in an Xcode project and, during code

building, can identify the locations within the code which

offend the rules. Unlike Objective Clean and other tools, this

paper focuses on comprehensive checking of identifier

naming and the use of magic numbers and literal strings as

they are the most violated conventions [6].

III. OBJECTIVE C NAMING GUIDELINE

In the case of an IT organization in Thailand, its iOS

development team compiled an Objective C naming

guideline shown in Table I which would be used as a

standard in the team. The conventions in the guideline were

taken mainly from the coding guidelines for Apples’ Cocoa

framework [2] which recommend general naming

conventions, how to name classes, methods, functions,

properties, variables, and constants, as well as acceptable

abbreviations and acronyms. The guideline lists correct

naming and wrong naming as examples of recommendations

and violations respectively. Also, naming conventions

recommended by other sources [3], [4], [5] were included.

In addition, the team themselves added four conventions to

this list. Among those four were the conventions about

magic numbers and literal strings. A magic number is a

numeric literal value buried in the code instead and should

be avoided (except -1, 0, 1, and 2) [6], [7]. For example, the

value 56.0 appears out of the blue in area = width * 56.0,

and it is unclear what it means. Literal strings is a series of

characters enclosed in double quotes [8], e.g. mail.sender =

“abc@gmail.com”. Especially multiple occurrences of the

same string in the code would require change in all locations

if the string pattern has to change [6]. It is better to replace

magic numbers and literal strings with named constants.

IV. NAMING CONVENTION CHECKING FRAMEWORK

The overview of the naming convention checking

framework for checking adherence to naming conventions of

any Objective C program in an Xcode project is depicted in

Fig. 1. Steps in the framework are as follows.

A. Extract Identifier Names

The framework provides a “naming list library” (i.e.

RNNamingListObject.h and RNNamingListObject.m) which

an iOS development team member has to import into the

project and call the library by using the command

[RNNamingListObject startGetListName] in the file

Appdelegate.m and run. The library calls Objective C

runtime methods of Cocoa (Touch) framework to get

identifier names (i.e. class, method, function, variable,

property, and constant names) from the program. The result

is a naming list in a text file, where each entry in the file

shows {identifier name, type of identifier}. This naming list

is used later by the Objective C convention checker tool.

B. Set Configuration

The rest of the framework is supported by an OS X

application called the “Objective C convention checker.”

The developer can configure the tool by specifying 1) prefix

of identifiers which the team allow to use when naming

identifiers in a program, 2) naming conventions (in Table I)

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol I
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14048-1-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018

TABLE I
OBJECTIVE C NAMING GUIDELINE

that the developer wants to check violations, and 3)

abbreviations that are defined by the team or by Apple [2]

and allowed in a program.

C. Extract Magic Numbers and Literal Strings

Using the Objective C convention checker, the developer

selects the program and the tool uses the Word Segment API

of Python framework to segment the code into words. Then

the tool uses the class NSRegularExpression of the

Foundation framework to match the code with the regular

expressions for magic number (except -1, 0, 1, 2) in Table II

and for literal string in Table III. Magic numbers and literal

strings that are found in the program are stored in an SQLite

database.

D. Check Naming Conventions

Using the Objective C convention checker, the developer

uploads the naming list file (from Section A) and, for each

identifier name, the tool checks the general conventions first.

Then it checks other naming conventions, depending on the

type of the identifier name (i.e. class, method, function,

variable, property, or constant names).

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol I
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14048-1-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018

Fig. 1. Overview of naming convention checking framework.

TABLE II

REGULAR EXPRESSIONS FOR MAGIC NUMBER

Location Pattern Example

Digit after = or : [\:\=]([\d\.]+) originX = 15.0;
setWidth:30.0

Digit before ; ([\d\.]+)[;] menuWidth =
viewWidth/4.0;

Digit after +, -, x,
/, <, >

[\>\<\+\-*\/]
([\d\.]+)

salary =
month*25*100;

Digit before +, -,
x, /, <, >

([\d\.]+)[\+\-
*\/\>\<]

days = 7*week;

Digit after (and
before ,

[\(\[]([\d|\.]+)[,] setFrame(20,
originY, width, height)

Digit after , and
before)

[,]([\d|\.]+)[\)\]] setFrame(originX, originX,
width,568)

Digit between , [,]([\d|\.]+)[,] setFrame(originX, origin,
185, height)

TABLE III

REGULAR EXPRESSION FOR LITERAL STRING

Location Pattern Example

Character
between "

\"([^\\\"]|\\.)*\" "Hello"

In naming convention checking, the Word Segment API is

used to segment each identifier name into an array of words.

Checking of naming conventions in Table I can be done

based on the following four categories of checking.

1) Check number of words

This is to check if an identifier name contains a number of

words according to the guideline. For example, an algorithm

to check if an identifier name contains multiple words is

shown below.

Convention: Name should consist of multiple words.

Input: Name (array of words)

Output: Result (yes or no)

1: Declare integer variable count

2: Read name

3: Set count to number of words

4: If count > 1

5: Print “name is valid” and return yes

6: Else

7: Print “name is violating” and return no

2) Check string or character

This is to check if an identifier name contains or omits a

string or character according to the guideline. For example,

an algorithm to check if an instance variable name starts

with an underscore is shown below.

Convention: Instance variable name should have underscore

as a prefix.

Input: Instance Variable name (array of words)

Output: Result (yes or no)

1: Declare a string variable char

2: Read instance variable name

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol I
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14048-1-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018

3: Set char to first character of name

4: If char is equal to underscore

5: Print “name is valid” and return yes

6: Else

7: Print “name is violating” and return no

3) Check string pattern using regular expression

This is to check if an identifier name contains a string

pattern according to the guideline. For example, an

algorithm to check if a class name starts with a prefix that is

configured to use by the team is shown below.

Convention: Class name should have prefix.

Input: Class name (array of words) and prefix

Output: Result (yes or no)

1: Declare a string variable name

2: Declare a string variable regex pattern

3: Read class name

4: Read prefix

5: Set name to the class name

6: Set regex pattern with prefix to

"(?<={prefix})[A-Z][a-z].*"

7: If name matches regex pattern

8: Print “name is valid” and return yes

9: Else

10: Print “name is violating” and return no

4) Check meaning and type of word

This is to check if an identifier name consists of

meaningful words and the words are of the types according

to the guideline. For example, to check if a method name

starts with a verb followed by a noun, the tool uses the

REST Words API to obtain information about the first and

second word of the method name by appending the URL

https://wordsapiv1.p.mashape.com/words/ with the requested

word. If the requested word has meaning, the Words API

returns information, including the part of speech. In some

cases, the tool has to first obtain the present simple form of

the requested word from the REST WebKnox Word API by

requesting the URL https://webknox-

words.p.mashape.com/words/{word}/simplePresent and

specifying the requested {word}. After that, the part of

speech of the present simple form is obtained from the

Words API. The algorithm is shown below.

Convention: Method name should start with a verb followed

by a noun

Input: Method name (array of words)

Output: Result (yes or no)

1: Declare a string variable word

2: Read method name

3: Set firstWord to the first word of the name

4: Set secondWord to the second word of the name

5: Add firstWord and secondWord to wordArray

6: Set authentication to access WordsAPI by Key

7: For each word in wordArray

8: Invoke WordsAPI URL passing word as argument

9: Get part of speech of word from response from

WordsAPI

10: If word == firstWord

11: If part of speech of word is not equal to verb

12: print “name is violating” and return no

13: Else

14: If part of speech of word is equal to noun

15: If word is the last word

16: Print “name is valid” and return yes

17: Else

18: Print “name is violating” and return no

All naming violations that are found are stored in the

SQLite database.

E. Generate Shell Script

Using the Objective C convention checker, the developer

generates a shell script from the naming, magic number, and

literal string violation list in the SQLite database. The shell

script is shown below.

KEYWORDS="@\"{violating identifier name}"

find "${SRCROOT}" \(-name "*.h" -or -name "*.m" \) -

print0 | xargs -0 egrep --with-filename --line-number --only-

matching "($KEYWORDS).*\$" | perl -p -e

"s/($KEYWORDS3)/ warning: {description of violation}/"

F. Identify Naming Convention Violations

The developer has to open the program and add the shell

script from Section E in the Run Script menu of Xcode.

When the shell script is executed on the program, the

locations of the identifier names that violate the naming

convention guideline are identified.

G. User Interface of Objective C Convention Checker

Some screen shots of the Objective C convention checker

are shown in this section. Fig. 2 is the main input screen with

a menu for the developer to follow the framework. Fig. 3

shows an example of two shell scripts that are added to Run

Script for the violations regarding the properties window and

dUsage. Fig. 4 shows highlights on the violations and

warning messages in the program.

V. EVALUATION

To evaluate if the naming convention checking framework

could enhance program understandability, the iOS

development team conducted an experiment by asking four

developers to study Objective C programs as detailed in

Table IV.

Fig. 2. Main screen of Objective C convention checker.

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol I
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14048-1-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018

Fig. 3. Adding shell scripts to Run Script.

Fig. 4. Highlights on naming violations in a program.

TABLE IV

EXPERIMENTAL SETTING

Developer
Program P1

9 classes, 3565 LOC
Program P2

14 classes, 4684 LOC

A (4-year
experience)

Original before Revised Revised before Original

B (4-year

experience)

Revised before Original Original before Revised

Developer Program P3
6 classes, 1060 LOC

Program P4
9 classes, 2038 LOC

C (3-year

experience)

Original before Revised Revised before Original

D (3-year
experience)

Revised before Original Original before Revised

Each pair of developers inspected two programs on Xcode

and each program had two versions, i.e. the original version

before using the framework and the revised version after

revision as suggested by the framework. They studied the

two versions in different order (i.e. Original before Revised

or Revised before Original) to reduce bias in understanding.

After studying each version, they ran that version of the

program once to see how it worked. Then, they answered a

test of 30 questions, such as those in Fig. 5, which assessed

their understanding in that version of the program. Paired t-

test was used to test the following hypotheses:

H0 : µ1 - µ2 = 0

H1 : µ1 - µ2 > 0

where µ1 is the average of time spent in answering all

questions for the original program correctly, and

µ2 is the average of time spent in answering all questions

for the revised program correctly.

Given the experimental result in Table V, tcalculate was

7.595. At the significance level of 0.05, t.95;3 = 2.353. Since

tcalculate > t.95;3, H0 was rejected and H1 was accepted. The

team concluded that the framework was effective and

revision of identifier names in the programs as suggested by

the framework could save maintenance time and improve

program understandability.

Fig. 5. Example of questions to test program understanding.

TABLE V

EXPERIMENTAL RESULT

Developer
Time on

Original (sec)

Time on

Revised (sec)

Difference

(sec)

A 3,632 2,363 1,269
B 3,767 2,420.5 1,346.5

C 2,564.5 1,686 878.5
D 2,912 2,133 779

VI. CONCLUSION

Different software developers have different coding

experiences and use different coding styles. This paper

addresses an important issue in software maintenance as, for

developers, it usually takes time to study and understand

programs written by other people. The case of an Objective

C development team of an organization in Thailand has

shown that, the use of the proposed naming convention

checking framework by enforcing the naming convention

guideline in the team could improve program

understandability. The naming list library and Objective C

convention checker could facilitate the team in refactoring

existing code for ease of maintenance in the future. To better

support the framework, these tools could be implemented as

a plugin for Xcode. The team is also planning to extend the

framework to support other coding conventions for both

Objective C and Swift.

REFERENCES

[1] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. McLeod, and
M. Merritt, Characteristics of Software Quality. North Holland,

1978.
[2] Apple Inc., Coding Guidelines for Cocoa [Online]. Available:

https://developer.apple.com/library/mac/documentation/Cocoa/Conce
ptual/CodingGuidelines/

[3] NYTimes Objective-C Style Guide [Online]. Available:
https://github.com/NYTimes/objective-c-style-guide

[4] The official raywenderlich.com Objective-C style guide [Online].

Available: https://github.com/raywenderlich/objective-c-style-guide
[5] Cocoa Style for Objective-C: Part I [Online]. Available:

http://cocoadevcentral.com/articles/000082.php
[6] M. Smit, B. Gergel, H. J. Hoover, and E. Stroulia, “Maintainability

and source code conventions: an analysis of open source projects,”
Computer Science Technical Report, TR11-06, University of Alberta,
Canada, 10 pp.

[7] Magic Number [Online]. Available:

http://c2.com/cgi/wiki?MagicNumber
[8] Literal String [Online]. Available:

https://www.computerhope.com/jargon/l/literal.htm
[9] S. Butler, M. Wermelinger, and Y. Yu, “Investigating naming

convention adherence in Java references,” IEEE Int. Conf. Software

Maintenance and Evolution (ICSME), 2015, pp. 41-50.
[10] Y. Wang, S. Wang, X. Li, H. Li, and J. Du, “How are identifiers

named in open source software? On popularity and consistency,” Int.

J. Computer and Information Technology, volume 03, issue 03, pp.
616-625, May 2014.

[11] Objective Clean [Online]. Available: http://objclean.com/index.php
[12] Faux Pas [Online]. Avaliable: http://fauxpasapp.com/

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol I
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14048-1-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018

