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Abstract—The principal aim of the multiple-criteria decision
analysis is the prioritization of available alternatives. This
conventionally is achieved by estimation of the priority weights
that reflect the importance of each of the alternatives. One of
the most popular prioritization methodologies is the Analytic
Hierarchy Process. The prioritization technics that can be used
within this decision making framework are based on the so-
called pairwise comparison matrix (PCM). The PCM contains
the decision maker’s judgments about the priority-weights-
ratios. These judgments are typically expressed in values from
an adopted scale. In praxis such judgments are erroneous and as
such, result in erroneous estimates of the priority weights. This
paper is devoted to the simulation analysis of the estimation
errors and their relationship with the correctness of the final
ranking of alternatives. On the basis of the simulations’ results
some important remarks about the impact of the adopted scale
on the estimation errors as well as about the PCM acceptance
procedure are formulated.

Index Terms—AHP, prioritization, estimation errors, consis-
tency, simulation.

I. INTRODUCTION

MULtiple-criteria decision analysis (MCDA) is a
branch of multiple criteria decision making that deals

with problems that have only a small number of alternatives.
The essence of the MCDA is the alternatives’ ranking
creation also called a prioritization. The prioritization is
achieved by estimation of the priority weights i.e. numbers
telling to what degree a given alternative satisfies a given
criterion. Apart from the alternatives and a number of criteria,
more complex MCDA problems may also involve several
experts and/or decision makers (DM). To obtain the final
ranking of the available alternatives all these factors need to
be ranked. One of the most popular prioritization method-
ologies is the Analytic Hierarchy Process (AHP), [15]. In
the AHP all problem’s factors are arranged in a hierarchic
structure descending from - say - experts to criteria and
alternatives in successive levels. After all sub-problems of
prioritization are solved (i.e. the rakings of experts, criteria
and alternatives are obtained), the final alternatives’ ranking
is created. The prioritization technics that can be used within
this decision making framework are based on the so-called
pairwise comparison matrix (PCM). The PCM contains the
decision maker’s judgments about the priority-weights-ratios.
These judgments are typically expressed in values from an
adopted predefined set of numbers that is called a scale, [14],
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[15], [3], [6], [18]. However in praxis the DM’s judgments
are usually erroneous and as a consequence, the estimates of
the priority weights derived on their basis are erroneous as
well.

This paper is devoted to the simulation analysis of the
priority-weights-estimation-errors (PWEEs) and their rela-
tionship with the correctness of the final ranking of alter-
natives. In Section 2 necessary definitions and facts from the
theory are introduced. In Section 3 the problem is formally
stated. Section 4 describes considered simulation frameworks
and provides us with the results of simulation experiments
along with discussion. Finally some concluding remarks
about the impact of the adopted scale as well as about the
PCM acceptance procedure are formulated.

II. PRELIMINARIES: NOTATION, DEFINITIONS AND BASIC
FACTS

A basic assumptions of the AHP is the existence of a
unique (up to multiplying constant) vector of priority weights
v = (v1, . . . , vn)

′ of n alternatives with respect to a given
criterion. Commonly the priority weights vi, i = 1, . . . , n,
are chosen to be nonnegative and normalized to unity. Such a
vector is called a priority vector (PV) In the AHP a decision-
maker evaluates ratios of priorities aij = vi/vj . As a result
the pairwise comparison matrix A = [aij ]nxn is obtained.
Typically, the input data of the PCM is collected for the
upper triangle of the matrix A, while the remaining elements
are computed as the inverses of the corresponding symmetric
elements in the upper triangle i.e. aij = 1/aji . Such a PCM
is said to be reciprocal. The PCM is said to be consistent if it
is reciprocal and its elements satisfy the condition: aijajk =
aik ∀ i, j, k = 1, ..., n.

However, it is obvious that in praxis it cannot be expected
that the elements of PCM give precisely the priority ratios.
First of all, according the usual procedure, the DM’s answers
(given in lexical phrases) are transformed into numbers
belonging to a given scale. In such a case one cannot neglect
rounding errors. The most popular scale is the Saaty’s one
(SS). The SS contains integers 1, 2, ..., 9 and their recip-
rocals. Other suggested in literature scales are the Extended
Saaty’s scale, ESS[N], that contains integers from 1 to N,
along with their reciprocals, and the geometric scale GS[c]
that contains numbers s of the form s = ci/2, i ∈ I with
I being a predefined set of integers. For the analysis of the
scales see e.g. [6], [18].

Apart from the rounding errors, there are also other errors
in the ratios-evaluations that are results of human brain
limitations. Even if the comparisons are done very carefully,
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PCM in reality is inconsistent. So, an important problem
connected with this theory is how to measure the degree of
inconsistence of the PCM. But before we briefly introduce
some inconsistency indices, first we need to recall two most
popular prioritization methods. One of them is the so-called
logarithmic least squares method, also known as geometric
mean method - GM, [5]. The estimated priority vector (EPV)
in the GM can be obtained by the following formula:

wi =

(
n∏

i=1

aij

)1/n/ n∑
i=1

(
n∏

i=1

aij

)1/n

Another, perhaps the most commonly used prioritization
method is based on specific results from the spectral theory
of matrices. This one is called right eigenvector method
(REV). Its description and formal backgrounds have a vast
literature, see e.g. [15], [16] and many contemporary books
devoted to the AHP, so the details are omitted here to save the
article space. In the REV as the EPV we take the eigenvector
associated with the principal eigenvalue of the PCM at hand.
It was indicated in literature, e.g. [7], [4], [13], that the EPVs
obtained with the help of the GM and REV differ very little,
and there is no agreement which one is better. However, the
EPV is certainly much more easy to compute via the GM,
thus this method will be primarily used in our studies. As
we indicated, apart from deriving priority vectors, another
problem within the AHP methodology is how to measure
the degree of inconsistence of the PCM. We are presented
with a number of inconsistency indices and again, the two
most popular ones are related to the two above introduced
prioritization methods.

The index connected with the REV, denoted as SI, was
proposed by Saaty and is defined as follows:

SI(n) =
λmax − n
n− 1

Related to the geometric mean method index (GI) was
proposed by Crawford and Williams[5], and was popularized
by Aguaron and Moreno-Jimenez [1] in 2003. It is given by

GI(n) =
2

(n− 1)(n− 2)

∑
i<j

log2(aijwi/wj)

Apart from these two indices there is third popular index
that is based on the notion of the triad inconsistency. It was
proposed by Koczkodaj [12]. Following him, for any different
i, j, k ≤ n, a tuple (aik, aij , akj) will be called a triad.
Koczkodaj proposed to characterize the triad’s inconsistency
by the number:

TI(aik, akj , aij) = min
[∣∣1−aikakj/aij∣∣, ∣∣1−aij/((aikakj)∣∣]

Then, the Koczkodaj’s inconsistency index KI of any
reciprocal PCM is defined as a maximum of triad’s in-
consistencies i.e. KI = max[TI(aik, akj , aij)], where the
maximum is taken over all triads in the upper triangle of the
PCM. Yet another inconsistency index that manifests very
good correlation with PV estimation quality was defined
as the average value of all triad’s inconsistencies. It was
introduced and studied in [8] and is denoted here as ATI.

All inconsistency indices are developed in order to enable
the DM to distinguish between useful and useless PCMs.
Thus, usually all these indices are given along with related

consistency thresholds. However, as it was criticized by many
researchers, typically the values of acceptance thresholds
are based on some heuristics and are not supported by any
profound formal reasoning or statistical research. In recent
literature there are many confusing examples that prove that
the thresholds work poorly, see [7] and literature in there. To
deal with this problem a new approach to PCM acceptance
was proposed quite recently in [8], where the relationship
between the inconsistency indices and the PWEEs was
examined with the help of Monte Carlo simulations. In [8] it
was proposed to measure the PWEE as the average absolute
(AE) and/or relative (RE) errors. The errors are given by the
following formulae:

AE(v,w) =
1

n

n∑
i=1

|vi − wi| (1)

RE(v,w) =
1

n

n∑
i=1

|vi − wi|
vi

(2)

where v = (v1, ..., vn) is the true PV while w = (w1, ..., wn)
is its EPV. Obviously the EPV and consequently the errors
depend on the prioritization method as well. So, in our
studies both the GM and REV were used for PV estimation
and then calculation of AE and RE.

III. PROBLEM STATEMENT

As we have mentioned above, it is argued that the knowl-
edge about the relationship between inconsistency indices
and PWEEs would help the DM in making decisions about
the PCM acceptance because such decisions are based on
the observed value of the inconsistency index. The principal
aim of this paper is to help the DM in such a task. To
achieve this goal one should be able to distinguish between
”small”, ”average” and ”big” PWEEs. However, as yet there
are no criteria for making such a ”classification” of errors.
To cope with the problem we propose here, for the first
time in literature, to investigate the relationship between the
PWEEs and the chances of ”significantly wrong” final EPV.
The latter term as well as the idea of the proposed criterion
needs additional clarification. Below we present more formal
and more detailed description of our proposal.

During typical analysis of the AHP problem, both the
prioritization methods and the inconsistency analysis are
curried out several times (as described in Introduction, at
least for the criteria and then at the bottom of the hierarchy,
for the alternatives with respect to each criterion separately).
Let the PCM(Cr) denote the PCM that was evaluated for the
criteria, and let PCM(i) denote the PCMs for the alternatives
with respect to i-th criterion. The PCM(Cr) has order k,
where k is the number of different criteria in the considered
problem (k > 1). The PCM(i) has the order n, with n being,
as previously, the number of available alternatives. Let v0

and w0 be, respectively, the true PV for criteria and the
EPV computed for the criteria on the basis of PCM(Cr).
Let also vi and wi be the true PV and its EPV for the
alternatives with respect to the i-th criterion. The true final
ranking of the alternatives is given by the final true PV - say
v - that is computed as the weighted average of the vectors
vi, i = 1, , k, with the weights given in v0. Analogously, the
estimated final PV - say w - is computed as the weighted
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average of the vectors wi, i = 1, , k, with the weights given
in w0

We will say, that w provides us with significantly wrong
final ranking if the truly best alternative (i.e. the one asso-
ciated with greatest coefficient in v) is not the best one in
the final ranking (i.e. its corresponding coefficient in w is
not the greatest one) Hereafter we will abbreviate the phrase
”significantly wrong final ranking” to SWFR.

We propose such a definition to focus only on serious mis-
takes in rankings, so our criterion does not take into account
such situations where the final classification is wrong, but
the erroneous ranks are related to less significant alternatives.
That is why we call it ”significantly wrong”.

From the multiple-criteria decision analysis point of view,
not the PWEEs themselves but the chances for significantly
wrong final ranking is perhaps the most important criterion
for the PCM acceptance or rejection. So, the first aim of our
studies is to find out what is the relationship between the
magnitude of the PWEEs and the probabilities of obtaining
SWFR.

Another interesting question is what type of error is more
meaningful, the AE or RE? In [8] it was suggested that in
the context of the AHP application the more important is the
RE. However this statement was superted only by intuition
and some heuristics. Now we want to study which of the
two types of errors are better related to the probability of
the SWFR.

Yet another problem considered in our studies is the
classification of the PWEEs, as mentioned at the beginning
of this section. We focus here on the class of ”small” errors.
In our opinion, as such can be treated these errors that result
from the methodology itself, that is the rounding errors. We
study whether the magnitude of such ”small” errors depends
on the adopted scale and - if so - which scale is the best one
under the criterion of the SWFR.

All these questions can be answered only with the help of
Monte Carlo simulation. Next section provides us with the
description of the simulation frameworks that are used in our
studies.

IV. SIMULATION FRAMEWORKS AND RESULTS

To analyze the relationship between the PWEEs and the
probabilities of obtaining the SWFR we use the following
simulation framework:

•Step 0 (Initialization) Set: n - the number of alterna-
tives, k- the number of criteria, N -the number
of simulated AHP problems, PR - the probability
distribution of random PV-estimation errors

Step 1 Randomly generate the ”true” priority vectors
vi, i = 1, , k,

Step 2 According to the PR, compute ”estimated” priority
vectors wi, i = 1, ..., k, as random modifications
of corresponding true priority vectors.

Step 3 With the help of formulae 1 and 2 compute the
PWEEs: Ai = AE(vi,wi) and Ri = RE(vi,wi),
i = 0, , k.

Step 4 Compute the aggregated estimation errors as:
AAE = 1/(k + 1)

∑k
i=0Ai and ARE = 1/(k +

1)
∑k

i=0Ri

TABLE I: Values of Pearson correlation coefficients between
the probabilities (frequencies) of SWFR and the mean values
of AAE (first number) and ARE (second number). Only
fractional digits are presented.

n \ k 3 4 5 6
4 998/944 998/947 997/951 994/936
5 997/900 998/908 997/928 995/927
6 996/853 996/887 994/899 996/894
7 989/844 996/869 995/882 994/890

Step 5 Set sw = 1 if the true best alternative is different
from the estimated best alternative, otherwise set
sw = 0

Step 6 Write down all values computed and/or set in Steps
3 to 5 as one record.

Step 7 N times repeat Steps 1 to 6
Step 8 Return all records organized as one database.

As a result of simulation experiments conducted within
the above simulation framework we receive a database that
enables us to study the relationship between the PWEEs and
the probabilities of obtaining the SWFR. For this purpose
the whole database is arranged in ascending order according
the values of a considered type of errors (Ai, Ri, AAE or
ARE) and then split into a number (NC) of separate classes
ECi, (i = 1, ..., NC). For each such a class the mean value
of the considered error is computed as well as the number
of cases of the SWFR (i.e. computed within the given class
ECi sum of the values of sw as recorded in Step 5). Fig
1 presents exemplary results obtained for problems where
n = 4, k = 4, numeber of classes is NC = 35.

The plot (a) in Fig. 1 illustrates the relationship between
the averages of aggregated absolute error AAE and the
probabilities of SWFR, while the one labeled (b) shows
the relationship between aggregated relative error ARE and
the probabilities od SWFR. What is quite surprising, in
difference to the suggestions in literature (see [[8]), the abso-
lute errors manifest better correlation with the probabilities
of SWFR. This shows that the heuristics underlying some
conclusions may be sometimes misleading. The relationship
presented in Fig 1 was obtained for the case where the
number of alternatives as well as the number of criteria is
4. However the same relationship was observed for all other
considered numbers of alternatives and criteria. In our studies
we have considered n = 4, ..., 7 and k = 3, ..., 6. Table I
shows values of the Pearson correlation coefficient obtained
in all these cases. Column heads indicate number of criteria
k, heads of rows indicate number of alternatives. To save
the table space, in appropriate cells only fractional digits are
presented.

We can see that that apparently both types of errors
are strongly correlated with the probability of SWFR, and
in that sense both are meaningful. However in all cases
the correlation coefficient computed for the AAE is greater
than the one in case of the ARE. So the results confirm
our previous conclusion. Moreover, one can also notice
that the correlation of ARE decreases when the number of
alternatives increases, while the correlation of AAE is much
more robust against such changes.

Next issue that is important for the PCM acceptance
procedure is the notion of small errors. As it was indicated in
the previous section our proposal is to consider as ”small”
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Fig. 1: The relationship between the the probabilities (frequncies) of SWFR (lebeled as Pr) and the AAE, plot (a), and
ARE, plot (b). This exemplary graph was obtained in the case where n = 6, k = 3. The whole range of observed errors
was splited into NC = 35 classes.

PWEEs such ones that are of similar magnitude as those
resulting from the rounding procedure. So, our another task
is to determine how small are the ”small” errors and what is
their relationship with the adopted judgment scales. For this
study we assume the following simulation framework:
•Step 0 (Initialization) Set: n - the number of alternatives,

k- the number of criteria, N -the number of simu-
lated AHP problems, the prioritization method (GM
or REV)

Step 1 Randomly generate the true priority vectors vi, i =
1, ..., k, and compute related perfect comparison
matrix Mi with elements mi

j,l =
vi
j

vi
l

Step 2 For every considered judgment scale separately,
compute rounded matrices RMi, i = 0, ..., k,
by rounding all values in the upper triangle of
Mi, i = 0, ..., k, to the closest value from the scale
and replace all elements in the lower triangle of
the RMi with the reciprocities of the appropriate
elements from the upper triangle.

Step 3 With the help of adopted prioritization method
compute the values of the estimates of the vectors
vi, i = 1, ..., k along with the errors Ai, Ri, AAE
or ARE. Write down values computed in this step
as one record.

Step 4 N times repeat Steps 1 and 3
Step 5 Return all records organized as one database.

In our studies we make use of the Saaty’s scale (SS),
ExtendedSaaty’s scale ESS[17], and geometric scale GS[2],
(their definitions were provided in Section 2). Results of our
simulation studies are summerized in Table II

The rounding procedure is an immanent part of all pair-
wise comparison judgments. As a result, the rounding errors
cannot be avoided and have to be accepted. So it is natural
to treat each error in judgment that has similar magnitude to
the rounding error as a small one or even negligible. In our
opinion the limit for this kind of errors should be given by
the maximum of the observed rounding errors. If we accept
this point, then we should notice that, in view of Table II
the magnitude limit for small errors depends on the assumed
judgment scale. And from this point of view the GS[2] and
and EES[17] looks much better than the usual SS. Such a
poor performance of the SS were also pointed out in other
research conclusions, see e.g. [18].

Another important observation is that even such small
errors may lead to SWPR! It another amazing fact revealed

TABLE II: Selected statistics for AA errors that are results
of the rounding procedure in dependence on the adopted
judgment scale. The considered scales are SS, ESS[17] and
GS[2] as defined in Section 2.

Statistics Min Max Mean St. Deviat.
Scale: n

SS 4 0.0044 0.0360 0.01383 0.0038
SS 5 0.0048 0.0302 0.0125 0.0035
SS 6 0.0039 0.0286 0.0113 0.0032
SS 7 0.0041 0.0260 0.0101 0.0029

ESS[17] 4 0.0040 0.0245 0.0115 0.0028
ESS[17] 5 0.0038 0.0218 0.0100 0.0024
ESS[17] 6 0.0034 0.0187 0.0090 0.0021
ESS[17] 7 0.0033 0.0177 0.0079 0.0019
GS[2] 4 0.0032 0.0204 0.0085 0.0022
GS[2] 5 0.0027 0.0194 0.0074 0.0021
GS[2] 6 0.0025 0.0176 0.0066 0.0019
GS[2] 7 0.0021 0.0175 0.0059 0.0018

by presented here studies. If we, for example, take into
account the relationship illustrated in Fig 1. we can see that
AA errors of magnitude less that the limits for small errors
are related to AHP problems where we have probability
above 0.05 of SWFR. The results presented in Table II were
obtained in simulations where the GM prioritization method
was used to obtain the EPV. However, when we used the
REV method the results were basically the same and they
led to the same conclusions, so we omit their presentation
to save the article space.

V. FINAL REMARKS

The simulation experiments described in this paper re-
vealed interesting facts. First fact is that not the relative errors
but the absolute errors are better correlated with the chances
of significantly wrong final ranking. Second, that the small
estimation errors - i.e. of magnitude similar to the rounding
errors - are not negligible because they also may cause the
change of order of the two most important alternatives, and
the probability of such situation is between 5% and 8%.
Next interesting observation is that adoption of the geometric
scale (here the GS[2]) leads to smaller rounding errors than
the extended Satty’s scale (here ESS[17]). The worst with
respect to this criterion is the usual Saaty’s scale.

All the issues considered here where investigated with the
help of simulation frameworks that take into account the
whole hierarchical structure that occurs in the AHP. The
conventional simulation approach is to investigate separately
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a single prioritization problem (i.e. problem of estimating
weights on the basis of a fixed and only one PCM), see e.g.
as in [7], [9], [4], [13], [3], [19]. The approach adopted here
to simulation analysis of AHP problems was introduced for
the first time in [11]. However in the context of error analysis
this approach is used for the first time in literature. What is
very important, the relationship between the estimation errors
and the chances of SWFR are much more vague when we
consider the single prioritization problem.

The results should have impact on the PCM acceptance
methodology. The impact should be at least twofold. First, we
know when the PCM should be (or even has to be) accepted;
when the AE errors (or RE errors) are small (as defined here).
Secondly, the very close relationship between AE errors and
the probability of significantly wrong final PV (as illustrated
e.g. by by Fig. 1 or Table I) can form a sound fundament
for development of a new PCM-acceptance procedure that
would really on the analysis of the chances of good/ bad
consequences of the decisions, and be well justified by the
mathematical-statistics methodology.

Finally, let us note that the PWEEs (of both types) cannot
be observed directly, but the values of inconsistency indices
can be observed instead. The relationship between the values
of inconsistency indices and the AE and RE errors where
analyzed in [8]. It appears that the best correlation was found
between the ATI index and the PWEEs of both types. More
detailed discussion on this issue can be found in [8]. In
view of presented here results further thorough studies within
this area should be conducted in future. But in the light of
presented results it is very promising direction.
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