
Solving the Water Jug Puzzle in CLIPS
Feng-Jen Yang, Member, IAENG

Abstract—Unlike object-oriented programming approaches
in which a solution is clearly represented by objects, classes, in-
heritance and polymorphism, the logic programming approach
is focus on the inference that applies the rules in the knowledge-
base to enhance the contents in the fact-base until the goal is
reached. In this paper, a logical problem solving is illustrated
by using CLIPS programming language to solve the water jug
puzzle.

Index Terms—State Space, Search Tree, Logical Program-
ming, Forward Chaining Inferencing.

I. INTRODUCTION

IN terms of logical programming, most of the real-life
problem solving can be achieved by representing a solu-

tion as a series of state transitions. After finding a suitable
problem state representation, a problem solver can go on to
think of all possible operations that can cause a state transi-
tion from a given state to its successor states. In this manner,
the entire problem domain can be viewed as a state space,
also known as a search space, that consists of all possible
states and all possible transitions among states. Within this
state space, any path that starts from the initial state to a
goal state is representing a solution. The series of operations
that are performed along the path are the steps of solving
this problem. A potential problem with state space while
searching for paths is that the directional state transitions
might incur loops involved and end up with being trapped
by infinite length path. As a result, along with the design of
knowledge rules toward problem solving, any operation that
will cause a transition from the current state to a previously
visited state should be excluded from the search space. In this
paper, this problem-solving approach is illustrated to solve
the water jug puzzle in CLIPS programming language.

II. THE WATER JUG PUZZLE

The origin of water jug puzzle dates back to mediaeval
times when people were playing a mathematical game by
using a fixed number of water jugs that can hold different
integral units of water volumes but with no measuring marks
on them, by filling up jugs from other jugs or emptying jugs
into other jugs in a proper sequence, they found that they
could get the exact amount of water volume they expected
in advance [1]. This kind of puzzle is a good illustration
of problem solving by searching the state space to find a
sequence of actions that can lead to a sequence of state
transitions from the initial state to a goal state.

An instance of the water jug puzzle, which is chosen to
be demonstrated and solved in this paper, starts from two
given water jugs in which one can hold up to 4 gallons of
water and the other can hold up to 3 gallons of water. The
game rules are allowing a player to fill up a jug from the

Manuscript received July 6, 2018; revised July 27, 2018.
F. Yang is with the Department of Computer Science, Florida Polytechnic

University, FL 33805, USA, e-mail: fyang@floridapoly.edu.

tap, empty a jug into the sink, fill up a jug from the other
jug, or empty a jug into the other jug. Given these conditions
and restrictions, eventually the player is required to fill the
4-gallon just with exactly 2 gallons of water.

A. The Problem State Representation

Since the essential criterion for solving the Water Jug
Puzzle is based how much water are filled in each jug, a
very nature and intuitive way to represent the problem state
is using an ordered pair of numbers to indicate the amount
of water in the 4-gallon jug and the 3-gallon jug. So that the
ordered pair (x, y) indicates that there is x gallons of water
in the 4-gallon jug and y gallons of water in the 3-gallon
jug. With this analogy, this problem domain can be treated
as search tree in which the initial state is (0, 0) and the goal
state is (2, y) where y can be any amount of water left in
the 3-gallon jug.

B. The State Transitions

The sate transitions can be derived based on the game
rules. With the 4 rules of water pouring and filling, the
following 8 possible operations can be derived as follows:

1) Fill up the 4-gallon jug from the tap, i.e., (x, y) → (4,
y) where x < 4.

2) Fill up the 3-gallon jug from the tap, i.e., (x, y) → (x,
3) where y < 3.

3) Fill up the 4-gallon jug from the 3-gallon jug, i.e., (x,
y) → (4, x+y-4) where x > 0 and x+y ≥ 4.

4) Fill up the 3-gallon jug from the 4-gallon jug, i.e., (x,
y) → (x+y-3, 3) where y > 0 and x+y ≥ 3.

5) Empty the 4-gallon jug into the 3-gallon jug, i.e., (x,
y) → (0, x+y) where x > 0 and x+y ≤ 3.

6) Empty the 3-gallon jug into the 4-gallon jug, i.e. (x,
y) → (x+y, 0) where y > 0 and x+y ≤ 4.

7) Empty the 4-gallon jug into the sink, i.e., (x, y) → (0,
y) where x > 0.

8) Empty the 3-gallon jug into the sin, i.e., (x, y) → (x,
0) where y > 0.

The operations 1 and 2 are derived from the 2 possible
situations of filling up a jug. The operations 3 and 4 are
derived from the 2 possible situations of frilling up a jug
from the other jug. The operations 5 and 6 are derived from
the 2 possible situations of emptying a jug into the other
jug. The operations 7 and 4 are derived from the 2 possible
situations of emptying a jug into the sink.

III. SOLVING THE PUZZLE IN CLIPS PROGRAMMING
LANGUAGE

While most of the AI literatures are solving the water
jugs puzzle by performing a depth first search or breadth
first search on a pre-constructed search tree, I am looking
at the problem from a different prospective and attempting

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol II 
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14049-0-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018



to solve this problem by using the built-in forward chaining
inference engine within the CLIPS programing language. The
rationale of exploring this new approach is that we do not
have to construct the search tree in advance and then adopting
a search technique to look for solutions. Instead, a path from
the initial state to a goal state can be both inferred and saved
at the same time. The programming details are described in
the subsequent sections by using CLIPS syntax [2].

A. Asserting the initial state

The program starts from asserting the initial state to the
fact-base which can be done in the following statement:

(deffacts the-initial-state
(state 0 0))

B. Inferring New States and Links by Applying the Eight
Operations

Based on the initial state, we can go on to encode the
aforementioned eight operations into the following corre-
spondent knowledge rules:

(defrule op1
(state ?x ?y)
(test (< ?x 4))
(not (exists (state 4 ?y)))
=>
(assert (state 4 ?y))
(assert (link ?x ?y to 4 ?y)))

(defrule op2
(state ?x ?y)
(test (< ?y 3))
(not (exists (state ?x 3)))
=>
(assert (state ?x 3))
(assert (link ?x ?y to ?x 3)))

(defrule op3
(state ?x ?y)
(test (> ?x 0))
(test (> (+ ?x ?y) 4))
(not (exists (state 4 =(- (+ ?x ?y) 4)
)))
=>
(assert (state 4 =(- (+ ?x ?y) 4)))
(assert (link ?x ?y to 4 =(- (+ ?x ?y)
4))))

(defrule op4
(state ?x ?y)
(test (> ?y 0))
(test (> (+ ?x ?y) 3))
(not (exists (state =(- (+ ?x ?y) 3) 3)
))
=>
(assert (state =(- (+ ?x ?y) 3) 3))
(assert (link ?x ?y to =(- (+ ?x ?y) 3)
3)))

(defrule op5
(state ?x ?y)
(test (> ?x 0))

(test (< (+ ?x ?y) 3))
(not (exists (state 0 =(+ ?x ?y))))
=>
(assert (state 0 =(+ ?x ?y)))
(assert (link ?x ?y to 0 =(+ ?x ?y))))

(defrule op6
(state ?x ?y)
(test (> ?y 0))
(test (< (+ ?x ?y) 4))
(not (exists (state =(+ ?x ?y) 0)))
=>
(assert (state =(+ ?x ?y) 0))
(assert (link ?x ?y to =(+ ?x ?y) 0)))

(defrule op7
(state ?x ?y)
(test (> ?x 0))
(not (exists (state 0 ?y)))
=>
(assert (state 0 ?y))
(assert (link ?x ?y to 0 ?y)))

(defrule op8
(state ?x ?y)
(test (> ?y 0))
(not (exists (state ?x 0)))
=>
(assert (state ?x 0))
(assert (link ?x ?y to ?x 0)))

C. The Resultant Search Tree

By performing the forward chaining inference and start
the initial state, the follow search space is added into the
fact-base of CLIPS:

(state 0 0), (state 4 0), (state 0 3),
(state 4 3), (state 1 3), (state 3 0),
(state 1 0), (state 3 3), (state 0 1),
(state 4 2), (state 4 1), (state 0 2),
(state 2 3), (state 2 0),
(link (state 0 0) (state 4 0)),
(link (state 0 0) (state 0 3)),
(link (state 4 0) (state 4 3)),
(link (state 4 0) (state 1 3)),
(link (state 0 3) (state 3 0)),
(link (state 1 3) (state 1 0)),
(link (state 3 0) (state 3 3)),
(link (state 1 0) (state 0 1)),
(link (state 3 3) (state 4 2)),
(link (state 0 1) (state 4 1)),
(link (state 4 2) (state 0 2)),
(link (state 4 1) (state 2 3)),
(link (state 0 2) (state 2 0))

D. Inferring paths within the Search Tree

After the search space is constructed, the following two
knowledge rules can then be used to construct all paths
leading from the initial:

defrule direct-path
(link ?x1 ?y1 to ?x2 ?y2)

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol II 
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14049-0-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018



=>
(assert (path ?x1 ?y1 to ?x2 ?y2
(str-cat "(" ?x1 ", " ?y1 ") -->
(" ?x2 ", " ?y2 ")"))))

(defrule indirect-path
(path ?x1 ?y1 to ?x2 ?y2 ?route)
(link ?x2 ?y2 to ?x3 ?y3)
=>
(assert (path ?x1 ?y1 to ?x3 ?y3
(str-cat ?route " --> (" ?x3 ", "
?y3 ")"))))

E. The Resultant Paths

After the inference of all paths starting from the initial
state, the following paths are added to the fact-base of
CLIPS:

(path 4 3 to 2 3 "(4, 3) --> (0, 3) -->
(3, 0) --> (3, 3) --> (4, 2) --> (0, 2)
--> (2, 0) --> (2, 3)")

(path 4 0 to 2 3 "(4, 0) --> (4, 3) -->
(0, 3) --> (3, 0) --> (3, 3) --> (4, 2)
--> (0, 2) --> (2, 0) --> (2, 3)")

(path 0 0 to 2 3 "(0, 0) --> (4, 0) -->
(4, 3) --> (0, 3) --> (3, 0) --> (3, 3)
--> (4, 2) --> (0, 2) --> (2, 0) -->
(2, 3)")

(path 2 3 to 4 1 "(2, 3) --> (4, 1)")

(path 2 0 to 4 1 "(2, 0) --> (2, 3) -->
(4, 1)")

(path 0 2 to 4 1 "(0, 2) --> (2, 0) -->
(2, 3) --> (4, 1)")

(path 4 2 to 4 1 "(4, 2) --> (0, 2) -->
(2, 0) --> (2, 3) --> (4, 1)")

(path 3 3 to 4 1 "(3, 3) --> (4, 2) -->
(0, 2) --> (2, 0) --> (2, 3) --> (4, 1)")

(path 3 0 to 4 1 "(3, 0) --> (3, 3) -->
(4, 2) --> (0, 2) --> (2, 0) --> (2, 3)
--> (4, 1)")

(path 0 3 to 4 1 "(0, 3) --> (3, 0) -->
(3, 3) --> (4, 2) --> (0, 2) --> (2, 0)
--> (2, 3) --> (4, 1)")

(path 4 3 to 4 1 "(4, 3) --> (0, 3) -->
(3, 0) --> (3, 3) --> (4, 2) --> (0, 2)
--> (2, 0) --> (2, 3) --> (4, 1)")

(path 4 0 to 4 1 "(4, 0) --> (4, 3) -->
(0, 3) --> (3, 0) --> (3, 3) --> (4, 2)
--> (0, 2) --> (2, 0) --> (2, 3) -->
(4, 1)")

(path 0 0 to 4 1 "(0, 0) --> (4, 0) -->
(4, 3) --> (0, 3) --> (3, 0) --> (3, 3)
--> (4, 2) --> (0, 2) --> (2, 0) -->
(2, 3) --> (4, 1)")

(path 4 1 to 0 1 "(4, 1) --> (0, 1)")

(path 2 3 to 0 1 "(2, 3) --> (4, 1) -->
(0, 1)")

(path 2 0 to 0 1 "(2, 0) --> (2, 3) -->
(4, 1) --> (0, 1)")

(path 0 2 to 0 1 "(0, 2) --> (2, 0) -->
(2, 3) --> (4, 1) --> (0, 1)")

(path 4 2 to 0 1 "(4, 2) --> (0, 2) -->
(2, 0) --> (2, 3) --> (4, 1) --> (0, 1)")

(path 3 3 to 0 1 "(3, 3) --> (4, 2) -->
(0, 2) --> (2, 0) --> (2, 3) --> (4, 1)
--> (0, 1)")

(path 3 0 to 0 1 "(3, 0) --> (3, 3) -->
(4, 2) --> (0, 2) --> (2, 0) --> (2, 3)
--> (4, 1) --> (0, 1)")

(path 0 3 to 0 1 "(0, 3) --> (3, 0) -->
(3, 3) --> (4, 2) --> (0, 2) --> (2, 0)
--> (2, 3) --> (4, 1) --> (0, 1)")

(path 4 3 to 0 1 "(4, 3) --> (0, 3) -->
(3, 0) --> (3, 3) --> (4, 2) --> (0, 2)
--> (2, 0) --> (2, 3) --> (4, 1) -->
(0, 1)")

(path 4 0 to 0 1 "(4, 0) --> (4, 3) -->
(0, 3) --> (3, 0) --> (3, 3) --> (4, 2)
--> (0, 2) --> (2, 0) --> (2, 3) -->
(4, 1) --> (0, 1)")

(path 0 0 to 0 1 "(0, 0) --> (4, 0) -->
(4, 3) --> (0, 3) --> (3, 0) --> (3, 3)
--> (4, 2) --> (0, 2) --> (2, 0) -->
(2, 3) --> (4, 1) --> (0, 1)")

(path 0 1 to 1 0 "(0, 1) --> (1, 0)")

(path 4 1 to 1 0 "(4, 1) --> (0, 1) -->
(1, 0)")

(path 2 3 to 1 0 "(2, 3) --> (4, 1) -->
(0, 1) --> (1, 0)")

(path 2 0 to 1 0 "(2, 0) --> (2, 3) -->
(4, 1) --> (0, 1) --> (1, 0)")

(path 0 2 to 1 0 "(0, 2) --> (2, 0) -->
(2, 3) --> (4, 1) --> (0, 1) --> (1, 0)")

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol II 
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14049-0-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018



(path 4 2 to 1 0 "(4, 2) --> (0, 2) -->
(2, 0) --> (2, 3) --> (4, 1) --> (0, 1)
--> (1, 0)")

(path 3 3 to 1 0 "(3, 3) --> (4, 2) -->
(0, 2) --> (2, 0) --> (2, 3) --> (4, 1)
--> (0, 1) --> (1, 0)")

(path 3 0 to 1 0 "(3, 0) --> (3, 3) -->
(4, 2) --> (0, 2) --> (2, 0) --> (2, 3)
--> (4, 1) --> (0, 1) --> (1, 0)")

(path 0 3 to 1 0 "(0, 3) --> (3, 0) -->
(3, 3) --> (4, 2) --> (0, 2) --> (2, 0)
--> (2, 3) --> (4, 1) --> (0, 1) -->
(1, 0)")

(path 4 3 to 1 0 "(4, 3) --> (0, 3) -->
(3, 0) --> (3, 3) --> (4, 2) --> (0, 2)
--> (2, 0) --> (2, 3) --> (4, 1) -->
(0, 1) --> (1, 0)")

(path 4 0 to 1 0 "(4, 0) --> (4, 3) -->
(0, 3) --> (3, 0) --> (3, 3) --> (4, 2)
--> (0, 2) --> (2, 0) --> (2, 3) -->
(4, 1) --> (0, 1) --> (1, 0)")

(path 0 0 to 1 0 "(0, 0) --> (4, 0) -->
(4, 3) --> (0, 3) --> (3, 0) --> (3, 3)
--> (4, 2) --> (0, 2) --> (2, 0) -->
(2, 3) --> (4, 1) --> (0, 1) --> (1, 0)")

(path 1 0 to 1 3 "(1, 0) --> (1, 3)")

(path 0 1 to 1 3 "(0, 1) --> (1, 0) -->
(1, 3)")

(path 4 1 to 1 3 "(4, 1) --> (0, 1) -->
(1, 0) --> (1, 3)")

(path 2 3 to 1 3 "(2, 3) --> (4, 1) -->
(0, 1) --> (1, 0) --> (1, 3)")

(path 2 0 to 1 3 "(2, 0) --> (2, 3) -->
(4, 1) --> (0, 1) --> (1, 0) --> (1, 3)")

(path 0 2 to 1 3 "(0, 2) --> (2, 0) -->
(2, 3) --> (4, 1) --> (0, 1) --> (1, 0)
--> (1, 3)")

(path 4 2 to 1 3 "(4, 2) --> (0, 2) -->
(2, 0) --> (2, 3) --> (4, 1) --> (0, 1)
--> (1, 0) --> (1, 3)")

(path 3 3 to 1 3 "(3, 3) --> (4, 2) -->
(0, 2) --> (2, 0) --> (2, 3) --> (4, 1)
--> (0, 1) --> (1, 0) --> (1, 3)")

(path 3 0 to 1 3 "(3, 0) --> (3, 3) -->
(4, 2) --> (0, 2) --> (2, 0) --> (2, 3)
--> (4, 1) --> (0, 1) --> (1, 0) -->

(1, 3)")

(path 0 3 to 1 3 "(0, 3) --> (3, 0) -->
(3, 3) --> (4, 2) --> (0, 2) --> (2, 0)
--> (2, 3) --> (4, 1) --> (0, 1) -->
(1, 0) --> (1, 3)")

(path 4 3 to 1 3 "(4, 3) --> (0, 3) -->
(3, 0) --> (3, 3) --> (4, 2) --> (0, 2)
--> (2, 0) --> (2, 3) --> (4, 1) -->
(0, 1) --> (1, 0) --> (1, 3)")

(path 4 0 to 1 3 "(4, 0) --> (4, 3) -->
(0, 3) --> (3, 0) --> (3, 3) --> (4, 2)
--> (0, 2) --> (2, 0) --> (2, 3) -->
(4, 1) --> (0, 1) --> (1, 0) --> (1, 3)")

(path 0 0 to 1 3 "(0, 0) --> (4, 0) -->
(4, 3) --> (0, 3) --> (3, 0) --> (3, 3)
--> (4, 2) --> (0, 2) --> (2, 0) -->
(2, 3) --> (4, 1) --> (0, 1) --> (1, 0)
--> (1, 3)")

F. Printing successfully solutions

Finally, by using the following knowledge rule we can
display solutions in the format of paths starting from the
initial state and ending at a goal state:

(defrule print-solutions (path 0 0 to 2 ?y ?route) =¿
(printout t ?route crlf))

G. The Final Solutions

Eventually, the solutions are displayed as follows:

(0, 0) --> (4, 0) --> (4, 3) --> (0, 3)
--> (3, 0) --> (3, 3) --> (4, 2) -->
(0, 2) --> (2, 0)

(0, 0) --> (4, 0) --> (4, 3) --> (0, 3)
--> (3, 0) --> (3, 3) --> (4, 2) -->
(0, 2) --> (2, 0) --> (2, 3)

IV. CONCLUSION

Even though most of the college students are more fa-
miliar and comfortable with imperative and object-oriented
paradigms of programming, logical programing paradigm is
more suitable of solving AI problems. In this paper, a sample
program in CLIPS programming language is illustrated to
solve the water jug puzzle. Instead of aiming at inventing
new theory or problem-solving method, this illustration is
for the purpose of providing an additional problem-solving
example to AI related studies.

REFERENCES

[1] E. B. Cowley, ”Note on a Linear Diophantine Equation, Questions
and Discussions,” American Mathematical Monthly, Vol. 33, No. 7, pp.
379381, 1926.

[2] J. C. Giarratano, ”CLIPS Users Guide,” Version 6.30,
http://clipsrules.sourceforge.net/OnlineDocs.html, 2015.

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol II 
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14049-0-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018




