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Abstract—This paper presents the development of a reliable 

and efficient algorithm to analyze and find the optimum shapes 

of glulam timber roof girders. Glulam girders can be used when 

designing structures with large spans. For the final solution of 

the stated problem, girders in three different shapes (pent, 

gable, curved) and in various timber strength classes were 

compared. Design conditions in accordance with Eurocode 5 

were considered as the optimization constraints. The 

corresponding ultimate limit state and serviceability limit states 

were considered in the initial analysis.The optimization was 

performed by Excel Solver, which can be seen as an accurate 

and inexpensive tool. 

 
Index Terms—Optimization, Glulam Timber, Girder, Excel 

I. INTRODUCTION 

Glued laminated timber roof girders are used in a wide 

range of applications in building construction [1,2,3]. 

Glulam is made up of wood laminations that are bonded 

together with adhesives. The grain of all laminations runs 

parallel with the length of the member. The most critical 

zone of a glulam bending member, with respect to 

controlling strength, is the outermost tension zone. 

Allowable design properties are a key factor in specifying 

glulam. Bending members are typically specified on the 

basis of the maximum allowable bending stress of the 

member. Glulam beams are typically installed with a wide 

face of laminations that are perpendicular to the applied 

load. In structural design, it is necessary to obtain an 

appropriate geometric shape for a structure. This may be 

achieved with the use of Excel’s Solver procedures, in which 

the shape of the structure is varied in order to achieve a 

specific objective that satisfies certain constraints. Solver 

tools can be developed by the efficient integration of 

structural shape definition, structural analysis, and 

mathematical programming methods. A homogenous 

material is assumed in the analysis.  

II. BASIC ELEMENTS OF THE OPTIMIZATION PROCESS 

The correct formulation of the problem of optimal 

construction shaping should include four basic elements 

(Fig. 1): 

 optimization criterion, 
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 optimization  variables,  

 optimization limitations, 

 state equations, 

with an objective function defined as the criterion expressed 

by optimization variables (Fig. 1). 

 
Figure 1 Basic elements of the optimization process 

 

Appropriate choice of optimization criterion, expressing it 

by optimization variables, which is explicit with acceptance 

of the objective function, and also selection of appropriate 

limitations are the most important parts of the formulation of 

the optimization problem. Adoption of optimization criterion 

and appropriate restrictions finishes the conceptual work on 

the problem of optimization. Further steps involve usually:  

 creation of the most favourable formal record of the 

problem,  

 selection of optimization methods, 

 solution of the problem itself. 

A. Optimization criterion 

Optimization criterion is a basic tool used to compare 

individual solutions expressed in terms of mathematic, it is 

called an objective function. We can distinguish the 

following examples of optimization criterions: 

 reliability,  

 safety, 

 functionality, 

 time of execution, 

 cost of execution, 

 workload, 

 amount of used materials, 

 ease of transport, 

 maintainability, 

 aesthetics. 
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The basic groups of criterions are: 

 the minimal cost of construction, 

 the greatest stiffness or the smallest deformability, 

 equalization of the exertions. 

Cost of construction is a universal measure of the quality of 

design solutions, but there is a problem to express it using 

function parameters.  

In strength optimization the total cost of construction 

usually contains three basic elements: 

 cost of material,  

 cost of exploitation,  

 cost of production. 

First of all, if the type of material is established in 

advance the material costs are proportional to the volume 

(weight) of the structure. 

Secondly, for many types of structures, exploitation costs 

are proportional to the weight (so also volume) of the 

structure. 

Finally, if the cost of production does not constitute a 

significant share of the total cost of the construction it can be 

assumed that the volume (weight) is a substitute 

optimization criterion. Volume, simultaneously weight, will 

be used as the optimization criterion in this paper. It is quite 

basic, but very effective method. In construction, a decrease 

of weight of an element even around 3 ÷ 5% becomes 

crucial when many identical elements are produced. 

Differences in construction costs might be very high [4,5,6]. 

B. Optimization variables 

In the strength optimization, there may appear many 

optimization variables. A substantial number of these is 

connected to the geometry of the structure. They describe 

the shape of the construction, size, and shape of the cross-

section, shape of the edges etc. In this paper, variables 

describing cross-section are very essential. 

A cross-section of a simple beam, in the most general 

case, can be described as a function of one variable, defined 

as a characteristic dimension of the cross-section along the 

axis of the beam.  

The shape of the cross-section can be formally described 

as a function in polar coordinates:  

𝑟 = 𝑟(𝜃). (1) 

If a variation of the cross-section along the axis is 

allowed, the beam is described by a function of two 

variables: 

𝑟 = 𝑟(𝜃, 𝑥). (2) 

In analysis assumed the length of the beam as a constant, 

while height and width of the cross-sections are optimization 

variables. 

C. Optimization limitations 

Classification of optimization limitations can be carried 

out due to different criteria. Considering physical 

restrictions, so from the point of view of engineering 

strength optimization, the limitations may be divided into 

two categories. The first one is a group of restrictions that 

could have a significant impact on the behavior of the 

optimal construction, its work under the influence of load 

and exploitation properties. Such conditions are sometimes 

called 'behavioral' constraints. This group includes such 

basic constraints as strength, stiffness, susceptibility, natural 

or forced vibration, structural stability under applied 

loading, etc. The second group includes limitations, defining 

possibilities of producing the structure, called technological 

constraints. Mostly they are associated with the restrictions 

imposed on the maximum and minimum values of 

geometrical parameters of the structure. 

Another classification is connected with dividing 

construction by its properties: 

 Economical (cost of the construction, amortization, and so 

on), 

 Dimensional (connected with strength, technology, 

geometry, and so on), 

 Qualitative (connected with durability, technical 

parameters to function properly), 

 Operational (reliability, use of energy, ability to work in 

different conditions). 

D. State equations 

In optimization problems are the following constituents:  

• the components of the stress state (distribution of stresses), 

• the components of the strain state,  

• the components of the displacement vector. 

These variables are associated with the optimization variable 

and are related to each other with equations of state. 

III. OPTIMIZATION DESIGN EXAMPLES 

This paper presents a comparative analysis of three shape 

representatives of a girder: pent, gable (pitched cambered) 

and arch (Figs. 2-4). It is assumed that the beams are simply 

supported with a roof slope α<5° and that overturning or 

buckling out of their plane is prevented. The analyzed roof 

girders are made of various kinds of glulam (GL22h, GL24h, 

GL26h, GL28h, GL30h, and GL32h) with a constant 

rectangular cross-section designed for a given span (14 m) 

and an assumed design uniform load (roofing, installation, 

purlins). Due to recommendations according the proper 

dimensions and proportions of the elements following 

limitations were used for all analyzed roof girders. 

A. Pent girder 

 
Figure 2 - Scheme of a pent girder 

 

ℎ =
𝐿

15
÷
𝐿

10
, ℎ1 =

𝐿

30
÷
𝐿

20
, 𝐿 = 10 ÷ 30 𝑚 

𝐿 = 14𝑚 → ℎ =
14 𝑚

15
÷
14 𝑚

10
= 0,93𝑚 ÷ 1,40 𝑚

→ 𝑡𝑎𝑘𝑒𝑛 𝑣𝑎𝑙𝑢𝑒: ℎ = 1,00 𝑚 = 1000 𝑚𝑚 

𝐿 = 14 𝑚 → ℎ1 =
14 𝑚

30
÷
14 𝑚

20
= 0,47 𝑚 ÷ 0,70 𝑚 

Height of the shorter edge: 

ℎ1 = 1000 𝑚𝑚 − 0,5 ∙ tan(3°) ∙ 14000 𝑚𝑚 = 633 𝑚𝑚 

The height of the longer edge: 

ℎ2 = 1000 𝑚𝑚 + 0,5 ∙ tan(3°) ∙ 14000 𝑚𝑚 = 1367𝑚𝑚 

𝑏 = 200 𝑚𝑚 →
ℎ

𝑏
=
1000 𝑚𝑚

200 𝑚𝑚
= 5 < 10 

Assumptions for this example: 
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 tilt roof slope: 3°, 

 value of the snow load: 3,6 kN/m, 

 value of the roofing load: 4,0 kN/m, 

 value of the installation load: 2,5 kN/m, 

 purlins every 4m, 

 girder is placed on two columns with cross-sections: ℎ𝑠 ×

𝑏𝑠 =400 x 200 mm each. 

 

Self-weight of the girder:  

𝜌𝑔,𝑘 = 425𝑘𝑔/𝑚
3 = 4,25𝑘𝑁/𝑚3 

Self-weight characteristic load:  

𝐺𝑘,𝑠𝑒𝑙𝑓 = 𝑏 ∙ ℎ ∙ 𝜌𝑔,𝑘 = 200𝑚𝑚 ∙ 1000𝑚𝑚 ∙ 4,25𝑘𝑁/𝑚3

= 0,85𝑘𝑁/𝑚 

Collation of loads: 

dead loads (roofing + installations + girder self-weight): 

𝐺𝑘 = 4,0𝑘𝑁/𝑚 + 2,5𝑘𝑁/𝑚 + 0,85𝑘𝑁/𝑚 = 7,35𝑘𝑁/𝑚 

live loads (snow): 

𝑄𝑘 = 3,6𝑘𝑁/𝑚 

The calculated value of the load in accordance with a 

combination: 

𝐸𝑑 = 1,35 ∙ 𝐺𝑘 + 1,50 ∙ 𝑄𝑘  = 1,35 ∙
7,35 𝑘𝑁

𝑚
+ 

+1,50 ∙
3,6 𝑘𝑁

𝑚
≅ 15,32 𝑘𝑁/m 

B. Gable girder 

 
Figure 3 - Scheme of a gable (pitched cambered) girder with a straight 

bottom flange 

ℎ =
𝐿

15
÷
𝐿

10
, ℎ1 =

𝐿

30
÷
𝐿

20
, 𝐿 = 10 ÷ 40𝑚 

 

𝐿 = 14𝑚 → ℎ =
14 𝑚

15
÷
14 𝑚

10
= 0,93 𝑚 ÷ 1,40 𝑚

→ 𝑡𝑎𝑘𝑒𝑛 𝑣𝑎𝑙𝑢𝑒: ℎ = 1,00 𝑚 = 1000 𝑚𝑚 

𝐿 = 14𝑚 → ℎ1 =
14 𝑚

30
÷
14 𝑚

20
= 0,47 𝑚 ÷ 0,70 𝑚 

ℎ1 = ℎ − tan(∝) ∙
𝐿

2
= 1000 𝑚𝑚 − tan(3°) ∙

14000 𝑚𝑚

2
= 633𝑚𝑚 

𝑏 = 200 𝑚𝑚 →
ℎ

𝑏
=
1000 𝑚𝑚

200 𝑚𝑚
= 5 < 10 

Assumptions for this example: 

 tilt roof slope: 3°, 

 value of the snow load: 3,6 kN/m, 

 value of the roofing load: 4,0 kN/m, 

 value of the installation load: 2,5 kN/m, 

 purlins every 4m, 

 girder is placed on two columns with cross-sections: ℎ𝑠 ×

𝑏𝑠 =400 x 200 mm each. 

 

Self-weight of the girder:  

𝜌𝑔,𝑘 = 425𝑘𝑔/𝑚
3 = 4,25𝑘𝑁/𝑚3 

Self-weight characteristic load:  

𝐺𝑘,𝑠𝑒𝑙𝑓 = 𝑏 ∙
ℎ + ℎ1
2

∙ 𝜌𝑔,𝑘 = 200 ∙
1000𝑚 + 633𝑚𝑚

2
 

∙ 4,25 𝑘𝑁/𝑚3 ≅ 0,69 𝑘𝑁/𝑚 
Collation of loads: 

 dead loads (roofing + installations + girder self-weight): 

𝐺𝑘 =
4,0 𝑘𝑁

𝑚
+ 2,5𝑘𝑁/𝑚 + 0,69𝑘𝑁/𝑚 = 7,19𝑘𝑁/𝑚 

 live loads (snow): 

𝑄𝑘 = 3,6 𝑘𝑁/𝑚 

The calculated value of the load in accordance with a 

combination: 

𝐸𝑑 = 1,35 ∙ 𝐺𝑘 + 1,50 ∙ 𝑄𝑘 = 1,35 ∙
7,19 𝑘𝑁

𝑚
+ 

+1,50 ∙ 3,6
𝑘𝑁

𝑚
≅ 15,11 𝑘𝑁/m 

C. Arch girder 

 
Figure 4 - Scheme of an arch girder 
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÷
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÷
𝐿
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, 𝐿 = 6 ÷ 30 

𝐿 = 14𝑚 → ℎ =
14 𝑚

15
÷
14 𝑚

8
= 0,93 𝑚 ÷ 1,75𝑚

→ 𝑡𝑎𝑘𝑒𝑛 𝑣𝑎𝑙𝑢𝑒: ℎ = 1,00𝑚 = 1000 𝑚𝑚 

𝐿 = 14𝑚 → 𝑓 =
14 𝑚

20
÷
14 𝑚

10
= 0,7𝑚 ÷ 1,4 𝑚 

𝑓 = 𝑅 − √𝑅2 − 𝑐2 = 25 𝑚 − √(25𝑚)2 − (
14𝑚

2
− 0,2𝑚)

2

= 0,94 𝑚 

𝑏 = 0,2 𝑚 →
ℎ

𝑏
=
1000𝑚𝑚

200𝑚𝑚
= 5 < 10 

Assumptions for this example: 

 value of the snow load: 3,6k N/m, 

 value of the roofing load: 4,0 kN/m, 

 value of the installation load: 2,5 kN/m, 

 purlins every 4m, 

 girder is placed on two columns with cross-sections: ℎ𝑠 ×

𝑏𝑠 =400 x 200mm each. 

 

Self-weight of the girder:  

𝜌𝑔,𝑘 = 425
𝑘𝑔

𝑚3
= 4,25 𝑘𝑁/𝑚3 

Self-weight characteristic load:  

𝐺𝑘,𝑠𝑒𝑙𝑓 = 𝑏 ∙ ℎ ∙ 𝜌𝑔,𝑘 = 200𝑚𝑚 ∙ 1000𝑚 ∙
4,25 𝑘𝑁

𝑚3

= 0,85 𝑘𝑁/𝑚 

Collation of loads: 

 dead loads (roofing + installations + girder self-weight): 

𝐺𝑘 = 4,0
𝑘𝑁

𝑚
+
2,5𝑘𝑁

𝑚
+ 0,85𝑘𝑁/𝑚 = 7,35𝑘𝑁/𝑚 

 live loads (snow): 

𝑄𝑘 = 3,6 𝑘𝑁/𝑚 

The calculated value of the load in accordance with a 

combination: 

𝐸𝑑 = 1,35 ∙ 𝐺𝑘 + 1,50 ∙ 𝑄𝑘 = 1,35 ∙
7,35 𝑘𝑁

𝑚
+ 

+1,50 ∙
3,6 𝑘𝑁

𝑚
≅ 15,32 𝑘𝑁/m 
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IV. MATHEMATICAL FORMULATION OF THE OPTIMIZATION 

PROBLEM  

A. Pent girder 

To design pent girders, the following aspects have to be 

analyzed [7,8]: 

 bending stresses B, 

 shearing stresses S, 

 serviceability limit state L. 

In theory, the general goal of every construction is to 

fulfill the condition (a 10% safety margin will be applied): 

𝐹𝐷 ≤ 𝑅𝐷 →
𝐹𝐷

𝑅𝐷
≤ 0,9), (3) 

where: 

𝐹𝐷 −  𝑡ℎ𝑒 𝑑𝑒𝑠𝑖𝑔𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑜𝑟𝑐𝑒, 

𝑅𝐷 −  𝑡ℎ𝑒 𝑑𝑒𝑠𝑖𝑔𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑜𝑎𝑑 𝑐𝑎𝑟𝑟𝑦𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦. 

This condition has to be fulfilled for all of these aspects, 

which can be presented as a set of inequalities: 
𝐹𝐵,𝐷

𝑅𝐵,𝐷
≤ 0,9,

𝐹𝑆,𝐷

𝑅𝑆,𝐷
≤ 0,9

𝐹𝐿,𝐷

𝑅𝐿,𝐷
≤ 0,9.

, (4) 

These equations can be extended to the following forms: 

{
 
 

 
 
𝐹𝐵,𝐷

𝑅𝐵,𝐷
= 0,9

𝐹𝑆,𝐷

𝑅𝑆,𝐷
= 0,9

𝐹𝐿,𝐷

𝑅𝐿,𝐷
≤ 0,9

   𝑜𝑟   

{
 
 

 
 
𝐹𝐵,𝐷

𝑅𝐵,𝐷
= 0,9

𝐹𝑆,𝐷

𝑅𝑆,𝐷
≤ 0,9

𝐹𝐿,𝐷

𝑅𝐿,𝐷
= 0,9

   𝑜𝑟   

{
 
 

 
 
𝐹𝐵,𝐷

𝑅𝐵,𝐷
≤ 0,9

FS,D

RS,D
= 0,9

FL,D

RL,D
= 0,9

 (5) 

or if they would be impossible to achieve, to find one of 

those: 

{
 
 

 
 
𝐹𝐵,𝐷

𝑅𝐵,𝐷
= 0,9

𝐹𝑆,𝐷

𝑅𝑆,𝐷
≤ 0,9

𝐹𝐿,𝐷

𝑅𝐿,𝐷
≤ 0,9

   𝑜𝑟   

{
 
 

 
 
𝐹𝐵,𝐷

𝑅𝐵,𝐷
≤ 0,9

𝐹𝑆,𝐷

𝑅𝑆,𝐷
= 0,9

𝐹𝐿,𝐷

𝑅𝐿,𝐷
≤ 0,9

   𝑜𝑟   

{
 
 

 
 
𝐹𝐵,𝐷

𝑅𝐵,𝐷
≤ 0,9

𝐹𝑆,𝐷

𝑅𝑆,𝐷
≤ 0,9

𝐹𝐿,𝐷

𝑅𝐿,𝐷
= 0,9

 (6) 

which can be expressed as a target function: 

𝐹 = 𝑚𝑎𝑥 (
𝐹𝐵,𝐷

𝑅𝐵,𝐷
,
𝐹𝑆,𝐷

𝑅𝑆,𝐷
,
𝐹𝐿,𝐷

𝑅𝐿,𝐷
 ) = 0,9, (7) 

using these optimization variables: 

𝐹 = 𝐹(𝑏, ℎ, 𝛼). (8) 

𝐵 =
𝐹𝐵,𝐷

𝑅𝐵,𝐷
∙ 100%,   𝑆 =

𝐹𝑆,𝐷

𝑅𝑆,𝐷
∙ 100%,    𝐿 =

𝐹𝐿,𝐷

𝑅𝐿,𝐷
∙ 100. (9) 

It could be assumed that fulfilling all of the conditions 

evenly on the highest possible level is more important than 

complying with one of them "perfectly". In that case, the 

condition would be (Tab. I). 

𝐹 = 𝑀𝐴𝑋(𝐵 + 𝑆 + 𝐿), (10) 

where: 

∑=𝐵 + 𝑆 + 𝐿 − 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑎𝑡𝑖𝑣𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟. 

 

The next step is an optimization, and due to the cost of the 

material required for the production of the beam, the 

objective function has to be modified. 

For the optimization, considering the usage of resistance 

safety margin, the objective function was: 

𝐹 = 𝑚𝑎𝑥 (
𝐹𝐵,𝐷

𝑅𝐵,𝐷
,
𝐹𝑆,𝐷

𝑅𝑆,𝐷
,
𝐹𝐿,𝐷

𝑅𝐿,𝐷
 ) = 0,9. (11) 

In this case, it can be expressed as: 

𝐹 = 𝑚𝑖𝑛(𝑏 ∙ ℎ ∙ 𝐿 ∙ 𝐶𝑓𝑜𝑟 1𝑚3). (12)  

Or in two steps: 

− 𝐹 = 𝑚𝑖𝑛(𝑉𝑖) = 𝑚𝑖𝑛(𝑏𝑖 ∙ ℎ𝑖 ∙ 𝐿)  𝑤ℎ𝑒𝑟𝑒:  𝑖=𝐺𝐿22ℎ,𝐺𝐿24ℎ… 

− 𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑜𝑓 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑏𝑒𝑎𝑚𝑠 𝑤𝑖𝑡ℎ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑐𝑜𝑠𝑡  
𝑎𝑠 𝑎 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟. 

The optimal solution would be presented in the form of a 

function (Fig. 5): 

F = min(A)=min(b x h). 

 

 
Figure 5 An optimal solution included in the range of possible solutions 

for 𝛼 = 2,5° presented on graphs 

 
TABLE I 

CONSTRAINTS FOR THE OPTIMIZATION OF THE PENT GIRDER 

No                  Constraint       Form adjusted to Solver 

   

1 
ℎ ≥

𝐿

15
 

 

w1 ℎ −
𝐿

15
≥ 0 

 

2 
ℎ ≤

𝐿

10
 

 

w2 ℎ −
𝐿

10
≤ 0 

 

3 
ℎ ≥

𝐿

30
+ 0,5 ∙ 𝑡𝑎𝑛𝛼 ∙ 𝐿 

 

w3 ℎ −
𝐿

30
− 

0,5 ∙ 𝑡𝑎𝑛𝛼 ∙ 𝐿 ≥ 0 

 

4 
ℎ ≤

𝐿

20
+ 0,5 ∙ 𝑡𝑎𝑛𝛼 ∙ 𝐿 

w4 
ℎ −

𝐿

20
− 0,5

∙ 𝑡𝑎𝑛𝛼 ∙ 𝐿 ≤ 0 

 

5 ℎ

𝑏
≤ 10 

 

w5 
ℎ

𝑏
− 10 ≤ 0 

 

6 𝑏 ≤ ℎ w6 𝑏 − ℎ ≤ 0  

7 𝑏 ≥ 0,1𝑚 w7 𝑏 − 0,1𝑚 ≥ 0  

8 𝑏 ≤ 0,24𝑚 w8 𝑏 − 0,24𝑚 ≤ 0  

9 ℎ ≥ 0,1𝑚 w9 ℎ − 0,1𝑚 ≥ 0  

10 ℎ ≤ 2,0𝑚 w10 ℎ − 2,0𝑚 ≤ 0  

B. Gable (pitched cambered) and arch girders 

To design gable and arch girders the following aspects 

have to be analyzed [7,8]: 

 bending stresses B, 

 bending stresses in the apex zone A, 

 tensile stresses perpendicular to the grain in the apex zone 

T, 

 shearing stresses S, 

 serviceability limit state L. 

As for the pent girder, the general condition is: 
𝐹𝐷

𝑅𝐷
≤ 0,9 (13) 

This condition has to be fulfilled for all of these aspects, 

which can be presented as a set of inequalities: 
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𝐹𝐵,𝐷

𝑅𝐵,𝐷
≤ 0,9,

𝐹𝐴,𝐷

𝑅𝐴,𝐷
≤ 0,9,

𝐹𝑇,𝐷

𝑅𝑇,𝐷
≤ 0,9,

𝐹𝑆,𝐷

𝑅𝑆,𝐷
≤ 0,9,

𝐹𝐿,𝐷

𝑅𝐿,𝐷
≤ 0,9.

 (14) 

which can be expressed as a target function (Tab. II-III): 

𝐹 = 𝑚𝑎𝑥 (
𝐹𝐵,𝐷

𝑅𝐵,𝐷
,
𝐹𝐴,𝐷

𝑅𝐴,𝐷
,
𝐹𝑇,𝐷

𝑅𝑇,𝐷
,
𝐹𝑆,𝐷

𝑅𝑆,𝐷
,
𝐹𝐿,𝐷

𝑅𝐿,𝐷
 ) = 0,9, (15) 

using these optimization variables: 

𝐹 = 𝐹(𝑏, ℎ, 𝛼∗). (16) 

*for the gable girder 

𝐵 =
𝐹𝐵,𝐷

𝑅𝐵,𝐷
∙ 100%, 𝐴 =

𝐹𝐴,𝐷

𝑅𝐴,𝐷
∙ 100%, 𝑇 =

𝐹𝑇,𝐷

𝑅𝑇,𝐷
∙ 100%,  (17) 

𝑆 =
𝐹𝑆,𝐷
𝑅𝑆,𝐷

∙ 100%, 𝐿 =
𝐹𝐿,𝐷
𝑅𝐿,𝐷

∙ 100. 

where: 

∑=𝐵 + 𝐴 + 𝑇 + 𝑆 − 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑎𝑡𝑖𝑣𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

As for the pent girder, the adequate target function due to the 

cost  of the material required for the production of the beam 

can be expressed as: 

𝐹 = 𝑚𝑖𝑛(𝑏 ∙ ℎ ∙ 𝐿 ∙ 𝐶𝑓𝑜𝑟 1𝑚3).  (18) 

Or in two steps: 

− 𝐹 = 𝑚𝑖𝑛(𝑉𝑖) = 𝑚𝑖𝑛(𝑏𝑖 ∙ ℎ𝑖 ∙ 𝐿)  𝑤ℎ𝑒𝑟𝑒:  𝑖=𝐺𝐿22ℎ,𝐺𝐿24ℎ… 

−𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑜𝑓 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑏𝑒𝑎𝑚𝑠 𝑤𝑖𝑡ℎ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑐𝑜𝑠𝑡 
 𝑎𝑠 𝑎 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟. 

TABLE II 

CONSTRAINTS FOR THE OPTIMIZATION OF THE GABLE GIRDER 

No                  Constraint       Form adjusted to Solver 

   

1 
ℎ ≥

𝐿

15
 

 

w1 ℎ −
𝐿

15
≥ 0 

 

2 
ℎ ≤

𝐿

10
 

 

w2 ℎ −
𝐿

10
≤ 0 

 

3 
ℎ ≥

𝐿

30
+ 0,5 ∙ 𝑡𝑎𝑛𝛼 ∙ 𝐿 

 

w3 ℎ −
𝐿

30
− 

0,5 ∙ 𝑡𝑎𝑛𝛼 ∙ 𝐿 ≥ 0 

 

4 
ℎ ≤

𝐿

20
+ 0,5 ∙ 𝑡𝑎𝑛𝛼 ∙ 𝐿 

w4 
ℎ −

𝐿

20
− 0,5

∙ 𝑡𝑎𝑛𝛼 ∙ 𝐿 ≤ 0 

 

5 ℎ

𝑏
≤ 10 

 

w5 
ℎ

𝑏
− 10 ≤ 0 

 

6 𝑏 ≤ ℎ w6 𝑏 − ℎ ≤ 0  

7 𝑏 ≥ 0,1𝑚 w7 𝑏 − 0,1𝑚 ≥ 0  

8 𝑏 ≤ 0,24𝑚 w8 𝑏 − 0,24𝑚 ≤ 0  

9 ℎ ≥ 0,1𝑚 w9 ℎ − 0,1𝑚 ≥ 0  

10 ℎ ≤ 2,0𝑚 w10 ℎ − 2,0𝑚 ≤ 0  

11 ∝≤ 5° w11 ∝ −5° ≤ 0  

12 ∝≥ 0° w12 ∝ −0° ≥ 0  

14 max(𝐵, 𝐴, 𝑇, 𝑆, 𝐿) ≤ 0,9 

 

w13 max(𝐵, 𝐴, 𝑇, 𝑆, 𝐿)

− 0,9 ≤ 0 

 

For the pent and gable girder geometrical constraints were 

functions of: 

𝑓 = 𝑓(ℎ, 𝑏, 𝐿, ∝), 𝑤ℎ𝑒𝑟𝑒 𝐿 = 𝑐𝑜𝑛𝑠𝑡, 𝑠𝑜: 𝑓 = 𝑓(ℎ, 𝑏, ∝). 
For a curved girder: 

𝑓 = 𝑓(ℎ, 𝑏, 𝐿, 𝑅, 𝒇), 𝑤ℎ𝑒𝑟𝑒 𝐿 = 𝑐𝑜𝑛𝑠𝑡, 𝑠𝑜: 𝑓 = 𝑓(ℎ, 𝑏, 𝑅, 𝒇) 
In order to reduce the number of variables, the 

relationship between the function f(R) and the radius R  of 

arc (Fig. 6) might be helpful: 

{
𝒇 = 𝑅 − √𝑅2 − 𝑐2 ≥

𝐿

20

𝒇 = 𝑅 − √𝑅2 − 𝑐2 ≤
𝐿

10

  (19) 

𝑐 = 6,8𝑚 = 𝑐𝑜𝑛𝑠𝑡 →  𝒇 = 𝑅 − √𝑅2 − (6,8𝑚)2 = 

𝑅 − √𝑅2 − 46,24𝑚2 → 𝒇 = 𝑓(𝑅)  (20) 

 
Figure 6  Graphical presentation of f(R) of a circular arc dependent on 

the radius, limited by geometrical conditions 

TABLE III 

CONSTRAINTS FOR THE OPTIMIZATION OF THE ARCH GIRDER 

No                  Constraint       Form adjusted to Solver 

   

1 
ℎ ≥

𝐿

15
 

 

w1 ℎ −
𝐿

15
≥ 0 

 

2 
ℎ ≤

𝐿

8
 

 

w2 ℎ −
𝐿

8
≤ 0 

 

3 
𝑅 − √𝑅2 − 𝑐2 ≥

𝐿

20
 

 

w3 
𝑅 − √𝑅2 − 𝑐2

−
𝐿

20
≥ 0 

 

4 
𝑅 − √𝑅2 − 𝑐2 ≤

𝐿

10
 

w4 𝑅 − √𝑅2 − 𝑐2

−
𝐿

10
≤ 0 

 

5 𝑅 ≥ 𝐿  

w5 
𝑅 − 𝐿 ≥ 0  

6 𝑅 ≤ 10𝐿 w6 𝑅 − 10𝐿 ≤ 0  

7 ℎ

𝑏
≤ 10 

w7 ℎ

𝑏
− 10 ≤ 0 

 

8 𝑏 ≤ ℎ w8 𝑏 − ℎ ≤ 0  

9 𝑏 ≥ 0,1𝑚 w9 𝑏 − 0,1𝑚 ≥ 0  

10 𝑏 ≤ 0,24𝑚 w10 𝑏 − 0,24𝑚 ≤ 0  

11 ℎ ≥ 0,1𝑚 w11 ℎ − 0,1𝑚 ≥ 0  

12 ℎ ≤ 2,0𝑚 w12 ℎ − 2,0𝑚 ≤ 0  

13 max(𝐵, 𝐴, 𝑇, 𝑆, 𝐿) ≤ 0,9 w13 max(𝐵, 𝐴, 𝑇, 𝑆, 𝐿)

− 0,9 ≤ 0 

 

V. COMPARISON OF RESULTS 

For the final solution of the stated problem, girders in 

three different shapes (pent, gable, curved) and in various 

timber strength classes were compared (Tab. IV-VI). 

Based on the above studies and tables, the following general 

conclusions can be drawn:  

- using timber GL22h and GL24h is economically the best 

solution in this task, independent of the shape of the beam. 

- if there is only one type of material, the smallest beam 

can be, in many cases, regarded as the optimal one from an 

economical point of view. However, when there are a few 

materials, the analyzed costs of their production, 

transportation etc. have to be included in calculations; 
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- cross-sections with a proportion 𝑏 ℎ⁄ = 1 5⁄ ÷ 1 6⁄  appear 

to be optimal ones, 

- the gable shape transpired to be the optimal solution for 

this task - the smallest volume of timber is needed to 

produce a proper girder that fulfills all of the requirements, 

- choosing the curved shape would be a worse solution from 

an economical point of view (the cheapest curved girder 

would be 10% more expensive than the cheapest gable 

girder),  

- the "resistance usage" of the curved girder is more 

balanced than for the other shapes, 

- choosing the pent shape would be the most expensive 

solution (the cheapest pent girder would be 28% more 

expensive than the cheapest gable girder). 

Aspects that affected the dimensions of the cross-sections 

were: 

1. Shearing stresses (S) and serviceability limit state (L) 

were decisive for the pent girder. The reason for this is the 

decrease of the cross-section's area towards the end of the 

beam where the shearing forces are the highest and the 

decrease of the height area towards the end of the beam, 

which increases the deflection. 

2. As above, shearing stresses (S) and serviceability limit 

state (L) were also decisive for the gable girder. The reasons 

are similar here, but different in that the cross-section's 

height and area are decreasing in both directions. On the 

other hand, for the curved girder, bending stresses (B) 

appeared to be decisive. For this shape, the cross-section is 

constant and is not increasing towards the middle of the 

beam, which is the place where bending forces are the 

highest. 
TABLE IV 

OPTIMAL PENT-SHAPED GIRDERS FOR DIFFERENT TIMBER STRENGTH 

CLASSES 

Timber h 

[m] 

b 

[m] 

α 

[º] 

B 

% 

S 

[%] 

L 

[%] 

V 

[m3] 

GL22h 1,16 0,18 3,91 59 87 85 2,9 

GL24h 1,12 0,18 3,71 59 89 84 2,8 

GL26h 1,08 0,18 3,11 61 85 83 2,7 

GL28h 1,04 0,18 2,78 62 85 86 2,6 

GL30h 1,00 0,18 2,64 63 87 88 2,5 

GL32h 1,00 0,18 2,55 60 86 84 2,5 

minimum total price – for timber GL24h 

 

TABLE V 

OPTIMAL GABLE-SHAPED GIRDERS FOR DIFFERENT TIMBER STRENGTH 

CLASSES 

Timber h 

[m] 

b 

[m] 

α 

[º] 

B 

% 

A 

[%] 

T 

[%] 

S 

L 

[%] 

V 

[m3] 

GL22h 1,16 0,18 4,19 88 73 56 90 

86 
2,3 

GL24h 1,12 0,18 3,86 85 71 55 90 

85 
2,2 

GL26h 1,08 0,18 3,52 82 70 53 90 

87 
2,2 

GL28h 1,04 0,18 3,19 80 69 51 90 

90 
2,1 

GL30h 1,00 0,18 2,86 79 69 49 90 

90 
2,1 

GL32h 0,96 0,18 2,25 77 69 41 85 

90 
2,1 

minimum total price – for timber GL22h 

TABLE VI 

OPTIMAL ARCH-SHAPED GIRDERS FOR DIFFERENT TIMBER STRENGTH 

CLASSES 

Timber h 

[m] 

b 

[m] 

  R 

[m] 

 f 

[m] 

B 

[%] 

 A 

 T 

[%] 

S 

L 

[%] 

V 

[m3] 

GL22h 1,00 0,18 30,0 0,78 89 88 

63 

59 

82 
2,5 

GL24h 0,96 0,18 27,0 0,87 88 88 

72 

61 

84 
2,4 

GL26h 0,96 0,18 27,0 0,87 83 82 

72 

61 

80 
2,4 

GL28h 0,96 0,18 28,4 0,82 79 76 

69 

61 

77 
2,4 

GL30h 0,96 0,16 25,6 0,92 90 79 

83 

69 

80 
2,2 

GL32h 0,96 0,16 25,6 0,92 86 74 

83 

69 

77 
2,2 

minimum total price – for timber GL24h 

VI. CONCLUSIONS 

This paper presents an algorithm that enables the finding 

of the optimal shape of a timber roof girder that can carry 

imposed loads safely and economically, and also fulfill the 

requirements resulting from the function of the object. The 

algorithm can also be used to test and demonstrate the 

capabilities offered by the Excel Solver tool. The basic 

criteria are the strength, stability, and rigidity of the 

structure. Optimal construction shaping included four basic 

elements: optimization criterion, optimization variables, 

optimization limitations, and state equations. 
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