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a sub-swarm is created by grouping the particles that are
closer to the best solution. The basic PSO algorithm was
developed to find unique solutions to optimization problems,
some variations of PSO are to solve problems such as
multi objective optimization, dynamically changing objective
functions and location of multiple solutions.

A variation of PSO are techniques of niches. The
NichePSO algorithm was developed by Bris et al. [1]. It em-
ploys PSO to find multiple solutions to multimodal problems.
It was the first PSO niching technique that introduces a novel
PSO algorithm to detect multiple optimal in a multimodal
problem whose implementation can be parallelized. The
particle swarm concept was to simulate the graceful of
choreography of a bird flock, that govern the ability to fly
synchronously and suddenly chance direction or velocity.
The position of particles are based on the social psycho-
logical tendency of individuals to emulate other individuals,
and is given by

xi(t+ 1) = xi(t) + vi(t+ 1) (1)

where vi(t) denotes the velocity vector or the i-th particle.
The velocity update has the form:

vij(t+ 1) = vij(t) + c1r1j(t)pij(t) + c2r2j(t)sij(t) (2)

where the subindex ij denotes de j-th entry corresponding
to i-th particle, and p(t) is the cognitive component and s(t)
the social component, c1 and c2 are positive acceleration
constants used to the contribution of the cognitive and social
components, r1j and r2j are random values from a uniform
distribution U [0, 1]. Each step t a particle i updates its
velocity and position, were the new velocity vi(t + 1), is
the sume of three terms, the previous velocity vi(t), to the
distance from lbest and the best position particle from gbest.

The PSO is in Algorithm 1 where the first step for
PSO algorithm is the initialization of the main swarm,
where cognitive component, social component, position and
velocity need to be specified, in line 3 the fitness function is
evaluated for each particle. In line 11 and 12 the position and
velocity are updated; this process is repeated until a stopping
condition is satisfied.

Algorithm 1 PSO Algorithm
1: Create and initialize an nx-dimensional swarm;
2: repeat
3: for each particle i = 1, ..., ns do
4: if f(xi) < f(yi) then
5: yi = xi;
6: end if
7: if f(yi) < f(ŷi) then
8: ŷ = yi
9: end if

10: end for
11: for each particle i = 1, ..., ns do
12: update the position using equation 1;
13: update the velocity using equation 2;
14: end for
15: until stopping condition is true;

B. NichePSO

A PSO based algorithm called NichePSO assumes as
an objective to find the different maxima of the problem.
NichePSO updates the best particle position and velocity
while also using PSO for the rest of the particles. The
updating formulae are as follows

xrj(t+ 1) = yj(t) + wvrj(t) + p(t)(1− 2r2(t)) (3)

vrj(t+1) = −xrj(t)+yj(t)+wvrj(t)+p(t)(1−2r2(t)) (4)

The NichePSO algorithm is the one presented in Algo-
rithm 2.

Algorithm 2 NichePSO Algorithm
1: Create and initialize a nx-dimensional main swarm, S;
2: repeat
3: Train the main swarm, S, for one iteration using the

cognition-only model;
4: Update the fitness of each main swarm particle, S.xi;
5: for each sub-swarm Sk do
6: Train sub-swarm particles, sk.xi using a full model

PSO;
7: Update each particle’s fitness;
8: Update the swarm radius Sk.R;
9: end for

10: If possible, merge sub-swarms;
11: Allow sub-swarms to absorb any particles from the

main swarm that moved into the sub-swarm;
12: If possible, create new sub-swarms;
13: until stopping condition is true
14: return Sk.ŷ for each sub-swarm Sk as a solution;

The initialization of the main swarm is done in line 1. In
line 3 this swarm is trained with the cognitive model only. In
line 4 the fitness function for each particle is updated, then
in line 6 the sub-swarms are trained using a PSO full model,
after updating the fitness for each particle in line 7, in line
8 the swarms radius are update. In line 10, the sub-swarms
are merged if is possible. Finally the best particle of each
sub-swarm is returned as a solution in line 14.

The NichePSO has good performance when finding the
solutions to multimodal problems. However, it was found
that the current sub-swarm merging and particle absorption
strategies are premature, and limits exploration in the main
swarm. That is shown in [10] where they describe original
merging and absorption routines within the NichePSO. This
can be enhanced by including behavioral information in the
decision making process whether to merge or not. They
proposes four new strategies, two for enhanced merging
(Directional Based Merging and Scatter Merging) and two
for enhanced absorption (Directional Based Absorption and
Euclidean Diversity Absorption).

III. BIFURCATION DIAGRAMS

A bifurcation refers to a qualitative change in the behavior
of a dynamical system as some parameter on which the
system depends varies continuously [11]. A point (x0, θ0)
is a bifurcation point of equilibrium for xt = f(x; θ) if the
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number of solutions of the equation f(x; θ) = 0 for x in
every neighborhood of (x0, θ0) is not a constant independient
of θ.

A Bifurcation Diagram (BD) is the generation of a graph
which explicitly tell us about the dynamics of the equation
roots as its parameters are continuously changing. Each of
this points can then be evaluated for their stability assess-
ment, for which there exist several well stablished methods
and therefore are left out of this work as does not add
anything new. An example of a one dimensional BD [9] is
the equation 5:

ẋ = θx+ x3 − x5 (5)

has a subcritical pitchfork bifurcation at (x, θ) = (0, 0).
When solution x = 0 loses stability as θ passes through zero,
the system can jump to one of the distant stable equilibria
corresponding to x = ±1 at θ = 0.
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Fig. 1. Bifurcation Diagram xt = θx+ x3 − x5

Figure 1 represents a BD where θ is the parameter which
will be changing and therefore the equation roots will be
probably also changing. Here, we can observe that when θ =
−0.25 a two bifurcation points were found one at x = −0.7
and the other at x = 0.7, moreover, these two bifurcations
appear (or disappear if we were diminishing θ), please do
notice we now have three roots, instead of one which we
had if we go back an infinitesimal distance from θ = −0.25.
We can also observe that if we increase by an infinitesimal
value θ, we will have five roots. Another interesting point is
when θ = 0 where before reaching that value we had five
roots and in that value three roots merge to just one root e.g
x = 0. Bf1 point is the bifurcation, LP1 are turning points
or limit points, P1, P2 and LP1 are branch points.

IV. PROPOSED METHODOLOGY

Torres et al. [9] describe the normal NichePSO algorithm
is constantly applied to build the BD but the previous
solution to the problem is ignored, which makes it a slow
process. The methodology we propose takes the previous
solution as a starting point to find the following solution.
This poses two additional problems which can arise along
the bifurcation diagram generation process: Appearance of
new roots and disappearing of existing roots. To this end,
we are proposing new heuristics in order to deal with them.
In the following section we will describe the main concepts
of our methodology.

A. Problem Transformation

PSO as well as NichePSO were designed to deal with op-
timization problems, however in order to find the bifurcation
diagram we need to find the zeroes of the system. To this end,
we need to transform our dynamic system function f into a
function g where all the zeroes will be the maximal points
of the transformed function g. Specifically, g is defined as
equation 6.

g(x) =
1

1 + ‖f(x)‖
(6)

This function will be the one we will use to evaluate the
fitness of the elements of the swarm.

B. Bisections Method

Traditionally, the bisection method [12] has been used as
a means to find the root of a given function. This method
iteratively converges on a point where f(x) = 0 which is
taken as the solution of the process. It basically changes
a reference point, x, at the middle of the space search i.e.
[xa..xb] and the deciding which of the halves to explore
i.e. [xa, x] or [x, xb] based on some criteria. Usually this
criterion is the sign of the function evaluated at x, xa, xb.
In our method our criterion will be the number of roots at
x, xa, xb. In this contribution we will use this method as a
mean to find the bifurcation point. This process will be called
when, as a result of the NichePSO application, a different
number of roots, from those we were processing, are found.

The bisection method in our case is illustrated in Figure 2
where we can see, when NichePSO is applied, a different
number of roots at the ends of the green range. This fact will
fire the bisection process which moves the reference point at
the middle of the green range and now decides to search the
blue range as it is there where a different in the number of
roots are present at the limits of this range. This process will
go on until, if xn is the bifurcation point, |xn − xn−1| < ε.
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Fig. 2. Bisection Method

C. The fastBDPSO algorithm

The DE NichePSO Algorithm starts with the NichePSO
algorithm and exploring with bisection method to obtain the
roots and new points, then the diagram was created obtained
by particles tracking and gets the slope. Then call Differential
Evolution algorithm for convergence the niches; last use the
history for search the next particles as show in Algorithm 3.
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The main algorithm proposed in this work is shown in
algorithm 3. Line 8 calls NichePSO which returns a set
of solutions which are stored in X . Then we will repeat
the following process. If stochastically determined, apply
NichePSO() (line 12) and if the number of solutions are
greater from those in X , the bisection method is applied
to find the bifurcation point (line 15). NichePSO is called
again after that point θ + δθ (line 18). From that point we
will apply the trackerPSO algorithm to follow the track of
each solution from θx to θy (lines 19-22). Please do notice
that in this tracking process NichePSO will not be called
again. Line 26 will call trackerPSO to follow the solutions
path and finally in line 27 θ is increased. This process will
be repeated until θ > θf .

Algorithm 3 fastDBPSO
1: # X,Y , sets of solutions
2: # θo, θ initial value
3: # θf , θ final value
4: # δθ, θ increment
5: # τ , NichePSO application probability
6: # r, random number from a uniform distribution
7: θ ← θo;
8: X ← NichePSO(θ);
9: θx ← θ;

10: repeat
11: if r < τ then
12: Y ← NichePSO(θ);
13: if |X| < |Y | then
14: θy ← θ;
15: θ ← bisection(θx, θy) + δθ;
16: X ← Y ;
17: θx ← θy;
18: Y ← NichePSO(θ);
19: for θ = θy . . . θx do
20: Y ← trackerPSO(Y );
21: θ ← θ + δθ;
22: end for
23: X ← Y ;
24: end if
25: end if
26: X ← trackerPSO(X);
27: θ = θ + δθ;
28: until θ > θf

On the other hand the trackerPSO algorithm is described
by algorithm 4, This heavily relies on PSO, the only
difference being in the initialization part where the best
particle becomes the previous solution of that path and a
five particles swarm is created around such particle (line 3).
This will be done for every particle of the solution passed
to trackerPSO (X). It is worthy to note that in this case
the social component will be highly more important that
the cognitive component therefore in the PSO algorithm the
following must be fulfilled C1 << C2.

V. EXPERIMENTAL RESULTS

NichePSO is computationally expensive, for this reason
this is only employed in case it is needed and we heavily
rely on tracking previous solutions using simple methods

Algorithm 4 trackerPSO(X)
1: # X , sets of solutions
2: for each x ∈ X do
3: xs ← Create a five particles biased swarm around x;
4: y ← PSO(xs);
5: mergeSolutions();
6: end for

i.e. PSO and DE. The main difference is that we use fewer
particles to follow such solutions as the previous solution has
to be very close to the one we are looking for. Therefore, the
efficiency as well as the precision is improved. This section
show some experiments in relation with time response as
well as accuracy for several systems. The experiments were
conducted on an laptop computer MacBook Air, 4 Gb RAM,
1600 MHz DDR3, 1.6 GHz Intel Core i5, using macOS
Sierra version 10.12.5. To render the results a bifurcation di-
agram plotting tool, called BDT (Bifurcation Diagram Tool),
was implemented. In these experiments some parameters
were measured, these are: time for creating the bifurcation
diagram, precision to find the roots, the minimum number of
particles necessary for good performance, apply NichePSO
(BD-NichePSO), and track with PSO (Fast BD-PSO) as well
as DE (FAST BD-DE).

The first column of Table I shows all the used parameters
as well as nd a determinate iterations number for each test.

TABLE I
NICHE PARAMETERS SETTING

Parameters Niche Fast BD-PSO Fast BD-DE

Main Swarm Size 40, 65, 130 & 260 5 5
Learning Factor C1 1 0.8 -
Learning Factor C2 2 2 -
Inertia weight W 0.5 0.5 0.4
Cross Rate - - 0.8
Iteration number 65 30 30

With the purpose of comparing the efficiency a mod-
ified version of fastBDPSO implemented , where instead
of using PSO in the tracking algorithm (line 4, algorithm
4) we use differential evolution which will be called Fast
BD-DE. We have as reference the algorithm which uses
NichePSO along all the different values of θ, which will
be called simpleNichePSO. We also test the cases for
δθ = 0.1, 0.01, 0.001 steps for the three algorithms i.e.
simpleNichePSO, fastBD-PSO and fastBD-DE algorithms
using the same equation in a one dimensional diagram.
Figure 3 shows the results of the different methods when
applied to function f(ẋ, θ) = θx + x3 − x5. All the cases
were able to generate the BD, but as later will be shown,
fastBDPSO outperforms the other two algorithms.

To realize the tracking, the strategy used was to follow the
roots at point where these are merged using bisections, and
from that point rebuilt the bifurcation diagram up to the point
where simpleNichePSO fired the application of bisections.
The points we are tracking are used predict the new positions
as show Figure 4, then the history of particles is used to
direction indicator. The idea of tracking employing Fast BD-
PSO algorithm is to ensure particle rejection among them
using a threshold from the best position found before.
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Fig. 3. Test with f(ẋ, θ) = θx+ x3 − x5
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Fig. 4. Particle Tracking with 5 and 8 particles.

Table II shows some tests performed for all functions
shown in first column. The second column show the value
ranges for the functions. The third column shows the step
size, and the last columns show the time required buy
simpleNichePSO to obtain the BD with different number of
particles i.e. 40, 65, 130 and 260. Elements in red were not
able to generate the BD, therefore a swarm of 130 particles
was decided to be used for simpleNichePSO.

TABLE II
NICHEPSO FOR DIFFERENT NUMBER OF PARTICLES

Function Ranges Step Niche
40 65 130 260

x = (−1.4, 1.4) 0.1 0.6722 0.9336 1.6120 2.8532
−x5 + x3 + xθ θ = (−0.32, 0.25) 0.01 5.6544 7.6904 13.2951 23.5480

0.001 54.3783 76.2523 125.6771 219.5866
x = (−4, 4) 1 1.4843 1.7264 2.5844 4.54245

4x− x3 + θ θ = (−4, 4) 0.1 11.9331 14.7582 22.0439 36.9021
0.01 115.3369 141.7751 210.6229 334.1761

x = (−10, 10) 1 6.0179 6.4065 8.3627 12.0327
x+ θ − x2 θ = (−10, 10) 0.1 54.0352 58.5006 77.8289 115.5978

0.01 506.0416 546.2896 712.4901 1034.6116

Figure 5 shows the results of the experiments using the
functions and methods there described.

TABLE III
PARTICLES TRACKING TIME

Function Step Fast BD-PSO Fast BD-DE Niche
0.1 8.2676 17.7030 1.6120

−x5 + x3 + xθ 0.01 9.0056 20.443915 13.2951
0.001 22.7764 52.292652 125.6771

1 76.2738 151.0828 2.5844
4x− x3 + θ 0.1 79.3385 155.2536 22.0439

0.01 81.1868 168.5666 210.6229
1 77.3132 160.3031 8.3629

x+ θ − x2 0.1 70.7938 158.2267 77.8289
0.01 78.4142 174.9785 712.4901

As it can be seen, there is a Difference of time in tracking
between Fast BD-PSO and Fast BD-DE. This was related

(a) Original Diagram (b) NichePSO

(c) Fast BD-PSO (d) Fast BD-DE

Fig. 5. Results for −x5 + x3 + xθ Function

to the heuristic of the PSO algorithm which is based on
repulsion between particles with umbral to generate all the
candidates around a point. Therefore, it is forced to converge
faster using best position which is the solution to that path in
the previous iteration. Tracking with Fast BD-DE algorithm
the basic idea is the same to the previous case, but now mu-
tation functions were used as well as the recombination that
characterizes this algorithm. Consequently more iterations
are needed to converge directly affecting the performance.
The tracking of the particles is shown in Table III. As we can
see the computational time for fastBD-PSO is half the time
used by fastBD-DE in all cases and in general it outperforms
simpleNichePSO.

VI. CONCLUSIONS AND FUTURE WORK

In this contribution an improved method based on PSO
algorithms has been presented. Previous works have used
such strategy using only NichePSO along the parameter
variation limit but they do not take into account previous
solutions. The use of bisections to speed the process to find
the bifurcation point has been a efficient tool to this end. The
results allow us to claim, at least for univariate problems,
it is more efficient than those which only use NichePSO.
The ideal solution would be to detect immediately the
bifurcation point but it would require δθ ≈ 0 and therefore
would be very time consuming Overall, when compared
with the simpleNichePSO as well as fastBD-DE algorithms
we have obtained All this work have been implemented in
the one-dimensional space. Some other strategies must been
developed in order to extend this work to higher dimensions.
Furthermore, the algorithms to track the individual solutions
can be mapped directly into a parallel implementation which
well speed up the process.
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