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Abstract—A new concept for damage detection in a Euler 

Bernoulli beam is proposed in this paper. An indirect strategy 

that yields strain modes as a special derivative of displacement 

data with respect to a spatial variable is analytically 

introduced and utilized for the analysis. Though strain modes 

are sensitive to damage, they are not readily identifiable in 

practice. The proposed approach provides a prospect for strain 

mode-based damage detection without involving direct 

measurement of the strain modes themselves. The derivation is 

adapted to the FEM analysis and to data measurable by 

Scanning Laser Doppler Vibrometry (LDV). Various scenarios 

are considered as an exploration for damage detection. It is 

analytically demonstrated that the method is useful for damage 

detection in structures build on Euler Bernoulli beams 

provided displacement mode data is available. 
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I. INTRODUCTION 

Prediction of the dynamics of a structure is an integral 

part of structural health monitoring. Lack of, life cycle 

evaluation and proper repair management, may be a 

potential cause of catastrophic failure and accidents in 

structures. Vibration Analysis (VA) offers a Non-

destructive approach, efficient online prediction of 

structural dynamics and attracts a considerable research 

effort because of its convenient application and cost 

effectiveness. Structural damage influences local flexibility, 

natural frequency, damping ratio and displacement modes 

[9, 12, 13, 17]. Consequently, vibration-testing data may 

harbor damage signals. 

Damage detection comprises location identification and 

damage degree evaluation, and residual lifetime (cycle) 

estimation. 

VA of damage could be carried out using the following: 

1. Vibration modes from modal testing [1-3]. 

Structures modal testing has a comparatively long history, 

a systematic theory and well-documented applications. Its 

relevant experimental results include natural frequencies, 

modal damping ratios and natural modes. Structural damage 
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reduces natural frequencies and affects natural mode shapes. 

By comparing modal characteristics of an intact and of a 

damaged structure, damage identification can be done in 

principle. Nonetheless, natural frequency is a global 

characteristic and sensitivity of modal characteristics to 

changes in local flexibility is low, hence its practical 

application is limited. 

 

2. Strain modes from strain modal testing [4-6]. 

Strain modes are considerably sensitive to changes in the 

local flexibility than are displacement modes because the 

former are first derivatives of the later. In the last two 

decades, theory and techniques that define the modes have 

been well established. Multiple experiments reveal that, 

strain modes carry damage information. Due to practical and 

technical limitations in their application to engineering 

structures, for example, setting up and maintaining of strain 

gauges, hitherto the number of practical reports are limited. 

Besides the above categories, the use of SLDV is 

noted [7, 8]. A Scanning Laser Vibrometry (SLDV) device 

is a non-contacting measurement instrument and senses at 

multiple pre-defined points and directions to provide 

“distribution” information in a particular area. A novel 

vibration-based (NDT) technique, that integrates (SLDV)  

and Strain Energy Distribution method has been developed 

in [7].  

In what follows, a damage criterion utilizing the strain 

response of a structure and vibration data measurable by 

SLDV is the core of the analysis. 

II. MODAL STRAIN ANALYSIS AND UNDERLYING PRINCIPLES 

 The equation of motion of transverse vibration of a 

Euler-Bernoulli Beam has the form 
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Where 

( , )u x t = the transverse displacement at position x  at the 

instant t  

E = the Young’s modulus 

( )I x = second moment of area of the element 

( , )f t x = applied force in the transverse direction 

( )x =material density. 

Based on vibration theory, the lateral response of the 

beam under a harmonic excitation has the form:  
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Where 

( )r x = the rth mass of normalized transverse mode 

shape under certain boundary conditions 

1rQ   the generalized coordinate of rth  mode. 

Displacement ( u )-strain (  ) relationship gives:  
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 is the rth  strain mode 

corresponding to displacement mode ( )r x . Indeed, 1rQ , 

2rQ , 1h and 2h are obviously not the same and are 

dependent on location along the structure. Equation (3) is 

valid for thin short plate-like structures in which the shear 

factors are comparably small or negligible when loaded in 

their own planes. 

The strain mode can be evaluated by: 

1. The strain modal transfer function of the vibration 

system is represented by 
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Evaluating modal mass, modal stiffness, modal damping 

and mode shapes from the displacement mode analysis, the 

strain modes can be identified using equation (3). 

From displacement-strain relationship, the strain modes 

of the transverse vibration of the beam could be estimated 

by the central difference solution for equation (3) given by 

equation (5), though with low accuracy: 
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Here, k is the number of discrete points along the 

structure, x is the finite distance between adjoining 

discrete points, and 
r

  is the thr  strain mode 

corresponding to the displacement mode ( )r x . 

III. DAMAGE CRITERIA 

Changes in strain modes reflect damage, however, their 

measurement and evaluation in large engineering structures 

is technically a formidable task. Time-displacement 

responses measured at widely and densely scattered points 

on the structure are considered for the following analysis. 

The strain response under the action of an external force 
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If the strain responses of an intact and a damaged 

structure are known, then the difference in the 

two; ( , ) ( , )dZ t x t x    represents damage. (The 

subscript d indicates “of damaged structure” hereinafter). 

On the premise of equation (3), strain response is a linear 

combination of its modes. Therefore, sudden local changes 

in strain modes at damage locations will result into a local 

change in the corresponding responses; that is, 
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As a result, a partial derivative of strain response with 

respect to the spatial variable x , would reflect the pertinent 

change of strain, specifically  

1

( , )
( ). j t

d r d r

r

t x
x Q e

x

 










          (8) 

In view of equations (7-8) and the above considerations, 

the following functions are proposed for a damage criterion:  
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To circumvent direct measurement, the transverse 

displacement of a vibrating beam structure has been used to 

compute  from measured displacement signals using 

equation (10), a solution strategy, specially derived to limit 

computation errors in solving the equation 
2
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IV. SIMULATION AND ANALYSIS  

A FEM program in Matlab to demonstrate damage 

detection in a cantilever beam by the proposed criterion  

was developed; 0x  , free end; 100x   fixed end, with  

dimensions  L=1 m; W=0.025 m, H=0.0095 m, and material 

constants 
112.0 10E   Pa, μ=0.33, ρ=7850kg/m3. The 

cantilever was meshed into 100 elements and the damage in 

an element modeled by a decreased width. The degree of 

damage is hereby represented by the ratio λ=w/W.  

V. DISPLACEMENT AND STRAIN MODAL 

ANALYSIS 

Eigenvalues were analyzed for intact and damaged 

structures. Table 1 shows the natural frequencies for λ= 0.5 

when the damaged element is varied from 10th to 90th 

element position by a step 10. 

iElement 1iElement 1-iElement

w W

L
 

Fig. 1: A damaged beam element (damage symbolized by a 

reduced diameter- w) 
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 Table 1: Natural frequencies for a damaged beam, damage 

degree λ=0.5 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 shows that, the changes in natural frequencies 

are comparatively small; the change in first frequency is less 

than 0.2 Hz. Non-dimensional strain modes for known 

displacement modes were computed based on equation (3) 

for the case of a constant a h  as a first order derivative of 

displacement modes with respect to x . Figure 2 (a)-(c) 

shows displacement and strain modes. There is no 

discernible damage symptom in the displacement modes, 

nonetheless, peaks appear at the damage location in the 

strain mode curves. Results in Fig 2c were experimentally 

obtained on a SLDV. 

Figure 2 shows the differences in first strain modes of 

undamaged and damaged beam for λ=0.5. The results show 

how the peak heights vary with the damage location 

between elements 10 through 90. 

 
 

 
Fig. 2: Displacement and strain modes for undamaged and damaged 

beams at element 60 

 

 

 
(c) 

Fig.2: Displacement modes for undamaged and damaged 

beams at element 60 

VI. RESPONSE AND ANALYSIS OF CRITERIA 

The cantilever was excited by a harmonic force 

( ) sin( )f t A t  at the free end and the displacement 

response computed by FEM. The strain response was 

evaluated by equation (3). The time interval [0, 0.4s] with 

step 0.001s was used. Figures 4-5 show displacement and 

strain responses at node 50, whereas figures 6-7 show 

displacement and strain mode responses at node 100.  Using 

the responses, the damage criteria 1z  and 2z  were 

evaluated for various damage locations. Figure 8 illustrates 

1z  and 2z as smooth curves in an intact beam. Figures 8-10 

depict scenarios of the damage at elements 10 and 90 

respectively. 

In figures 9 and 10, there exist peaks at the damage 

sites. 1z  and 2z  has one peak and two peaks respectively 

centered at damage sites. This property could hold a premise 

for isolating a real damage from noisy data. 

Figure 11 shows a 2z  curve when damage position is 

varied from 10 to 90 in a step of 12; the peaks’ sites well 

coincide with the damage location. The curve reflects 

sensitivity of 2z  to damage location. Comparing Figures 3 

and 12, it is obvious that the abrupt change in strain modes 

results in the peaks of 2z . Figure 12 shows 2z  for 

increasing degree of damage with a fixed damage location, 

i.e. sensitivity of 2z   with respect to degree of damage. 2z  

Increases exponentially with linear increment in the damage 

degree. 

 

 

  
Fig. 3: Influence of damage position on strain mode 

Mode  1st 2nd 3rd 4th 

Not damaged 7.746 48.5441 135.925 266.359 

Damaged 10 7.635 48.314 135.908 266.767 

Damaged 20 7.667 48.589 136.000 265.774 

Damaged 30 7.695 48.580 135.576 266.117 

Damaged 40 7.718 48.436 135.737 266.032 

Damaged 50 7.738 48.306 135.919 265.195 

Damaged 60 7.755 48.271 135.479 266.192 

Damaged 70 7.771 48.333 135.011 265.758 

Damaged 80 7.787 48.467 135.192 264.586 

Damaged 90 7.805 48.685 135.901 265.676 
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Fig. 4: Time displacement response at node 50 

  
Fig. 5: Relative strain response at node 50 (damaged) 

  
Fig. 6: Displacement response at node 100 (damaged) 

 

Fig. 7: Relative strain response at node 100 

 

Fig. 8: Sensitivity of damage parameter to location  

 
Fig. 9: Case of a damaged element 10 

 
Fig. 10: Case of a damaged element 90  

 
Fig. 11: Z2nder different damage locations (λ=0.5) 
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Fig. 12: Under different degrees of damage (damaged element 60) 

VII. CONCLUSION 

A criterion based on derivative of displacement modes 

responses with respect to a spatial variable has been 

established by analysis for structural damage detection and 

its validity and properties demonstrated by numerical 

simulation. The two functions; 1z  and 2z  reflect damage 

position and damage degree. 2z   is more sensitive to 

damage than 1z . In the same damage condition, 1z  has one 

peak and 2z   has two. Only measured displacement 

response of the structure is sufficient for availability of the 

criterion. The measurement points for displacement 

response have to be sufficiently dense to curb on noise error 

in the strain responses evaluated as a second order 

derivative of displacement. The approach is good for plate-

like structures loaded in their own planes when the shear 

factors are negligibly small.  

Further analysis of the proposed criterion for various 

cases of excitations; impact, random loading and 

identification of degree of damage by the author is 

underway. 
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