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Abstract—Graph embedding has been known as a powerful
tool for implementation of parallel algorithms and simulation of
different interconnection networks. In this paper, we compute
the exact wirelength of embedding circulants network into
hypertrees and vice-versa.
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I. I NTRODUCTION AND TERMINOLOGY

I NTERCONNECTION networks play an important role in
parallel computing systems. An interconnection network

can be represented by a graphG = (V,E), whereV repre-
sents the node set andE represents the edge set. In this paper,
we use graphs and interconnection networks (networks for
short) interchangeably. Graph embedding is a technique in
parallel computing that maps a guest graph into a host graph
(usually an interconnection network). There are many appli-
cations of graph embedding, such as architecture simulation,
processor allocation, VLSI chip design, etc. Architecture
simulation is the simulation of one architecture by another.
This can be modeled as a graph embedding, which embeds
the guest architecture into the host architecture, where the
nodes of the graph represent the processors and the edges
of the graph represent the communication links between the
processors. In parallel computing, a large process is often
decomposed into a set of small sub processes that can execute
in parallel with communications among these sub processes.
According to these communication relations among these
sub processes, a graph can be obtained, in which the nodes
in the graph represent the sub processes and the edges of
the graph represent the communication links between these
sub processes. Thus, the problem of allocating these sub
processes into a parallel computing systems can be again
modeled as a graph embedding problem. The problem of
laying out circuits on VLSI chips can also be reduced to
graph embedding problems [1].

The quality of an embedding can be measured by certain
cost criteria. One of these criteria which is considered very
often is thewirelength. The wirelength of an embedding is
the sum of the dilations in host graph of edges in guest graph.
The wirelength of a graph embedding arises from VLSI de-
signs, data structures and data representations, networks for
parallel computer systems, biological models that deal with
cloning and visual stimuli, parallel architecture, structural
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Fig. 1. Wiring diagram of a graphG into pathH with ECf (G,H) = 5

engineering and so on [2, 3] Graph embeddings have been
well studied for a number of networks [4 – 11].

The circulant network is a natural generalization of the
double loop network [12]. Circulant graphs have been used
for decades in the design of computer and telecommunica-
tion networks due to its optimal fault-tolerance and routing
capabilities [13]. They are also used in VLSI design and
distributed computation [14 – 16] Circulant graphs have
been employed for designing binary codes [17]. Theoretical
properties of circulant graphs have been studied extensively
and surveyed by Bermond et al. [14]. Every circulant graph is
a Cayley graph, and is therefore vertex transitive [2]. Most
of the earlier research concentrated on using the circulant
graphs to build interconnection networks for distributed and
parallel systems [13, 14].

An overlay network is a computer network which is built
on the top of another network. Nodes in the overlay can be
thought of as being connected by virtual or logical links, each
of which corresponds to a path, perhaps through many physi-
cal links, in the underlying network. For example, distributed
systems such as cloud computing, peer-to-peer networks, and
client-server applications are overlay networks. Chord graphs
introduced by Stoica et al. [18], are a structured peer-to-peer
architecture based on distributed hash tables (DHTs) [19]. In
[6], the chord graph is considered as an overlay network.
The rest of the paper is organized as follows: Section 2
gives definitions and other preliminaries. In Section 3, we
determine the wirelength of embedding circulant network
into hypertree and vice-versa. In Section 4, we discuss
the time complexity of the wirelength. Finally, concluding
remarks and future works are given in Section 5.

II. BASIC CONCEPTS

In this section we give the basic definitions and
preliminaries related to embedding problems.

Definition 1. [11] Let G and H be finite graphs. An
embedding ofG into H is a pair (f, Pf ) defined as follows:

1) f is a one-to-one map fromV (G) → V (H)
2) Pf is a one-to-one map fromE(G) to {Pf (uv) :

Pf (uv) is a path inH betweenf(u) and f(v) for
(uv) ∈ E(G)}.
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For brevity, we denote the pair(f, Pf ) asf .

Definition 2. [11] Let f : G → H be an embedding. For
e ∈ E(H), let ECf (e) denote the number of edges(uv) of
G such thate is in the pathPf (uv) betweenf(u) and f(v)
in H. In other words,

ECf (e) = |{(uv) ∈ E(G) : e ∈ Pf (uv)}| .

Then the edge congestion off : G → H is ECf (G,H) =
maxECf (e), where the maximum is taken over all edges
e of H. The edge congestion ofG into H is defined as
EC(G,H) = minECf (G,H), where the minimum is taken
over all embeddingsf : G → H.

On the other hand, ifS is any subset ofE(H), then
ECf (S) =

∑
e∈S

ECf (e).

If we think of G as representing the wiring diagram
of an electronic circuit, with the vertices representing
components and the edges representing wires connecting
them, then the edge congestionEC(G,H) is the minimum,
over all embeddingsf : V (G) → V (H), of the maximum
number of wires that cross any edge ofH [20], see Figure 1.

Definition 3. [8] The wirelength of an embeddingf of G
into H is given by

WLf (G,H) =
∑

(u,v)∈E(G)

dH(Pf (uv)) =
∑

e∈E(H)

ECf (e)

wheredH(Pf (uv)) denotes the length of the pathPf (uv) in
H. The wirelength ofG into H is defined as

WL(G,H) = minWLf (G,H)

where the minimum is taken over all embeddingsf of G into
H.

The wirelength problem[8, 11, 20] of a graphG into
H is to find an embedding ofG into H that induces the
wirelength WL(G,H). The following problem has been
considered in the literature [21], and isNP -complete [23].

Edge Isoperimetric Problem: Let G = (V,E) be a graph
andA ⊆ V. Denote

IG(A) = {(uv) ∈ E | u, v ∈ A},

θG(A) = {(uv) ∈ E | u ∈ A, v /∈ A}

and
IG(m) = max

A⊆V,|A|=m
|IG(A)|,

θG(m) = min
A⊆V,|A|=m

|θG(A)|.

For a givenm, wherem = 1, 2, . . . , n, we consider the
problem of finding a subsetA of vertices ofG such that
|A| = m and |θG(A)| = θG(m). Such subsets are called
optimal [21, 22]. Moreover, for a regular graphG, IG and
θG are equivalent in the sense that a solution for one also
becomes a solution for the other [21]. The problem of finding
IG is calledmaximum subgraph problem[23].

The following results are powerful tools to find wirelength
of an embedding using edge isoperimetric problem.

Lemma 1. (Modified Congestion Lemma) [5]Let f be an
embedding of a graphG into H with same order. LetS be an
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Fig. 2. Circulant graphG(8;±{1, 3, 4})

edge cut ofH such that the removal of edges ofS separates
H into exactly 2 connected componentsH1 and H2 and
let G1 = f−1(H1) and G2 = f−1(H2). Furthermore,S
satisfies the following conditions:

(i) For every edge(a, b) ∈ Gi, i = 1, 2, Pf (a, b) has no
edges inS.

(ii) For every edge(a, b) in G with a ∈ G1 and b ∈ G2,
Pf (a, b) has exactly one edge inS.

(iii) G1 andG2 are optimal sets.

ThenECf (S) is minimum and

ECf (S) =
∑

v∈V (G1)

degG(v)− 2|E(G1)|

=
∑

v∈V (G2)

degG(v)− 2|E(G2)|

Remark 1. When the guest graphG is regular, it is enough
to check whetherG1 is an optimal set in condition (iii) of
Modified Congestion Lemma [8].

Lemma 2. (Partition Lemma) [5]Let f : G → H be
an embedding. Let{S1, S2, . . . , Sp} be a partition ofE(H)
such that eachSi is an edge cut ofH. Then

WLf (G,H) =

p∑

i=1

ECf (Si).

Definition 4. [10, 14] The undirected circulant graph
G(n;±S), S ⊆ {1, 2, . . . , j}, 1 ≤ j ≤ ⌊n/2⌋, is a graph
with the vertex setV = {0, 1, . . . , n − 1} and the edge set
E = {(i, k) : |k − i| ≡ s(mod n), s ∈ S}.

The circulant graph shown in Figure 2 isG(8;±{1, 3, 4}).
It is clear thatG(n;±1) is the undirected cycleCn and
G(n;±{1, 2, . . . , ⌊n/2⌋}) is the complete graphKn. The
cycle G(n;±1) ≃ Cn contained inG(n;±{1, 2, . . . , j}),
1 ≤ j ≤ ⌊n/2⌋ is sometimes referred to as the outer cycle
C of G.

Definition 5. [24] The basic skeleton of ahypertreeHT (r) is
a complete binary treeTr, that is,Tr is a spanning subgraph
of HT (r), wherer is the level of the tree. Its vertices are
labeled as follows: The root node has label1 and is said to
be at level1. The labels of the left(resp. right) children of
a vertex are formed by appending0 (resp. 1) to the label of
the parent vertex, see Fig. 3(a). In the corresponding decimal
labelling of the hypertree, the children of the vertexx are

Proceedings of the World Congress on Engineering and Computer Science 2018 Vol I 
WCECS 2018, October 23-25, 2018, San Francisco, USA

ISBN: 978-988-14048-1-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2018



labeled with2x and 2x+1. Additional edges in a hypertree
are horizontal, where two vertices in the same leveli, 1 ≤
i ≤ r, are joined by an edge if their label difference is2i−2,
see Fig. 3(b). We denote ther-level hypertree withHT (r),
r ≥ 2. The rooted hypertreeRHT (r) is obtained from the
hypertreeHT (r) by attaching to its root a pendant edge. The
new vertex is called the root ofRHT (r) and is considered
to be at level 0.

Definition 6. [6] A graph CHt is a chord graph
on n = 2t nodes with the following vertex and
edge sets: V (CHt) = {v0,v1, v2, . . . , v2t−1} and
e = (vi, vj) ∈ E(CHt) if and only if i + 2k =mod2t

j or
j + 2k =mod2t

i, for somek ∈ {0, 1, . . . , t − 1}; we say
that the length ofe is 2k.

Remark 2. The chord graphCHt is isomorphic to the
undirected circulant graphG(2t;±{20, 21, ..., 2t−1}), t ≥ 2.

Theorem 1. [9] A set ofk consecutive vertices ofG(n;±1),
1 ≤ k ≤ n, induces a maximum subgraph ofG(n;±S),
whereS = {1, 2, . . . , j}, 1 ≤ j < ⌊n/2⌋, n ≥ 3.

III. W IRELENGTH OF AN EMBEDDING

Even though there are numerous results and discussions
on the wirelength problem, most of them deal with only
approximate results and the estimation of lower bounds
[11]. In this section, we produce exact wirelength of an
embedding circulant networks into hypertrees and hyper
trees into chord graphs.

A. Circulant networks into hypertrees

Wirelength Algorithm A

Input : The circulant networkG(2r − 2;±{1, 2, . . . , 2r−1−
3}) and ther-dimensional hypertreeHT (r), r ≥ 3.

Algorithm : Label the consecutive vertices ofG(2r−2;±1)
in G(2r − 2;±{1, 2, . . . , 2r−1 − 3}) as0, 1, 2, . . . , 2r − 3 in
the clockwise sense and label the vertices ofH as follows:
SinceTr is a spanning tree ofHT (r), label the root vertex
of Tr asx and the remaining vertices using inorder labeling
[25] such that for any horizontal edgee = (u, v) ∈ HT (r),
the sum of the labels ofu andv is equal to2r−3. See Figure
3. Let f(x) = x for all x ∈ V (G) and for(a, b) ∈ E(G), let
Pf (a, b) be a shortest path betweenf(a) andf(b) in HT (r).

Output : An embeddingf of G(2r − 2;±{1, 2, . . . , 2r−1 −
3}) into HT (r) with optimal wirelength.

Theorem 2. Let G be the circulant networkG(2r −
2;±{1, 2, . . . , 2r−1 − 3}) and H be ther-dimensional hy-
pertreeHT (r), r ≥ 3. Then the wirelength ofG into H is
given by

WL(G,H) = (
1

3
4r − 2r − 6)r −

61

36
4r + 25× 2r−1.

Proof. Label the vertices ofG and H using Wirelength
Algorithm. We assume that the labels represent the vertices
to which they are assigned. First we claim that, for any
embeddingf : G → H, congestion on edgexy is 0, wherex
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Fig. 3. Edge cut ofHT (5)

is the label of the root vertex. Since no vertex inG is mapped
onto x and for any two verticesa and b in H, no shortest
path betweena and b passes throughx, the congestion on
edgexy is 0.

Let A1 = {(2r−2 − 1, x), (2r−1 + 2r−2 − 2, x)}. By our
claim ECf (A

1) = 0. Let A2 = {(x, 2r−2 − 1), (k, (2r −
3) − k) : 0 ≤ k ≤ 2r−2 − 1}. For 1 ≤ i ≤ r − 2,
1 ≤ j ≤ 2r−(i+1) and j is odd, letBi

j = {(2i−1(2j − 1) −
1, j2i−1), (2r−3− (2i−1(2j−1)−1), 2r−3− (j2i−1))}.
For 1 ≤ i ≤ r − 2, 1 ≤ j ≤ 2r−(i+1) and j is even, let
Bi

j = {(2i−1(2j − 1) − 1, 2i−1(2j − 2) − 1), (2r − 3 −
(2i−1(2j − 1) − 1), 2r − 3 − (2i−1(2j − 2) − 1))}. Then
{A2} ∪ {Bi

j : 1 ≤ i ≤ r − 2, 1 ≤ j ≤ 2r−(i+1)} ∪
(2r−1 + 2r−2 − 2, x) is a partition of E(HT (r)). See
Figure 3. NowE(HT (r))\A2 has two componentsH21

and H22, whereV (H21) = {x, 0, 1, 2, . . . , 2r−1 − 2}. Let
G21 = f−1(H21) and G22 = f−1(H22). By Theorem II,
G21 is an optimal set andA2 satisfies conditions (i), (ii) and
(iii) of Modified Congestion Lemma. ThereforeECf (A

2) is
minimum. For eachi, j, 1 ≤ i ≤ r − 2, 1 ≤ j ≤ 2r−(i+1),
E(HT (r))\Bi

j has two componentsHi
j1 and Hi

j2, where
V (Hi

j1) = {(j − 1)2i, (j − 1)2i + 1, . . . , j2i − 2, 2r − 3 −
(j−1)2i, 2r−3−((j−1)2i+1), . . . , 2r−3−(j2i−2)}. Let
Gi

j1 = f−1(Hi
j1) andGi

j2 = f−1(Hi
j2). The subgraphGi

j1

is optimal, since it induces a complete graph on2i+1 − 2
vertices and eachBi

j satisfies conditions (i), (ii) and (iii)
of Modified Congestion Lemma. ThereforeECf (B

i
j) is

minimum. The Partition Lemma implies that the wirelength
is minimum. By Modified Congestion Lemma,

(i) ECf (A
2) = 2(2r−1 − 3)(2r−1 − 1)

−2[(2r−1 − 3)(2r−1 − 1)

−
1

2
(2r−1 − 3)(2r−1 − 2)]

= (2r−1 − 3)(2r−1 − 2)

(ii) ECf (B
i
j) = 2(2r−1 − 3)(2i+1 − 2)

−2[
1

2
(2i+1 − 2)(2i+1 − 3)]

= (2i+1 − 2)(2r − 2i+1 − 3),

for 1 ≤ i ≤ r − 2, 1 ≤ j ≤ 2r−(i+1).
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Fig. 4. Embedding ofRHT (4) into CH4 with dilation 1

Then, by Partition Lemma,

WL(G,H) = (2r−1 − 3)(2r−1 − 2)

+

r−2∑

i=1

2r−(i+1)∑

i=1

(2i+1 − 2)(2r − 2i+1 − 3)

= (
1

3
4r − 2r − 6)r −

61

36
4r + 25× 2r−1.

B. Hypertrees into chord graphs

The chord graph is a powerful topology in the area of
peer-to-peer networks. Thus it is interesting to study the
embedding problems on chord graphs. Further, the chord
graphCHr is isomorphic to the undirected circulant graph
G(2r;±{20, 21, . . . , 2r−1}), r ≥ 2.. Moreover, hypercubes
and generalized hypercubes are subgraphs of chord graphs.
We now prove that hypertree is a subgraph of chord graph,
thereby proving that wirelength of embedding hypertree into
chord graph is the number of edges in the hypertree.

Wirelength Algorithm B

Input : The rooted hypertreeRHT (r) and the chord graph
CHr, r ≥ 3.

Algorithm : Label the vertices ofRHT (r) as follows:
Removal of the horizontal edges in rooted hypertreeRHT (r)
leaves a rooted complete binary treeRTr. Label the vertices
in level 0 and level 1 as 0 and 1 respectively. For1 ≤ i ≤ r,
the children of the vertexx in the level i are labeled as
2i−1 + x and 2i + x. Label the consecutive vertices of
G(2r;±1) in CHr as 0, 1, 2, . . . , 2r − 1 in the clockwise
sense. See Figure 4. Letf(x) = x for all x ∈ V (RHT (r))
and for(a, b) ∈ E(RHT (r)), let Pf (a, b) be a shortest path
betweenf(a) andf(b) in CHr.

Output : An embeddingf of RHT (r) into CHr with
wirelength3× 2r−1 − 4.

Proof of correctness :Label the vertices ofRHT (r) and
CHr using Wirelength Algorithm B. We assume that the
labels represent the vertices to which they are assigned.

Let u be any vertex inRHT (r) with label x. We define
a functiong from V (RHT (r)) to V (CHr) as follows:

g(x) = x.

The functiong is obviously bijective. Letu and v be two
distinct vertices inRHT (r) with labelx andy respectively.
It follows that g(x) and g(y) are the labels of two distinct
vertices inCHr given as follows:

g(x) = x, g(y) = y.

Let the labelsx andy be adjacent inRHT (r). Then|y−x| =
2j for somej, 0 ≤ j ≤ r−1. This impliesg(x) andg(y) are
adjacent inCHr. Hence, the rooted hypertreeRHT (r) is a
subgraph ofCHr. In other words,dil(RHT (r), CHr) = 1.

The following theorem is a consequence of Wirelength
Algorithm B.

Theorem 3.Let G be the rooted hypertreeRHT (r) andH
be the chord graphCHr, r ≥ 3. Then the wirelength ofG
into H is given by

WL(G,H) = |E(G)| = 3× 2r−1 − 4.

IV. T IME COMPLEXITY

In computer science, the time complexity of an algorithm
quantifies the amount of time taken by an algorithm to run
as a function of the size of the input to the problem. An
algorithm is said to take linear time, orO(n) time, if its
time complexity isO(n). Informally, this means that for
large enough input sizes the running time increases linearly
with the size of the input [26]. Linear time is often viewed
as a desirable attribute for an algorithm. Much research has
been invested into creating algorithms exhibiting (nearly)
linear time or better. This research includes both software
and hardware methods. In the case of hardware, some
algorithms which, mathematically speaking, can never
achieve linear time with standard computation models are
able to run in linear time. There are several hardware
technologies which exploit parallelism to provide this. An
example is content-addressable memory. This concept of
linear time is used in string matching algorithms such as
the Boyer Moore Algorithm and Ukkonens Algorithm [26]
In this section, we compute the time complexity of finding
the exact wirelength of embedding circulant networks into
hypertrees using Wirelength Algorithm A. The algorithm is
formally presented as follows.

Time Complexity

Input : The circulant networkG(2r − 2;±{1, 2, . . . , 2r−1−
3}) and ther-dimensional hypertreeHT (r), r ≥ 3.

Algorithm : Wirelength Algorithm A

Output : The time taken to compute the minimum wire-
length of embeddingG(2r − 2;±{1, 2, . . . , 2r−1 − 3}) and
the r-dimensional hypertreeHT (r), r ≥ 3 is O(n2)

Method : We know thatG containsn = 2r − 2 vertices. For
assigning the labels ofn vertices, we spendn time units. By
Wirelength Algorithm A, we have22r−6 + 2r−3 + 1 edge
cuts. For each edge cutCi, 1 ≤ i ≤ 22r−6 + 2r−3 + 1 we
need one unit of time and hence we need22r−6 + 2r−3 + 1
time units. Again for finding the edge congestion onCi,
1 ≤ i ≤ 22r−6 + 2r−3 + 1 we need one unit of time. Further,
we need one unit of time for finding the wirelength by using
Partition Lemma. Hence, the total time is

= n+ 22r−6 + 2r−3 + 1 + 22r−6 + 2r−3 + 1 + 1

= n+ (22r−5 + 2r−2 + 2 + 1)

= 2r(2r−5 + 1 +
1

4
)

< n2 + n

= O(n2)
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Hence the time taken to compute the exact Wirelength of
embedding circulant networks into hypertrees isO(n2).

V. CONCLUDING REMARKS

In this paper we compute the wirelength of an embedding
circulant graphs into hypertrees and hypertrees into chord
graphs. Further, we compute the time complexity of finding
the exact wirelength of embedding circulant networks into
hypertrees and vice-versa. Finding the other parameter such
as congestion of embedding circulant networks into hyper-
trees and vice-versa is under investigation.
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