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Abstract—Recently, the demand for ultra-high definition with
4K and 8K panels has increased. The study in this paper
develops a fast algorithm for detecting wiring defects of glass
substrates, which is based on an analysis done on time series
data obtained through non-contact electronic inspection. New
feature quantities with respect to the frequency domain of time
series data are proposed. To demonstrate the effectiveness of
the proposed algorithm, numerical experiments are conducted
using the real sensing data obtained in the field of glass
substrate inspection.

Index Terms—defect detection, machine learning, glass sub-
strate, time series data, non-contact inspection, frequency-
domain feature

I. INTRODUCTION

RECENTLY, the flat panel industry such as liquid crystal
and organic electro-luminescence has grown. This has

led to an increase in the demand for ultra-high definition with
4K and 8K panels. Increasing products yield rate reduces
the unit price of products while improving productivity.
Therefore, the wiring inspection of glass substrates is one of
the most crucial processes. Hence, recently, the conduction
test of wiring is performed in the middle process. Thereafter,
detected defects are easily and certainly repaired to improve
the product yield rate.

In recent years, the non-contact continuity test of wiring
in the middle process has attracted attention. In non-contact
electrical inspection, the presence or absence and location
of wiring defects are identified by analyzing the change in
time series data of minute voltage obtained by scanning glass
substrates with on inspection jig.

It is necessary that the defect detection of glass substrates
from the inspection field is performed in real time without
giving an erroneous detection. When defects are detected in
the inspection process, it is necessary to capture an image
of the defect after moving the camera to the corresponding
wiring defect. When noise is falsely detected as a defect,
the camera cannot find the defect. Therefore, an error will
appear, and the inspection system will stop. In addition,
there are multiple steps in the production of glass substrates.
Therefore, it is necessary to conduct a continuity inspection
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on the field in real time to avoid waiting during the later
steps.

Although there are several studies in the field of anomaly
detection for defect detection, these studies cannot be ap-
plied, because it needs to be performed in real time.

There are several studies in the field of anomaly detec-
tion for defect detection. The wavelet transform, Fourier
transform, and state-space model are the techniques that
are commonly used in this field [1], [2], [3], [4], [5], [6].
Although there are several techniques, this research needs to
be done in real time and cannot be applied as it is.

In conventional research on contactless electrical inspec-
tion, methods for discrimination using thresholds [7] and
methods using machine learning [8] have been proposed [9].
Although various waveform types exist depending on the
wiring spacing and the surface roughness of glass substrates,
there have been several waveform types where noise is falsely
detected as a defect by conventional studies [7], [9].

In this study, we propose new feature quantities focusing
on the frequency domain of time series data obtained from
non-contact electrical inspection of glass substrates and fast
detect defection algorithm of glass substrates by machine
learning. In addition, we compare data with several conven-
tional methods using the real inspection data and verify the
usefulness of the proposed method.

II. INSPECTION DATA ACQUISITION METHOD AND
CONCEPT OF DEFECT DETECTION

This section describes glass substrates electrical inspec-
tion and defect detection on glass substrates. Section II-A
describes the method for non-contact inspection of glass
substrates. The concept of finding defects from the obtained
inspection data will be explained in Section II-B. Section
II-C describes the effects of false detection in the detection of
defects on glass substrates. Section II-D shows conventional
research on defect detection of glass substrates.

A. Non-contact electrical inspection of glass substrates

As the wiring in glass substrates is a conductor such
as aluminum or silver, the non-contact inspection can be
contacted based on the principle of parallel plate capacitors.
As shown in Fig. 1, time series data of minute voltages can
be obtained by scanning glass substrates with the inspection
jig.

The minute voltage data in the inspection is represented
as time series data shown in Fig. 2.
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Fig. 1. System configuration diagram of non-contact electric inspection([7])

Fig. 2. Waveforms obtained from non-contact electrical inspection

B. Defect detection from minute voltage data

If there are defects such as a wire break, the amplitudes of
waveforms of part corresponding to defects are larger than
the peripheral part in the time series data of minute voltage.
The most basic idea of defect detection is to set a threshold
as shown in Fig. 3, and subsequently then to determine the
part whose voltage is over the threshold as a defect.
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Fig. 3. Defect detection by setting a threshold

As shown in Fig. 4, it may be difficult to set an appropriate
threshold. For example, in Fig. 4, the left part whose voltage
is over the threshold is falsely detected as a defect although
it is noise.
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Fig. 4. Example of detection error

In addition, as shown in Fig. 5, various types of inspection
data with trend or periodicity can be obtained in the field
of glass substrates inspection. Therefore, defects and noise
cannot be determined correctly only by setting a threshold
to the obtained data.

Fig. 5. Various waveform types of inspection data

C. The importance of suppressing false detection

One of the goals of this study is to reduce false detection
in the electrical inspection of glass substrates. The reason for
this is that if false detection occurs frequently, the inspection
system will stop temporarily and the inspection efficiency
would decrease. When defects are detected in the inspection
process, it is necessary to capture an image of the defect
after moving the camera to the corresponding wiring defect.
When noise is falsely detected as a defect, the camera
cannot find the defect. Therefore, an error will appear and
the inspection system will stop, leading to a decrease in
inspection efficiency.

D. Issues in conventional research

This section shows conventional research. First, II-D1
and II-D2 will describe research on defect detection using
time series data obtained from contact electrical inspection.
Finally, the studies on general defect detection are described
in II-D3.

1) Defect detection method using the threshold:
Hamori et al. [7] proposed a method to detect defects

by setting a threshold after repeating the following three
steps: (1) difference value calculation, (2) minute change
emphasis, and (3) spike noise smoothing. Their method is
effective when compared to the basic idea presented in
Section II-B. However, their method often misses a type of
defects where the wiring is about to be cut. In addition, there
are problems where their method is difficult to cope with
various inspection data. Moreover, it is difficult for operators
to set an appropriate thresholds through experience and trial-
and-error.

2) Defect detection method using machine learning:
Wakamatsu et al. [9] proposed a new defect detection

algorithm to solve the problem of Hamori et al. [7]. It became
possible to detect defects for various types of inspection
data, including types with minor changes that could not be
detected by the study of Hamori et al.. Wakamatsu et al.
proposed a “trend removal by using moving average curve
method”. Moreover, Wakamatsu et al. constructed a defect
detection algorithm based on machine learning using newly
proposed “Z score” and “Isolations” feature quantities to
emphasize small changes.

Although some of the problems of the study of Hamori
et al. [7] have been solved, it has been observed that
depending on the type of waveform, defect detection cannot
be performed correctly. One of the reasons for this is that
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moving average curves do not fit well with some waveform
types, as the feature of various waveform data cannot be
captured.

3) General-purpose defect detection algorithm:
In the field of anomaly detection including defect detection

[1], [2], [3], [4], [5], [6], there are several kinds of researches
such as the method of a state space model, and density ratio
estimation, along with methods based on signal processing
techniques such as empirical mode decomposition and sin-
gular spectrum transformation. Although there are various
conventional studies, these studies are computationally slow
and cannot be applied directly to this study.

As one of the algorithms specialized for anomaly detec-
tion, an isolation forest (IF) [10] based on ensemble learning
using a decision tree has been proposed. In this study, we
use it as a comparison method in the numerical experiments
described later.

III. PROPOSED DEFECT DETECTION ALGORITHM

In this research, based on the problems of conventional
research, we improve the trend removal methods and propose
new feature quantities used for machine learning. Moreover,
we propose an algorithm to detect defects of glass substrates
wiring in real time with higher accuracy than the conven-
tional method.

First, the details of the feature quantities used for trend
removal will be described in Section III-B. Subsequently,
the detail of trend removal algorithm is explained in Section
III-C. Finally, the details of feature quantities and machine
learning used for defect detection will be presented in section
III-D.

A. Outline of proposed defect detection algorithm
The outline of the algorithm proposed in this study is

as follows. At this time, Xt, t = 0, 1, 2, . . . ,m is the
voltage signal data obtained by non-contact electrical in-
spection. Frequency domain G(k), k = 0, 1, 2, . . . ,m − 1
is obtained by applying a fast Fourier transform (FFT) to
Xt. Furthermore, the time series data after trend removal
is X ′

t, t = 0, 1, 2, . . . ,m. Frequency domain G′(k), k =
0, 1, 2, . . . ,m− 1 is obtained by applying FFT to X ′

t.

Step 1 Calculate the “number of trend change” from Xt.
Step 2 From Xt, calculate the “average number of data

contained between peak points [9]”.
Step 3 Calculate the “crest factor of the frequency domain”

from G(k).
Step 4 Do trend removal using feature quantities obtained

in Steps 1, 2, and 3.
Step 5 Calculate the “Z score [9]” and the “Isolations [9]”

from X ′
t.

Step 6 Calculate the “Z score of the frequency domain”
from G′(k).

Step 7 Machine-learned defect detection is performed us-
ing the feature quantities obtained in Steps 5 and
6.

Steps 2 and 5 are almost the same as in the conventional
research [9]. Hence, the explanations of these steps have been
omitted.

B. Feature quantities used for trend removal

In the conventional trend removal method [9], the calcu-
lated moving average curve could not identify the waveform
change of the minute voltage signal. There were cases where
defect detection could not be performed due to these reasons.
Therefore, we propose new feature quantities “the number of
trend changes” in III-B1 and “the crest factor in the frequency
domain” in III-B2 to improve the trend removal method.

1) Number of trend changes(Tr):
The details of Step 1 in the defect detection algorithm

shown in Section III-A are given below.
As shown in Fig. 5, it can be seen that the frequency,

presence or absence of the trend, and the number of changes
in the trend differ depending on waveform types. It is
possible to identify the difference in frequency by the “av-
erage number of data between extremes” and “proportion of
extremes” proposed in the previous research.

However, the previous research by Wakamatsu et al. [9]
was not able to identify the trend and the number of changes.
Therefore, in this study, we propose the “number of trend
changes” that calculates the change from rising to falling or
the opposite of the waveform that occurs.

The details of Step 1 in the defect detection algorithm
shown in Section III-A are given below.

Step 1-1 The exponential smooth moving average St(θ)
of the time series data Xt of the minute voltage
signal is calculated by Eq. (1).

St(θ) = θXt−1 + (1− θ)St−1(θ), (1)

where θ is an exponential smoothing parameter that
satisfies 0 ≤ θ ≤ 1 and S1(θ) = X1.

Step 1-2 The difference between the exponential smooth
moving average for two different exponential
smoothing parameters is calculated using Eq. (2).

DSt(θ, θ
′) = St(θ)− St(θ

′), (2)

where θ and θ′ are exponential smoothing parame-
ters.

Step 1-3 The exponential smooth moving average
Ut(θ, θ

′, θ′′) of DSt(θ, θ
′) is calculated by Eq.(3).

Ut(θ, θ
′, θ′′) = θ′′DSt−1(θ, θ

′)

+ (1− θ′′)Ut−1(θ, θ
′, θ′′), (3)

where θ, θ′ and θ′′ are exponential smoothing
parameters, and U1(α) = DS1(θ, θ

′).
Step 1-4 Calculate Eq.(4).

STr0 = {t | DSt(θ, θ
′)− Ut(θ, θ

′, θ′′) = 0}

and

Tr = |STr0|, (4)

where |STr0| represents the number of elements in
the set STr0.

DSt(θ, θ
′) calculated in Step 1-2 is an approximate shape

of the trend for the original data Xt (See Fig. 6).
Ut(θ, θ

′, θ′′) calculated in Step 1-3 is a waveform that
tracks the trend of DSt(θ, θ

′) (see Fig. 7). In Step 1-4, the
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Fig. 6. Computation in Step 1-2

number of times the trend switches is calculated by counting
the intersection of DSt(θ, θ

′) and Ut(θ, θ
′, θ′′).

��� �, ��
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Fig. 7. Trend changing points

2) Crest factor of frequency domain(crf)[11]:
The details of Step 3 in the defect detection algorithm

shown in Section III-A are given below.
To properly perform the trend removal method, it is

necessary to consider not only the time domain but also the
features of the frequency domain. In conventional research
[9], feature quantities in the time domain were proposed.
In addition, the “number of trend change” proposed as a
new feature quantity in section III-B1 is also a time domain
feature quantity.

First, the necessity of the feature quantities based on the
frequency spectrum is explained. In Fig. 8, the number of
trend change in the two waveforms is almost equal. While
the wave component of the specific cycle is seen in waveform
Type A, the wave component having various cycle is mixed
in the waveform Type B. Therefore, it is necessary to make
the average interval value smaller for Type B when compared
to Type A. However, if only the number of trend changes
is used as the feature quantity trend removal cannot work
properly, because the move average interval values of Types
A and B are almost equal.

Based on the above-mentioned considerations, the details
of Step 3 in the defect detection algorithm shown in Section
III-A are as follows.

Step 3-1 For Xt, calculate the frequency spectrum G(k)
by FFT.

Step 3-2 The crest factor of G(k) is calculated by Eq. (5).

crf =
G(k)max

G(k)real
, (5)

where G(k)max and G(k)real are the maximum and
effective values of G(k), respectively, and they are

���� �

������

Fig. 8. Two inspection data having almost equal number of trend changing
points

defined by the following equations.

G(k)max = max
k=1,...,m−1

G(k),

G(k)real =

√√√√ 1

m− 1

m−1∑
i=0

G(i)2.

In Step 3-1, the frequency spectrum is calculated by FTT
for minute voltage signal data (See Fig. 9).

���� �
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Fig. 9. Frequency spectrum of two inspection data

The crest factor calculated in Step 3-2 represents the
sharpness of the maximum value in the frequency spectrum.
The higher this feature quantity, the stronger is the influence
of the wave component of the specific cycle. In Fig. 7, the
crest factor of Type A is larger than that of Type B.

C. Trend removal algorithm

In this research, we consider a new trend removal method
using the trend change number and the crest factor of the
frequency component proposed by Eqs (4) and (5). The
details of Step 4 in the defect detection algorithm shown
in Section III-A are as follows.

Step 4-1 Calculate the move average interval values
f(Tr,Ave bp, crf) using the following formula,
assuming the number of trend changes (Tr), the
number of data contained between peak values
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(Ave bp), and the crest factor (crf ).

f(Tr,Ave bp, crf) = α·Tr+β ·Ave bp+γ ·crf,

where α, β, and γ are weighting parameters for
each feature quantity.

Step 4-2 The moving average curve is calculated using the
interval values obtained in Step 4-1.

Step 4-3 The absolute values of the difference between
the original data and its move average curve are
calculated, and the top peak point is extracted to
obtain time series data.

Step 4-4 Calculate the move average curve of time series
data obtained in Step 4-3. Repeat the steps from
Step 4-1 to Step 4-4 η times.

D. Feature quantities and machine learning algorithms used
for defect detection

The details of Steps 6 and 7 in the defect detection
algorithms shown in Section III-A are given below.

Step 6-1 For X ′
t, calculate the frequency spectrum G′(k)

by FFT.
Step 6-2 Calculate the Z score of G′(k) obtained in Step

6-1.

F (k) =
G′(k)− µ

σ
, (6)

where µ and σ represent the mean and standard
deviation of G′(k), respectively.

There are three feature quantities used for machine learn-
ing in Step 7 of the defect detection algorithm shown in
Section III-A. The first and second are the “Z score” and
the “Isolations” of Xt obtained in Step 5 of Section III-A.
The third is F (k) obtained in Step 4 of Section III-A. In
this study, we investigate a support vector machine (SVM),
the k-nearest neighbor method (k-NN), gradient boosting
(XGBoost), the random forest (RF), and the isolation forest
(IF).

IV. EXPERIMENT

We confirm the effectiveness of the proposed method in
this research. The actual data (238 waveform data) obtained
from the field of the inspection process of glass substrates
were used for the experiment. The values of parameters were
θ = 0.016, θ′ = 0.007, θ′′ = 0.021, α = 0.90, β = 0.50,
γ = 0.90, η = 3.

The programming language used for implementation is
Python 3.65, and the operating environment is CPU: Core
i5-6400, RAM: 16.0 GB, OS: Windows 10. For machine
learning programs, we used the Python libraries scikit-learn
ver. 0.201 and XGBoost ver. 0.81.

The total inspection data was 495.16 s, and about 2.08
s per waveform data until the calculation of the feature
quantities used for machine learning was completed.

A. Comparison experiment with conventional method

Table I shows the results of comparative experiments of
conventional method [7] and the proposed method with k-
NN (k = 13). It is necessary to set the threshold in the
conventional method of Hamori et al.. We performed the
comparison using two indicators of true positive rate and
false positive rate for several different thresholds.

TABLE I
COMPARISON OF PERFORMANCE OF THE PREVIOUS ALGORITHM[7] AND

THE PROPOSED ALGORITHM

Threshold defect detection[7] k-NN
Threshold 4.0× 10−5 8.0× 10−5 1.2× 10−6 1.6× 10−6 2.0× 10−6

True Positive Rate(%) 91.0 84.6 82.9 80.2 79.1 81.4
False Negative Rate(%) 70.5 63.9 60.9 58.8 56.9 5.09× 10−5

As listed in Table I, with the conventional method of
Hamori et al. [7], the True Positive Rate is high at any
threshold, and defects can be detected with high accuracy. In
contrast, the false positive rate is as high as approximately
60%. Therefore, in several cases, noises are falsely detected
as defects.

When the threshold is set to 1.2× 10−6 and 1.6× 10−6,
although the True Positive Rate of the conventional method
is equal to k-NN, there is a large difference in False Positive
Rates. The proposed method is shown to be an excellent
method to detect defects with high accuracy while minimiz-
ing false detection.

B. A comparative experiment on the trend removal method

When the conventional trend removal method was applied,
the defects in 22 waveforms out of 238 waveform data could
not be detected. In contrast, applying the detrending method
proposed in this research could reduce 22 waveforms to 9
waveforms. An example of the improvement is shown in Fig.
10 below.

���������	�

Fig. 10. Example of data containing defects
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Fig. 11. Result of trend removal by the previous study[9]

In Fig. 10, there are two changes corresponding to the
defect. When the trend removal method of conventional

Proceedings of the World Congress on Engineering and Computer Science 2019 
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019



���������	�


��	�
���
��	�

Fig. 12. Result of trend removal by the proposed method

research was used (See Fig. 11), the change corresponding to
the defect on the right was small and could not be detected
as a defect. However, in the proposed trend removal method
(See Fig. 12), the change corresponding to the defect on the
right side became clear and could be detected correctly as a
defect.

C. Experiment on Machine Learning Algorithm and Influ-
ence of Parameters

In this study, hyperparameters of machine learning algo-
rithms such as SVM, XGBoost, RF, and IF are set to be
default values of the Python libraries scikit-learn ver. 0.201
and XGBoost ver. 0.81. We use four evaluation metrics: (1)
Accuracy, (2) Precision, (3) Recall, and (4) F-measure. In
addition, we examined the validity of the model using cross
validation with a division number of 9.

1) Comparison result of machine learning algorithm:
Table II shows the comparison results of applying the

machine learning algorithm. Notably, k = 13 is set for k-NN.

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT MACHINE-LEARNING

ALGORITHMS

SVM XGBoost RF IF k-NN
Accuracy(%) 99.9 99.9 99.9 99.9 99.9
Precision(%) 87.4 79.1 50.4 0.4 90.4

Recall(%) 79.8 76.2 82.1 100 81.4
F-measure(%) 79.5 78.0 77.1 0.8 82.4

As listed in Table II, the Accuracy, Precision, and Recall
of k-NN (k = 13) are well-balanced compared to other
methods, and the F-measure, which is the overall judgment
index, is the highest.

2) Parameter setting in k-nearest neighbor method:
Table III lists the results when the value of k is changed in

order to investigate the influence of the value of k on k-NN.

TABLE III
PERFORMANCE COMPARISON OF k-NN WITH DIFFERENT PARAMETER k

k = 1 k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15
Accuracy(%) 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
Precision(%) 76.2 82.0 86.2 88.4 88.4 89.1 90.4 89.6

Recall(%) 80.0 81.4 80.0 81.4 82.1 82.1 81.4 80.7
F-measure(%) 78.6 83.2 83.0 84.6 82.1 82.4 82.4 84.6

In Table III, judging from the F value, the best results
were obtained when k = 11, 13. In addition, except for the
case of setting k = 1, the F-measure is stable above 83% in

all cases, and the proposed method shows desirable results
from the viewpoint of robustness.

V. CONCLUSION

In this research, we have proposed feature quantities of
frequency components and the trend removal method based
on a new move average interval value calculation method.
Furthermore, we have constructed a fault detection method
based on machine learning. In addition, experiments were
conducted using glass substrate inspection data of the field.
Moreover, performances were compared by applying mul-
tiple machine learning algorithms. The experimental results
show that the k-nearest neighbor method is excellent not only
in detecting defects on glass substrates with higher accuracy
than conventional methods [7] but also in the inspection field
in terms of improving inspection efficiency.

As future work, we will verify the effectiveness of the
proposed method using additional inspection field data. In
addition, we will consider the proposal of a new feature
quantities and trend removal algorithm using frequency com-
ponents to further enhance defect detection accuracy.
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