
Classification Problems with Unequal Error Costs
- Performance of Selected Global Optimization

Algorithms
Andrzej Z. Grzybowski, Member, IAENG

Abstract—In the paper, an ordinal classification problem with
unequal costs of different classification-error-types is considered
in the case where the number of classes is greater than 2. It is
assumed that each type of classification errors has its specific
cost (weight), and the total cost characterizing a given classifier
is defined as the expected value of the cost of the classification
result. An optimal classifier would be the one that minimizes
such a total cost. Thus to find an approximate solution for such a
classification problem it is proposed to use Global Optimization
(GO) algorithms. The performance of several different types of
GO algorithms as tools for solving such a task are compared via
computer simulations. The results of simulation experiments are
presented and discussed in the paper. Some remarks about the
impact of the cost matrix on the probabilities of classification
errors related to the developed classifiers are stated as well.

Index Terms—ordinal classification, classification error costs,
stochastic search, evolutionary learning.

I. INTRODUCTION

CLAssification problems consist in identifying the most
probable class c an instance v (usually represented by

its feature vector x) belongs to. Classification problems are
at the core of the field of machine learning (ML). They have
been researched intensively over the last decades. In litera-
ture, one can find great many different classifiers developed
under different assumptions about the classification problems
as well as by the adoption of different learning algorithms,
e.g. [5], [2]. However, after studying many classification
problems of different types and of various underlying nature,
it is clear to the machine-learning community that there is
no single classification algorithm that is superior with all
respects and for all datasets [9], a conclusion analogous to
famous no free lunches theorem in the theory of stochastic
search and optimization [7]. On the other hand, it appears
that some learning algorithms outperform others for some
specific problems and/or types of data.

In this paper we focus on the ordinal classification prob-
lems, i.e. problems where the class label (target variable)
takes on values in a set C = {c1, . . . , ck} of categories that
exhibit a natural ordering. We consider multiclass problems,
it is the case where the number k of classes is greater
than 2. Then we have k(k− 1) different classification errors
with, possibly, different consequences. Thus we assume that
to each of these errors it is assigned its specific error-
cost (weight) that represents the importance of its negative
repercussions. An index of performance of a classifier is
defined as the expected value of the classification-result-cost,

Manuscript received June 19, 2019; revised July 16, 2019.
A.Z. Grzybowski is with the Institue of Mathematics, Faculty of Mechani-

cal Engineering and Computer Science, Czestochowa University of Technol-
ogy, Czestochowa, 42-201 Poland, e-mail: andrzej.grzybowski@im.pcz.pl

and the optimal classifier is the one that minimizes this index.
Consequently, the learning algorithms are aimed at finding
a classifier that minimizes such an index on the training set.
However, due to the fact that the optimality criterion cannot
be expressed by any closed-form-mathematical expression
and the value of the criterion can only be evaluated for
each specific classifier separately, the minimization problem
cannot be solved directly. What is more, it implies that when
looking for the expected cost minimum we have to confine
ourselves to gradient-free optimization methods. Thus in
presented studies global optimization (GO) methods that are
based on the idea of the stochastic search are proposed
to cope with such a task. These methods require only
few assumptions about the underlying objective functions -
they have the so-called ”black box” character, see [7], [8].
Evolutionary techniques have been employed to solve various
specific classification problems and related tasks, [12], [2],
[5]. In this paper we use computer simulations to study the
performance of some popular stochastic global optimization
methods as learning tools for some specific type of ordinal
classification problems. We focus here on the following GO
techniques: the genetic algorithms, evolutionary search with
soft selection and simulated annealing. Some remarks about
the impact of the error-cost-matrix on the probabilities of a
particular error occurrence are formulated as well.

The paper is organized as follows. In Section 2 the
specific type of classification problems considered in this
paper is introduced formally. Section 3 provides us with the
description of considered gradient-free GO algorithms. The
simulation framework for our experiments as well as the
simulation results with discussion are presented in Section
4. The paper is concluded with final remarks and comments.

II. PROBLEM FORMULATION

Let xi = (xi1, . . . , xin) ∈ X ⊂ Rn, i = 1, . . . , N ,
be feature vectors related to the observed instances, while
yi ∈ C = {c1, . . . , ck} their true (known) class labels. As we
have mentioned above, it is assumed that the categories are
naturally ordered, i.e. there exists natural ordering relation
≤ such that cj ≤ cl if and only if j ≤ l (for example it
may be any preference relation well-defined on the class-
categories). The set TS = {(xi, yi), i = 1, . . . , N} is called
a training set. Any measurable mapping g : X → C is
called a discrete classifier. Apart from discrete classifiers
one can also consider a scoring classifier. Scoring classifiers
are real functions f defined on X . Such classifiers yield
numeric values s that represent the conditional probabilities
P (Ci|s = f(x)) that an instance with feature vector x

Proceedings of the World Congress on Engineering and Computer Science 2019
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019

belongs to class Ci given its score value s. In considered
multiclass case with assumed above ordering relation on C,
the values of any reasonable scoring classifiers need to satisfy
the following monotonicity condition (MC):

If
i < j and P (Ci|s1 = f(x1)) < P (Cj |s1 = f(x1))

then
P (Ci|s2 = f(x2)) < P (Cj |s2 = f(x2))

for any x2 such that s1 < s2. :

Such a scoring classifier f can be used with a given vector
of thresholds (t0 = −∞, t1, . . . , tk−1, tk = ∞) to produce
a discrete classifier g:

g(x) = Ci if and only if ti−1 < f(x) ≤ ti (1)

It is obvious that in real-world problems the misclassifi-
cation errors are unavoidable. It is also well understood that
there are many problems where various kinds of classification
errors have consequences of significantly different impor-
tance. It can be observed in such areas as medical diagnosis,
finance/banking security, in classification of construction
elements according their structural properties etc. In all such
cases these differences should be reflected in the overall cost
of classification process. Let dij , i, j = 1, . . . , k, denote the
situation (an event) where an instance represented by the
feature vector x is classified as ci while its true class is cj .
Obviously the events dii represent the correct classifications,
while dij , i 6= j, represent classification errors. Let us also
consider a matrix W = [wij], the elements of which repre-
sent the weights that reflect the importance of related events
dij . Let additionally Pr = [pij] denote a matrix with the
elements pij being the probabilities of events dij . Obviously
these probabilities depend on the adopted classifier g. Thus
the total cost of any classifier g is given here by the following
formula:

TC(g) =
∑
i6=j

pijwij −
∑
i

piiwii (2)

The total cost given by (2) consists of two parts. The first
sum reflects the expected loss related to misclassification
errors, whilst the second one represent the expected bene-
fits that result from the correct classification. The optimal
classifier would be the one that minimizes this total cost.
Obviously such a classifier cannot be found without precise
knowledge about the matrix Pr. However to obtain an ap-
proximate solution, for any given classifier we can estimate
this matrix on the basis of the training set TS. The process
of finding the minimum of the functional (2) based on the
training set TS is called classifier learning process, and the
algorithms used for this purpose are frequently called the
learning algorithms.

In our study we confine ourselves to discrete classifiers g
that are based on the scoring linear classifiers, i.e. f(x, α) =
x.αT ,∈ Rn. Consequently, our aim is to find vectors α ∈ Rn

and t ∈ Rk−1 such that classifier g given by (1) minimizes
the functional (2) estimated on the basis of the given training
set TS. For simplicity, any of these classifiers g will be iden-
tified with the corresponding vector z = (α, t) ∈ Rn+k−1.
As candidates for the learning algorithms we consider GO
ones described in the next section.

III. GRADIENT-FREE GLOBAL OPTIMIZATION
ALGORITHMS

Evolutionary methods (EM) are perhaps the most popular
search methods used for the global optimization tasks. All
EM algorithms are computer-based approximate representa-
tions of natural evolution. In these types of algorithms the
population (of potential solutions) is changed/transformed
during a sequence of generations according to stochastic
analogues of the natural processes of evolution. The EM
algorithms are divided into two main groups: genetic algo-
rithms and evolutionary programming methods, [7]. Genetic
algorithms (GAs) are a subclass of evolutionary algorithms
where the elements of the search space are binary strings in
this theory called genotypes or chromosomes. The genotypes
are used in the reproduction operations while the values
of the objective functions (so-called fitness) are computed
on basis of the phenotypes in the original problem space
which are achieved by the genotype-phenotype mapping. The
version of this algorithm implemented in our learning process
can be described as follows, [3]:

Let z = (α, t) ∈ Rn+k−1

•Step 0 (Initialization) Set the initial parent population of
K vectors zi ∈ Rn+k−1 , i = 1, 2, . . . ,K.

Step 1 Assign to each vector zi, i = 1, . . . ,K, its fitness
i.e. the value of the criterion F (zi).

Step 2 Select with replacement K parents from the full
population. The parents are selected with probabil-
ity proportional to the their fitness.

Step 3 For each pair of parents identified in Step 2, per-
form crossover on the parents chromosomes at a
randomly (uniformly) chosen splice point.

Step 4 Replace all K parent-chromosomes of current
parent-population with the chromosomes of current
offspring-population from Step 3. Then mutate the
individual bits with uniform probability.

Step 5 Compute the fitness values for the population of
N phenotypes corresponding to new chromosomes.
Terminate the algorithm if the stopping criterion is
met; else return to Step 2.

Step 6 Return the so far best generation and the fitness of
its elements

In difference to the GAs, the evolutionary programming
methods (EP) operate directly with the floating-point repre-
sentations. In evolutionary programming, a solution candi-
date is thought of as a phenotype (specimen) itself. Thus,
selection and mutation are the only operators used in EP
and recombination (crossover) is usually not applied. There
are various implementations of this idea in literature. In
our simulations the performance of the so-called algorithm
of the evolutionary search with soft selection (ES) was
examined. The algorithm implemented in our simulations is
the following:
•Step 0 (Initialization) Set the initial parent population of

K vectors zi ∈ Rn+k−1 , i = 1, 2, ,K.
Step 1 Assign to each vector zi, i = 1, ,K, its fitness i.e.

the value of the criterion F (zi).
Step 2 Select a parent v by soft selection i.e. with proba-

bility proportional to the its fitness.
Step 3 Create a descendant w from the chosen parent v

by its random mutation: w = v + U , where U

Proceedings of the World Congress on Engineering and Computer Science 2019
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019

is a random n-dimensional vector with coefficients
having expected value equal to zero and given
standard deviation.

Step 4 Repeat steps 2 and 3 for K times to create a new
K-element generation of n-dimensional vectors (so-
called descendants)

Step 5 Replace the parent population with the descendant
population

Step 6 Repeat the 1 to 5 steps until the stopping criterion
is met

Step 7 Return the so far best generation and the fitness of
its elements

In our study any specimen from the current population
(generation) is selected as a parent (Step 2) with probability
proportional to its relative fitness RF given by the formula:

RF (x) = 90
F (x)− Fmin

Fmax − Fmin
+ 10

If the Fmax = Fmin, than these probabilities are the same
for each elements of the population.

The third method adopted in our studies is the Simulated
Annealing Algorithm (SA). It is perhaps historically first
global optimization method based on stochastic search idea.
It was developed by Kirkpatrick in the early 1980s although
the main idea was introduced by Metropolis in 1953, [7].
In difference to the previously described EMs, this class of
algorithms does not use any biology-inspired mechanisms.
Instead, the underlying idea is adapted from material science.
Annealing is a heat treatment of material with the goal of
altering its properties such as hardness. Metal crystals usually
have some small defects which weaken its overall structure.
By heating the metal, the energy of its ions and, thus, their
diffusion rate is increased. Then, their dislocations can be
destroyed and the structure of the crystal is reformed as the
material cools down and approaches its equilibrium state.
When annealing metal, the initial temperature must not be
too low and the cooling must be done sufficiently slowly so
as to avoid the system getting stuck in a meta-stable, non-
crystalline, state representing a local minimum of energy.

For the global optimization purpose the idea can be
implemented in various ways. The algorithm implemented
in our studies is as follows, see e.g. [7], [3]:
•Step 0 (Initialization) Set an initial temperature T and

initial solution z = zcurr; determine the criterion
value FC = F (zcurr)

Step 1 Relative to the current value zcurr, randomly de-
termine a new value of znewR

n, and compute
FN = F (znew)

Step 2 Let d = FN − FC. If d < 0 accept znew;, else,
accept znew only if a random variable U having
the uniform p.d. on the interval [0,1] satisfies
U < exp[−d/T]. If znew is accepted then zcurr
is replaced byznew ; else zcurr remains as is.

Step 3 Repeat steps 1 and 2 for given number KT times.
Step 4 Lower T according to the annealing schedule and

return to Step 1. Continue the process until the
stopping criterion is met.

Step 5 Return the best solution zb found during the cool-
ing process and the value F (zb)

During the simulation process the initial ”temperature”
T decays geometrically in the number of ”cooling phases”.

Specifically, in our simulations the new temperature is related
to the old temperature according to Tnew = 0.7Told. Another
area for different implementations is in step 1, where znew is
generated randomly. In this study it was generated according
the formula znew = zcurr + U, where U is a random n-
dimensional vector with coefficients having expected value
equal to zero and given standard deviation s, the latter starts
with value 0.4 and decays during the simulation process
similarly as the temperature.

It is worth noticing here that the simulated annealing
algorithm is designed for minimization tasks, while the previ-
ous two methods are designed directly for the maximization
ones. Thus the fitness function used in our implementation
of the GA and ES is defined as F (g) = A − TC(g) .
In the SA, the fitness F is given by the opposite values.
To make all the results comparable, the SA returns −F (g)
as the best fitness value found by the SA algorithm, see
the step 5 in its description. In our experiments constant
A=1 to assure positivity od F . For any given problem it
is likely that the performance of one algorithm will be
superior to others. However, it is rarely possible to know
a priori which algorithm is superior. Famous No Free Lunch
theorems state that when averaging over all optimization
problems all search algorithms work the same (i.e., none
can work better than a blind random search),[7]. This remark
also concerns the learning algorithms, see [9]. On the other
hand the NFL theorems do not address the performance of
a specific algorithm applied to a specific class of criterion
functions. They compare the performance of algorithms
over all problems, where each problem can be considered
equally likely. It is well known however, that for some
specific types of problems some algorithms may perform
extremely well, while other perform very poorly. Indeed,
some literature reports that evolutionary techniques has been
successfully applied in various classification tasks and related
more specific problems, [2], [12], [11], [1], [10], [13].

One of our goals here is to determine which of the above
introduced algorithms (if any) is superior in learning the
classifiers (1) under the criterion given by (2).

IV. SIMULATION FRAMEWORK AND RESULTS

To compare the performance of the considered GO meth-
ods as learning algorithms in problems described in Section
2, we need sufficiently many different training sets, such
that each of them is large enough for proper estimation of
the matrix Pr. Given any fixed training set, the total cost
TC(z) of any fixed classifier z = (α, t) can be estimated
easily, by the estimation of the probabilities pij , see (2). The
estimated value of TC(z) will be assumed as the fitness
F of the vector z (i.e. the classifier) in the considered GO
algorithms. In our studies the training sets are generated
randomly within the simulation framework. For this purpose
the simulation procedure chooses the number of classes k,
the dimension n of the feature vector X as well as its random
realizations xi = (xi1, . . . , xin) ∈ Rn, i = 1, . . . , N . Then
a coefficient vector α is generated in random, and the values
yi = xi · αT are computed. The latter values are arranged
in ascending order according to their magnitude, and then
split into k separate classes of random length. These classes
are labeled as 1, 2, . . . , k, successively. Consequently, to each
feature vector xi , a label ci from C = 1, 2, . . . , k is assigned,

Proceedings of the World Congress on Engineering and Computer Science 2019
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019

and the classes exhibit the required natural ordering. The set
of vectors (xi, ci) ∈ Rn+k−1, i = 1, , N , forms (random)
training set TS for our simulation experiment.

For any generated TS we use the learning algorithms
described in Section 3. The results we are interested in are

- the approximated minimal costs TC associated with the
best classifier learned by a given learning algorithm and

- the corresponding ”best” matrix Pr.

The former is used for direct comparisons of the best
classifiers found by adopted learning approaches, while the
latter contains detailed information about the probabilities of
successful classifications as well as the probabilities of any
specific classification errors.

It is well known that these results depend on the specific
implementation of the GO algorithms, especially on the
number of elements in populations and on the assumed
number of the subsequent generations. Thus, to assure some
kind of objectivity of the comparisons, in our experiments
the total number of calculations of the fitness-function-values
is fixed, and for each of these algorithms it equals 300000.
For each fixed numbers k and n the performance of the
algorithms are compared under various types of the weight
matrices W. All these matrices are normalized to 1, then for
each of them the experiments are repeated for 30 different
TS and next the results are averaged. In every experiment the
initial population (or initial element in the SA algorithm) is
assumed as the set of classical discreet regression classifiers
(RC), so each element in the initial population is the same.
The regression classifiers are also used as the reference
classifiers in our studies, i.e. we compare their character-
istics (such as the total cost or probabilities of successful
classification) with the ones related to the considered GO
classifiers. Table I summarizes the results.

It can be seen that the GA outperforms all other considered
algorithms - its total cost is the least one in every studied
case. Moreover, although it was not the main purpose of the
learning, the probabilities of correct classification (PrS) are
the highest ones and they are very close to 1 in the examined
cases. The symbol RI stands for the relative improvement of
the latter characteristic (with respect to the RC) and its value
is presented in the last column of the table.

Now let us turn our attention to the issue of the dependence
between the weight matrices and the resulting matrices of
probabilities Pr of the correct/incorrect classifications. As
we know in general the elements on the principal diagonal
in Pr, as being the probabilities of correct classification,
should be close to 1, and all the remaining ones should
be close to 0, as probabilities of misclassification. However,
if the misclassification errors have different costs than it is
important, that these errors which are - say - more dangerous
would actually occur with smaller probabilities than others.
It should be achieved by proper choice of the weight matrix
W. In order to verify whether or not the elements of the
weight matrix W do really impact the resulting probability
matrix Pr, a number of different weight matrices W were
assumed in the experiments. Let us look a little bit closer
into several interesting examples.

So, first let us consider case where the number of classes
is k = 4 and the weight matrix W1 is the following.

TABLE I: Average results simulated under various asymmet-
ric weight matrices W. Considered GO learners are the GA,
ES and SA, as defined in Section 2. A reference classifier is
the regression one, it is labelled as RC. The BS stands for
the random blind search

Learning algorithm F PrS RI
k=3,

RC 1.31 0.82 -
ES 1.33 0.84 2.0%
GA 1.41 0.97 18.8%
SA 1.33 0.72 -12%
BS 1.28 0.75 - 15%

k=4
RC 1.18 0.73 -
ES 1.20 0.77 5.0%
GA 1.26 0.94 30.2%
SA 1.19 0.73 0.1%
BS 1.15 0.64 - 12%

k=5,
RC 1.09 0.61 -
ES 1.12 0.67 10.2%
GA 1.17 0.87 42.0%
SA 1.12 0.67 10%
BS 1.09 0.56 - 9%

W1 =
1

14

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

1 0.9 1.8 2.7
0.1 1 0.9 1.8
0.2 0.1 1 0.9
0.3 0.2 0.1 1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

The above matrix is normalized to 1 (we use the normalizing
constant 1/14). We present it in such a form to make it easier
to note that the weights related to the errors dij , see Section
II, are the greater, the greater is the value of j − i. So, it
reflects the case where the classification of a given instance
to the class that is higher than the one it actually belongs to
is more costly (dangerous) than the erroneous classification
to a lower class. Now let us look at the matrices Pr related
to best classifiers learned by the considered GO algorithms
(these algorithms are indicated in the subscript of the matrix
symbol) .

PrES =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
0.27777 0. 0. 0.
0.72222 0.65644 0.05 0.

0. 0.34356 0.74375 0.04878
0. 0. 0.20625 0.95122

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

PrGA =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

0.94444 0.02454 0. 0.
0.055556 0.87730 0.0125 0.

0. 0.09816 0.9125 0.
0. 0. 0.075 1.

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

PrSA =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
0.22222 0. 0. 0.
0.77778 0.68711 0.03125 0.

0. 0.31288 0.725 0.02439
0. 0. 0.24375 0.97561

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

We see that all learning algorithms ”react” properly for the
introduced weights of errors - the probabilities of erroneous
classification to a lower class, i.e. pij , i > j are signifi-
cantly greater than the probabilities related to the opposite-
misclassification-errors, that are assumed to be more costly.
And again, in this example the GA algorithm is the best with
respect to this feature.

Proceedings of the World Congress on Engineering and Computer Science 2019
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019

Similar in spirit results we obtain in the case where the
weight matrix is the transposition of the above one - obvi-
ously, this time the probabilities of erroneous classifications
to higher classes are the greater ones. To save the article
space we omit here the presentation of the corresponding
matrices Pr related to best classifiers obtained by our
learning algorithms.

Our last example concerns the importance of weights
assigned to correct classifications, i.e. the role of the diagonal
elements wii, i = 1, . . . , k in the matrix W. It is not
obvious, whether the ”rewards” for correct classification -
reflected by positive values of wii, i = 1, . . . , k - are impor-
tant for the proper-classifier-learning. Or maybe solely the
”punishment” for incorrect classification would be enough
for the classifier-learning tasks. To answer these questions let
us consider a weight matrix similar to the above-presented
W1, but with 0s on the principal diagonal, i.e. our weight
matrix is now the following:

W0 =
1

10

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

0 0.9 1.8 2.7
0.1 0 0.9 1.8
0.2 0.1 0 0.9
0.3 0.2 0.1 0

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

Now the related matrices Pr look as follows.

PrES =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
0.45 0. 0. 0.
0.55 0.54369 0. 0.
0. 0.45631 0.77143 0.
0. 0. 0.22857 1.

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

PrGA =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
1. 0. 0. 0.
0. 0.980583 0.0047619 0.
0. 0.0194175 0.957143 0.
0. 0. 0.0380952 1.

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

PrSA =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
0.5 0. 0. 0.
0.5 0.61165 0.00952 0.
0. 0.37864 0.73810 0.
0. 0.00971 0.25238 1.

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

We see that the diagonal elements of the weight matrix
play an important role in the learning tasks. All considered
learning algorithms produce much worse classifiers in the
cases with a lack of reward for proper classification - solely
the punishment for misclassification is not enough. However,
it is again worth emphasizing, that the GA algorithm outper-
forms the other two also in such cases.

V. FINAL REMARKS AND CONCLUSIONS

Based on the presented simulation results one can con-
clude that among considered GO algorithms, the GA is the
best one as a tool for classifier-learning tasks in the ordinal
classification problems. This observation is also confirmed
by our simulations conducted for greater numbers of classes
than those presented in Table I. The GA algorithm performs
really well - the average probability of correct classification
of an instance is about 0.9 and one hardly can expect higher
frequency of correct decisions in such uncertain decision
problems. Our simulations show that these probabilities of
success decrease when the number of classes increases - a
fact that is rather intuitive. However, it is worth noticing
that, in spite of this perhaps natural tendency, the supremacy

of the GA over the remaining learning algorithms increases
when the number of classes increases, see the last column
in Table I. However, one should be aware that in problems
with unequal costs of classification errors, the probabilities
of correct classification are not necessarily the most crucial
ones. It is worth emphasizing that, instead, sometimes it is
even more important not to make specific classification errors
(in a given specific problem). In such cases one should focus
on the weight matrix - proper construction of the matrix is of
primary interest in all classification problems with unequal
costs of misclassification errors. Our simulation experiments
revealed some important facts about the influence of the
weight matrix on the classifier-learning results.

The examples presented in Section IV, as well as many
other results that we have obtained during our simulations,
confirm that the proportions between the weights of par-
ticular classification errors have a proper impact on the
proportions between corresponding probabilities of errors
and, again, the GA learning algorithm is the best with respect
to this issue. Moreover, it was also shown, that the weights
assigned to correct classifications are also very important,
they make it easier for the learning algorithm to lower the
probabilities of misclassification. Thus, the role of both the
reward and punishment revealed by our results concerning
machine learning is in line with the operant-conditioning
principle formulated by Skinner to explain human-learning
nature, [4] .

REFERENCES

[1] Choo Jun Tan, Ting Yee Lim, Chin Wei Bong, Teik Kooi Liew, (2017)
”A multi-objective evolutionary algorithm-based soft computing model
for educational data mining: A distance learning experience”, Asian
Association of Open Universities Journal, Vol. 12 Issue: 1, pp.106-123,

[2] Espejo,P.G., Ventura, S., Herrera, F., (2010) ”A Survey on the Appli-
cation of Genetic Programming to Classification”, IEEE Transactions
On Systems, Man, And Cybernetics-Part C: Applications And Reviews,
Vol. 40, No. 2, 121-144

[3] Grzybowski, A.Z. (2011) ”Simulation analysis of global optimization
algorithms as tools for solving chance constrained programming prob-
lems”, Acta Eletrotechnica et Informatica, Vol 11 (4), 60-65

[4] McLeod, S. A. (2018). ”Skinner - operant conditioning.”, Retrieved
from https://www.simplypsychology.org/operant-conditioning.html (ac-
cessed 14.06.2019)

[5] Mane S., Sonawani, S. S. , Sakhare S., and Kulkarni, P. V., (2014),
”Multi-objective Evolutionary Algorithms for Classification: A Re-
view”, International Journal of Application or Innovation in Engineering
and Management, 292-297

[6] Obuchowicz, A., Korbicz, J.: ”Global optimization via evolutionary
search with soft selection”, unpublished manuscript, available:
http://www.mat.univie.ac.at/∼neum/glopt/mss/gloptpapers.html
(accessed 14.06.2019)

[7] Spall, J.C.: Introduction To Stochastic Search And Optimization; Esti-
mation, Simulation, And Control , John Wiley and Sons. Inc., Publica-
tion, 2003.

[8] Weise, T.: Global Optimization Algorithms - Theory and Applica-
tion,ebook available at http://www.it-weise.de/projects/book.pdf (ac-
cessed 14.06.2019)

[9] Wolpert, D.H. (1996), ”The lack of a priori distinctions between
learning algorithms.”, Neural computation 8(7), 1341-1390

[10] Zhang, M., Smart, W. (2004) ”Multiclass object classification using
genetic programming”. Applications of Evolutionary Computing, pp.
369-378.

[11] Zhang, M., and Wong, P. (2008) ”Genetic programming for medical
classification: a program simplification approach.” Genetic Program-
ming and Evolvable Machines 9, 229-255.

[12] Xue, B., Zhang, M., Browne, W. N., And Yao, X. (2016) ”A survey
on evolutionary computation approaches to feature selection.”, IEEE
Transactions on Evolutionary Computation 20, 606-626.

[13] Xue , Y., Zhao , B., Ma , T., Liu A. X., (2018) ”An evolutionary clas-
sification method based on fireworks algorithm” ,International Journal
of Bio-Inspired Computation (IJBIC), Vol. 11, No. 3

Proceedings of the World Congress on Engineering and Computer Science 2019
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019

