
Construction of Classifier of Myoelectric Signals
by using ANNs

Kazuya Kishida, Kei Hasegawa, and Kiyotaka Kamata

Abstract—Studies concern the myoelectric prosthetic hand
that is controlled by using the myoelectric signals. Recent
studies propose the methods of using the machine learning so as
to construct the classifier that classifies the myoelectric signals.
However, the machine learning needs a lot of learning data
from the user to construct the classifier which classifies the
myoelectric signals correctly. This traditional method places
a large burden on the user for constructing the classifier. In
this study, we consider the Feedforward Neural Networks and
Recurrent Neural Networks to construct the classifier using
non-user ’s myoelectric signals. In order to show the validity
of our methods, we perform some experiments to classify the
myoelectric signals and discuss the results of experiments in
point of accuracy rate, precision rate and recall rate.

Index Terms—Feedforward Neural Networks, Recurrent
Neural Networks, Support Vector Machine, Myoelectric Signals,
Myoelectric Prosthetic Hand.

I. INTRODUCTION

M any studies on the myoelectric prosthetic hand for
people who lost their movement function due to an

accident or illness have been published in recent years [1]-
[3]. An myoelectric hand refers to an electric artificial hand
that controls the movement by estimating the user’s intention
from the weak electrical signals (hereinafter the myoelectric
signals) generated by the activity of the remaining muscles.
Although, it is necessary to practice in order to move the my-
oelectric prosthetic hand along user’s intention. The quality
of life can be improved for the user by using the myoelectric
prosthetic hand. Therefore, we think that it is worth using the
myoelectric prosthetic hand. In recent studies, the methods of
using the machine learning so as to construct the classifier
that classifies the myoelectric signals have been proposed
[3]-[5]. However, the myoelectric signals have individual
differences, noises are loud, and the myoelectric signals
change slightly even in the same repeated action of the user.
Furthermore, a lot of learning data of the user are needed
to construct the high accuracy classifier system. So we think
that the traditional method places a large burden on the user
for constructing the classifier.

In this paper, as the aim of reducing user’s burden, we
consider that the methods construct the classifiers using non-
user’s myoelectric signals. The considered methods deal with
Feedforward Neural Networks (FFNNs) and Recurrent Neu-
ral Networks (RNNs) in Artificial Neural Networks (ANNs)
for constructing the classifier. We think that our methods
make it possible to construct the classifier which has the
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generality by compensating between the user’s differences
of the myoelectric signals. Therefore, it can be expected to
construct the classifier by using a smaller number of user’s
learning data than those the traditional method needs. And
the constructed classifiers by ANNs can be relearned using
new learning data and be adjusted for the user through the
relearned process. Furthermore, we construct the classifier
which uses Support Vector Machine (SVM) in additional
to the above two methods using ANNs. We perform some
experiments in order to show the validity of our considered
methods. We evaluate the constructed classifiers in point of
accuracy rate, precision rate and recall rate, and discuss our
findings.

II. MYOELECTRIC SIGNALS AND MEASUREMENT

A. Myoelectric Signals

When the brain transmits the command signals to muscle
fibers, the myoelectric signals are generated. Generally, the
inside of cell membrane at muscle fibers, has approximately -
80 mV as potential compared with the outside. This potential
reverses as a result of depolarization that occurs by receiving
the command signals from the brain. The reversal potential,
called action potential, propagates along muscle fibers in-
teractively. This action potential is called electromyogram
(EMG) [6].

There are two ways to measure the myoelectric signal.
One is the needle EMG method. In this method, there is
invasiveness to the human body. Nevertheless, the needle
EMG method is applied to clinical department [6] because
this method enables to recognize changes of the myoelectric
signals with high spatial resolution. The other is the surface
EMG method which measures the myoelectric signals from
electrodes placed on the skin surface. This method has low
invasiveness. Moreover, attaching and detaching electrode are
easy. Also, the frequency range of surface EMG is about
5∼500 Hz [7].

B. Measurement of Myoelectric Signals

We applied the surface EMG method because of less phys-
ical burden. Five healthy adult male participants performed
six hand motions (Fig. 1) for relaxation, grasping, opening,
palmer flexion, dorsal flexion and ulnar flexion. Then, we
obtained the myoelectric signals from four measurement
positions (Fig. 2) which were flexor digitorum superficialis
muscle (FDS), flexor carpi ulnaris muscle (FCU), extensor
carpi radialis longus muscle (ECRL) and extensor digitorum
communis muscle (EDC). Participants began performing a
hand motion at the same time as sign to start measuring, and
we measured the myoelectric signals. The bipolar measure-
ment by using two disposable electrodes was applied. In this
method, two electrodes are arranged on each measurement

Proceedings of the World Congress on Engineering and Computer Science 2019 
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019



position. In addition, body earth is arranged on position such
as a joint that is not affected by potential of measurement
position. This method enables noises to decrease since those
of both electrodes cancel each other. Two electrodes of a
pair were arranged with a distance of 2 cm. The myoelectric
signals were measured at a sampling frequency of 6000 Hz
for 500 ms. So we obtained the myoelectric signals data
having time-series length of 3000. We took the frequency
range of the myoelectric signals and utility frequency range
into consideration. Thus, the myoelectric signals were cut
off the frequency range of less than 5 Hz, 59.5∼60.5 Hz,
and more than 1000 Hz by digital filter of MATLAB after
obtaining data. Participants reduced electric impedance of
the skin to less than 5 kΩ by skin treatment before the
measurement. Figure 3 and TABLE I show measurement
system and measurement conditions, respectively.

dorsal flexion

relaxation grasping opening

palmar flexion ulnar flexion

Fig. 1. Classified six hand motions

ECRL EDC
FDS

FCU

Fig. 2. Measurement positions

The distance between

two electrodes : 2cm

Muscle

Head

amplifier

Save in USB memory stick

Biological

amplifier

A/D 

conversion 

board

Body earth

Fig. 3. Measurement system

III. CLASSIFIER AND THE LEARNING ALGORITHM

A. FFNNs and Learning Algorithm

FFNNs are composed of layers, each having some neurons.
Each neuron connects to the neurons of the next layer. A
weighted signal moves in one direction from the input layer
to the output layer. FFNNs having three layers are shown in
Fig. 4.

TABLE I
MEASUREMENT CONDITIONS

Head amplifier BA-U001

Biological amplifier
BA-1008
Electrodes ： Disposable electrode
Gain ： 74 dB

A/D conversion board ADA16-32/2(CB)F

Sampling frequency 6000 Hz

Sampling time 500 ms

Filter
High-pass filter : 5 Hz
Low-pass filter ： 1000 Hz
Notch filter ： 50.5∼60.5 Hz

Electric impedance of the skin less than 5 kΩ

Participants
Two 21-year-old males
Three 22-year-old males

The equations for the outputs of each hidden layer neuron
and output layer neuron are, respectively, given as

zj = f(
∑n

i=0 wjixi) (1)

yk = f(
∑m

j=0 vkjzj) (2)

where xi is the input variable from the i-th neuron in the
input layer, zj is the output variable of the j-th neuron in
the hidden layer, yk is the output variable of the k-th neuron
in the output layer, wji is the weight between the i-th neuron
in the input layer and j-th neuron in the hidden layer, vkj is
the weight between the j-th neuron in the hidden layer and
k-th neuron in the output layer, and n and m are constants,
which are the numbers of input layer neurons and hidden
layer neurons, respectively. Moreover, f(u) is the activation
function given by the following equation.

f(u) =
1

1 + e−u
(3)

The backpropagation (BP) is applied as learning algorithm.
BP adjusts weights of network so that the error function E
(Eq. (4)) is minimized. The error function indicates error
between the calculated output and the supervised signal.
According to the BP algorithm, vkj and wji are adjusted
by Eqs. (5) and (6)

E =
∑

k (dk − yk)
2 (4)

vkj(t+ 1) = vkj(t)− η
∂E

∂vkj
(5)

wji(t+ 1) = wji(t)− η
∂E

∂wji
(6)

where, t is the number of iterations, dk is the supervised
signal of the k-th neuron in the output layer, and η is the
learning rate.

The classifier constructed by FFNNs consisted of three
layers: an input layer, a hidden layer and an output layer.
Except for neuron assigned bias, the input layer had four
neurons, the hidden layer had 50 neurons, and output layer
had six neurons.
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Fig. 4. Feedforward Neural Networks (FFNNs)

B. RNNs and Learning Algorithm

RNNs are able to handle time-series data. As a point of
difference with FFNNs, the input values to hidden layer,
are not only weighted signals from the input layer, but also
weighted signals from the previous hidden layer (Fig. 5).
With this structure, the past input influences output. RNNs
are able to capture contextual characteristics of time-series
data.

-1

Fig. 5. Recurrent Neural Networks (RNNs)

The equation for the outputs of each hidden layer neuron
and output layer neuron are, respectively, given as

zt
′

j = f(
∑n

i=0 wjix
t′

i +
∑m

j′=0 w
′
jj′z

t′−1
j′ ) (7)

yt
′

k = f(
∑m

j=0 vkjz
t′

j ) (8)

where xt′

i is the input variable from the i-th neuron at time
step t′ in the input layer, zt

′

j is the output variable of the j-th
neuron at time step t′ in the hidden layer, yt

′

k is the output
of the k-th neuron at time step t′ in the output layer, w′

jj′

is the weight between the j-th neuron in the hidden layer at
time step (t′ − 1) and the j-th neuron in the hidden layer at
time step t′.

The backpropagation through time (BPTT) is applied as
learning algorithm. In the BPTT, RNNs develop in the time
axis direction. BPTT adjusts the weight so that error function
E (Eq. (9)) is minimized. The adjustments of the weight
between the input layer and the hidden layer, and the weight
between the hidden layer and the output layer, are the same as
FFNNs. According to the BPTT algorithm, w′

jj′ is adjusted
by Eq. (10).

E =
1

TN

∑T
t′=0

∑N
k=0(d

t′

k − yt
′

k )
2 (9)

w′
jj′(t+ 1) = w′

jj′(t)− η
∂E

∂wjj′
(10)

where dt
′

k is the supervised signal of the k-th neuron at time
step t′ in the output layer, N is the constant which is the
number of output layer neurons and T is the constant which
is time-series length of input value xt′

i .
However, RNNs are unable to handle long time-series data

because of vanishing gradient of error function. Actually,
the length that input influences output, is approximately 10
time steps. Therefore, we applied Long Short-Term Memory
(LSTM) which enables input to influence output for a long
time steps.

The classifier constructed by FFNNs consisted of three
layers: an input layer, a hidden layer and an output layer.
Except for neuron assigned bias, the input layer had four
neurons, the hidden layer had 50 neurons, and the output
layer had six neurons.

C. Support Vector Machine

SVM is a learning model of pattern recognition. SVM
is applied as a solution of a binary classification problem.
Support vectors are feature vectors chosen from learning data
defines decision function. The margin is the distance between
support vectors and classification boundary that classifies into
two classes. SVM establishes classification boundary so that
the margin is maximized (Fig. 6).

Support vector

margin

Feature vector of label A

Feature vector of label B

Support vector

=0

Fig. 6. Classification boundary and margin in SVM

The equation for decision function of linear SVM is
defined as
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f(x) = w · x+ b (11)

where x is input vector, w is normal vector of classification
boundary and b is an intercept of decision function. w
and b are parameters to shape decision function. These
parameters are found by the method of Lagrange multipliers.
However, there is a limit to what linear SVM classifies lin-
early inseparable input. Therefore, nonlinear SVM by using
Kernel function (Eq. (12)) is introduced. This SVM makes
it possible to recognize linearly inseparable input. Kernel
function converts linearly inseparable input distribution into
linearly separable input distribution. Decision function of
nonlinear SVM is defined as Eq. (13). The dual variable
α = (α1, . . . , αn) is found by the optimization problem,
which is called dual problem (Eq. (14)), to define decision
function.

K(xi,xj) = exp(−γ||xi − xj ||2) (12)

f(x) =
∑

i∈[n] αiyiK(xi, x) + b (13)

max
α

−1

2

∑
i,j∈[n] αiαjyiyjK(xi, xj) +

∑
i∈[n] αi

subject to
∑

i∈[n] αiyi = 0

0 ≤ αi ≤ C, i ∈ [n]

(14)

where γ is the hyper parameter to decide gradient of Kernel,
xi is input vector of i-th learning data, yi is a label of i-
th learning data which consists of yi ∈ {−1, 1}, C is the
regularization parameter to permit misclassification and n is
the constant which is the number of learning data.

In SVM, the multi-class classification is made by com-
bining some two-class classifiers. This study applied One-
Versus-One as a method of multi-class classification. In this
method, two-class classifiers are used as the number of
combination of classes. Then, each two-class classifier learns
regarding each combination of classes.

IV. EXPERIMENTS TO CLASSIFY MYOELECTRIC SIGNALS

A. Making of Input-output Data

The amplitude of the myoelectric signals changes depend-
ing on the force of squeezed muscle. Maximal Voluntary
Contraction (MVC) is the muscle strength which a human
maximizes contracting one’s muscle intendedly and volun-
tarily. The amplitude and wave density of the myoelectric
signals increase with an increase of muscle load. There is
linear relationship between muscle activity and muscle load
within 10∼90 % of MVC. In this study, time-integration was
applied as feature variables.

Integration value was applied as input data of FFNNs
and SVM. To make this value, we summed up absolute
values of each myoelectric signals data obtained from four
measurement positions within 500 ms (3000 plots).

The equation for input value xk
i obtained from a mea-

surement position i (i=1,. . . ,4) (Fig. 2) in a hand motion k
(k=a,. . . ,f) (Fig. 1) was given as

xk
i =

∑3000
n=1 |Dataki (n)| (15)

where Dataki (n) is the value of n-th plot from a measure-
ment position i in a hand motion k.

In making of input data, firstly, we divided the myoelectric
signals of 500 ms (3000 plots) into 20 parts; each part has
the myoelectric signals of 25 ms (150 plots). Then, each part
was time-integrated within 25 ms (150 plots).

The equation for input value xk
i (t) of input i and time step

t in a hand motion k was given as

xk
i (t) =

∑150
n=1 |Dataki (n)| (16)

TABLE II shows each supervised signal, for FFNNs and
RNNs, of six neurons in the output layer to each hand
motion.

TABLE II
THE SUPERVISED SIGNAL OF FFNNS AND RNNS

Output of k-th neuron in the output layer
Hand Motion 1 2 3 4 5 6

(a) Relaxation 0 0 0 0 0 1

(b) Grasping 0 0 0 0 1 0

(c) Opening 0 0 0 1 0 0

(d) Palmar Flexion 0 0 1 0 0 0

(e) Dorsal Flexion 0 1 0 0 0 0

(f) Ulnar Flexion 1 0 0 0 0 0

In this study, we obtained input-output data from five
participants. We obtained 50 input-output data for each hand
motion from each participant, so that the number of each
participant’s input-output data was 300. Consequently, 1500
input-output data were obtained from five participants.

B. Experiment I

In Experiment I, we made five participants’ input-output
data into five data sets. By using four data sets as learning
data, we constructed classifier of FFNNs, RNNs and SVM.
Then, we evaluated each constructed classifier using remain-
ing one data set as evaluation data. The processing flow to
make five data sets was as follows:

[Step 1] Extract 10 input-output data in each hand motion
from each participant’s 50 input-output data to
make data set 1 which is stored a total of 300 input-
output data.

[Step 2] Extract 10 input-output data, which is not used
in [Step 1], in each hand motion from each partici-
pant’s remaining 40 input-output data to make data
set 2 which is stored a total of 300 input-output
data.

[Step3 ] Repeat [Step 2] to make data set 3∼5.
Figure 7 shows the method to make data set 1.

5-fold-validation was applied as evaluation method. In
FFNNs and RNNs of the Experiment I, the epoch was 3000,
and learning rate was 0.005. Also, the learning rate of RNNs
was changed automatically by applying the algorithm Adam
[8]. The parameters of SVM were C=10 and γ=10.

TABLE III shows the average results of five fold in Exper-
iment I. As the results, accuracy rate, precision rate and recall
rate were more than 90 % in all three classifiers: FFNNs,
RNNs and SVM. In particular, The classifier by using RNNs
achieved high discrimination performance. We considered
that RNNs model could acquire time-series variation of the
myoelectric signals as feature variable from input data by
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Fig. 7. The method of making data set 1

TABLE III
THE RESULTS OF EXPERIMENT I

Evaluation Items Accuracy[%] Precision[%] Recall[%]

FFNNs 91.2 91.4 91.2

RNNs 93.8 93.8 93.8

SVM 90.7 90.8 90.6

handling the locally divided myoelectric signals data as time-
series data.

C. Experiment II

Experiment II was performed to discuss generality of the
classifier constructed by using non-myoelectric prosthetic
hand user’s learning data. We used four participants’ input-
output data as learning data to construct each classifier.
Moreover, we evaluated each constructed classifier by using
remaining one participant’s input-output data as evaluation
data. In FFNNs and RNNs of Experiment II, the epoch was
3000, and the learning rate was 0.005. Also, the learning
rate of RNNs was changed automatically by applying the
algorithm Adam [8]. The parameters of SVM were C=1 and
γ=10.

TABLE IV shows the average results of five fold in Exper-
iment II. In Experiment II, we evaluated using input-output
data of a participant who excluded in learning data to discuss
generality. As the results, in case of learning data A, B, D,
E and evaluation data C, accuracy rate and recall rate were
70 % units as low discrimination performance. However,
others were 84.3 % at least. The classifiers constructed using
non-user’s myoelectric signals, achieved high discrimination
performance. According to this result, it is considered that
non-user’s myoelectric signals enable constructed classifiers
to have generality to a certain extent. Additionally, it is
assumed that the differences between participant C’s gener-
ating factors of the myoelectric signals and others’ ones such
as muscle strength, caused low discrimination performance.
Because of this, to construct classifier having high generality
needs input-output data from a lot of participants.

D. Experiment III

Experiment III was performed to discuss the method that
the constructed classifier relearns by using the myoelectric
prosthetic hand user’s data after constructing using non-
myoelectric prosthetic hand user’s data.

As the experiment procedure, firstly, we constructed the
classifier of FFNNs and RNNs using 1200 input-output data

TABLE IV
THE RESULTS OF EXPERIMENT II

Acuracy rate[%]

Learning Data B-E A,C-E A,B,D,E A-C,E A-D

Evaluation Data A B C D E

FFNNs 93.7 89.0 78.0 84.7 89.0

RNNs 88.0 88.0 70.0 87.0 92.0

SVM 89.7 85.7 79.0 84.3 88.0

Precision rate[%]

Learning Data B-E A,C-E A,B,D,E A-C,E A-D

Evaluation Data A B C D E

FFNNs 94.0 90.0 88.0 89.0 89.0

RNNs 90.0 89.0 86.0 87.0 92.0

SVM 91.0 86.0 87.0 89.0 89.0

Recall rate[%]

Learning Data B-E A,C-E A,B,D,E A-C,E A-D

Evaluation Data A B C D E

FFNNs 94.0 89.0 78.0 85.0 89.0

RNNs 88.0 88.0 70.0 87.0 92.0

SVM 90.0 86.0 79.0 84.0 88.0

that consisted of four out of five participants’ input-output
data. Secondly, we made five data sets which each data set
had 60 input-output data, using remaining one participant’s
300 input-output data. Thirdly, the classifier relearned using
four data sets. Lastly, we evaluated constructed classifier
using remaining one data set. In other words, the classifiers
were constructed by using a specific participant after prior
learning. 5-fold-validation was applied as evaluation method.
Figure 8 shows the method of making a data set from a
participant. The epochs in prior learning and relearning were
3000, and the learning rate was 0.005. Also, the learning
rate of RNNs was changed automatically by applying the
algorithm Adam [8]. In the experiment with prior learning,
we only performed experiment concerning FFNNs and RNNs
so that SVM is not able to relearn. The parameters of SVM
were C=100 and γ=100. TABLE V shows the average results
of five fold in this experiment with prior learning.

Fig. 8. The method of making a data set from participant A

Also, we constructed classifier without prior learning by
using only each participant to compare with the discrimi-
nation performance of the experiment with prior learning.
TABLE VI shows the results that constructed the classifiers
were evaluated by 5-fold-validation. The epoch was 3000 in
the experiment without prior learning.

In addition to discussion concerning generality performed
in Experiment II, Experiment III was performed to discuss
utility of relearning for the myoelectric prosthetic hand user.
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TABLE V
THE RESULTS OF EXPERIMENT III WITH PRIOR LEARNING

Accuracy rate[%]

Prior Learning Data B-E A,C-E A,B,D,E A-C,E A-D

Additional Learning
and Evaluation Data

A B C D E

FFNNs 100 92.3 93.3 93.3 89.7

RNNs 98.3 95.0 95.7 94.7 96.7

Precision rate[%]

Prior Learning Data B-E A,C-E A,B,D,E A-C,E A-D

Additional Learning
and Evaluation Data

A B C D E

FFNNs 100 91.8 92.6 93.6 89.6

RNNs 98.2 95.8 95.6 94.6 97.8

Recall rate[%]

Prior Learning Data B-E A,C-E A,B,D,E A-C,E A-D

Additional Learning
and Evaluation Data

A B C D E

FFNNs 100 91.0 92.4 93.2 89.6

RNNs 98.2 95.0 95.6 94.6 96.6

TABLE VI
THE RESULTS OF EXPERIMENT III WITHOUT PRIOR LEARNING

Accuracy rate[%]

Additional Learning
and Evaluation Data

A B C D E

FFNNs 100 92.0 93.0 92.0 90.0

RNNs 96.0 91.0 91.3 90.0 93.0

SVM 97.0 84.7 85.3 91.7 87.7

Precision rate[%]

Additional Learning
and Evaluation Data

A B C D E

FFNNs 100 92.4 93.6 92.4 90.0

RNNs 96.8 91.6 92.6 90.2 94.2

SVM 98.0 85.8 86.2 92.8 88.4

Recall rate[%]

Additional Learning
and Evaluation Data

A B C D E

FFNNs 100 92.0 93.0 92.0 89.8

RNNs 96.4 91.2 91.2 90.0 93.2

SVM 97.0 84.6 85.2 91.6 87.6

As the results, the classifier constructed by RNNs achieved
the highest discrimination performance. In the experiment
without prior learning, we constructed classifiers by using
a participant’s input-output data assuming that the classifier
is constructed using the myoelectric prosthetic hand user’s
data. According to TABLE V and TABLE VI, it became
apparent that the classifier with relearning using the my-
oelectric prosthetic hand user’s input-output data achieves
better discrimination performance after constructing with
prior learning. These results indicate that it is possible to
construct the classifier having higher discernment using multi
participants’ data than a case of only a participant’s data. As
the reason, in case of using only a participant’s myoelectric
signals, there is unbalance of input-output data for learning.

So, it is considered that FFNNs, RNNs and SVM were unable
to acquire suitable discernment for input patterns which are
not used as learning data. For that reason, it is considered
that learning by using multi participants’ input-output data
enables unbalance to be compensated. The results of Exper-
iment III proved that the classifier with relearning enables
user’s burden to decrease as this study’s goal. However, there
were merely five participants in this experiment. In the future
study, we must perform an additional experiment under an
increasing number of participants in order to discuss this
experiment more deeply.

V. CONCLUSION

This study was performed to reduce the myoelectric pros-
thetic hand user’s burden in constructing classifier which con-
trols the myoelectric prosthetic hand. This paper discussed
construction concerning the classifier which has generality.
We constructed classifiers of FFNNs, RNNs and SVM by
using the myoelectric signals obtained from five participants.
And then, we demonstrated some experiments to classify the
myoelectric signals. As the results of experiments, RNNs
had the advantage for classification in point of accuracy
rate, precision rate and recall rate. Above all, in Experiment
III, we constructed classifiers by using not only a specific
participant’s input-output data, but also multi participants’
input-output data. So, we considered that the classifier has
high discernment if classifier relearns with a specific partic-
ipant’s data after constructing with multi participants’ data.
As the future study, the experiment for classification will be
performed by using more participants’ input-output data to
discuss more deeply.
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