
 

  

Abstract—This study investigated the application of 

ozonolysis pre-treatment of waste activated sludge for 

solubilization and biodegradability enhancement of municipal 

waste activated sludge (WAS). The effect of operational 

parameters such as initial pH, ozone dosage and ozone duration 

were studied to optimize the conditions of total suspended solids 

(TSS) reduction percentage. Based on the experimental results 

that optimum ozone dosage of 90 mg/min for ozonation 

duration of 60 min and initial pH of 11 were found significant 

to save on the energy requirements and carbon contents of the 

pre-treated WAS. The configuration of the backpropagation 

neural network (NN) was three-layer (3:10:1) with tangent 

sigmoid transfer function (tansig) at hidden layer with 10 

neurons, linear transfer function (purelin) at output layer and 

Levenberg-Marquardt backpropagation training algorithm 

(LMA). NN predicted results are very close to the experimental 

results with correlation coefficient (R) of 0.997 and MSE 

0.1050. The results showed that neural network modeling could 

effectively predict and simulate the behavior of the ozonolysis 

process. 
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I. INTRODUCTION 

 aste activated sludge (WAS) is considered as a major 

by-product of the activated sludge treatment process 

[1].  The WAS consists mainly of biomass from cell growth 

and decay throughout activated sludge treatment (AST) 

process as well as traces of odorous and volatile organic 

compounds, and toxic chemicals. If is not stabilized can 

pose the risk of secondary environmental pollution [2]. The 

enhancement of anaerobic digestion (AD) process for WAS 

stabilization, reduction, and energy recovery in the form of 

methane gas has evoked great interest [3]. However, AD of 

WAS suffers high retention times, low methanogenic 

production and an overall 30-35% dry solids degradation 

[4]. The insoluble and biorecalcitrant proteinaceous biomass 

cell walls and extracellular polymeric substances (EPS) in 

WAS hinders the initial rate determining hydrolysis step of 
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AD. During hydrolysis, enzyme-mediated solubilization of 

insoluble organic materials, the rapture of hard cell walls 

and degradation of EPS occur releasing biodegradable 

organic compounds for the ensuing acidogenesis step [5]. A 

long retention time resulting in the consumption of a large 

amount of energy is, therefore, required for the hydrolysis of 

WAS, limiting the effective application of AD in the 

treatment and stabilization of WAS [6]. To enhance the AD 

process and meet the strict regulation on environmental 

protection, implementation of a pre-treatment method, that 

would improve the hydrolysis step is mandatory [2]. Various 

methods for sludge solubilization including chemical 

treatment using acids and alkalis, mechanical disintegration, 

and advanced oxidation processes (AOPs) have been 

successful applied to date [6]. Ozonolysis is a promising 

technology for the pre-treatment of WAS before anaerobic 

digestion for stabilization and energy recovery. Among these 

methods, ozonolysis, which is an AOP is considered most 

effective for sludge disintegration, because it does not lead 

to significant increase in salt concentration and has no 

chemical residues in comparison to order pre-treatment 

techniques [4]. Through ozonation, organic matter can be 

released from the sludge into the solution as a result of the 

breaking and solubilization of the hard cellular membrane 

[6]. The role of ozonolysis pre-treatment is to partially 

oxidize the biorecalcitrant component of WAS to release 

biodegradable products [2]. Through ozonolysis, low soluble 

volatile organic compounds (VOCs), can be oxidized and 

solubilized as well thus contributing to the improved 

biodegradability. To avoid over-oxidation of the released 

biodegradable components, the ozonolysis dose and time 

have to be optimized [4, 7]. The treatment of wastewater by 

AOPs is quite complex, since the process is influenced by 

various factors. Due to complexity of the process, it is 

difficult to be modeled and simulated using convention 

mathematical modeling. NNs are now applied in numerous 

areas of science and engineering and considered as 

promising tool because of their simplicity towards 

simulation, prediction and modeling [8]. NNs were applied 

to solve environmental engineering problem in biological 

and physico-chemical wastewater treatment [9]. However, 

few studies on application of NN in advanced oxidation 

processes have been reported [9,10]. The present work 

examined the implementation of NN for the prediction and 

simulation of ozonolysis process for the pre-treatment of 

The Use of Neural Network for Modeling of 

Waste Activated Sludge for Solubilization and 

Biodegradability Enhancement Using 

Ozonolysis Process 

John Kabuba, Member IAENG 

W 

Proceedings of the World Congress on Engineering and Computer Science 2019 
WCECS 2019, October 22-24, 2019, San Francisco, USA

ISBN: 978-988-14048-7-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2019



 

waste activated sludge for solubilization and 

biodegradability enhancement of municipal waste activated 

sludge. The NN modeling outputs were compared with the 

experimental data. 

II. MATERIALS AND METHODS 

The following chemicals: Sodium thiosulphate, phenol, 

bovine serum albumin (BSA), methanol, phosphoric acid, 

Bradford reagent, Coomassie brilliant blue, potassium 

iodide, sulphuric acid, hydrochloric acid, silver sulfate, 

potassium dichromate, starch, and sodium hydroxide were 

analytical grade and all purchased from Merck Limited, 

South Africa. The WAS was sourced from a secondary 

settler of a local municipal wastewater treatment plant in 

Vanderbijlpark, South Africa. The WAS was filtered 

through a 450μm microfilter to remove large solid particles 

then further analyzed to determine its physical and chemical 

characteristics. The waste activated sludge was treated in a 4 

L ozone reactor batch-wise for sludge solubilization and 

improved biodegradability. For every batch experiment, 2 L 

of WAS was transferred to the reactor then subjected to 

ozonolysis. Gaseous ozone was generated from air using an 

ozone generator coupled to an air compressor. The ozone 

generator employed the corona discharge principle, where a 

high voltage corona mechanism converts the oxygen in air to 

ozone [11]. The resulting ozone air mixture was then 

bubbled in an up-flow mode in the ozone reactor via a gas 

diffuser. The ozone concentration in the mixture was 

determined following a volumetric method based on the 

reaction between potassium iodide and ozone [4]. Previous 

studies have shown that the ozonolysis process is dependent 

on parameters such as initial pH, ozone dosage and reaction 

time [7]. To obtain different ozone dosage, the ozone flow 

rate was controlled using a manual valve and the flow 

measured using an air rotameter. For instance, an air flow 

rate of 2 L/min generated air-ozone mixture with a dosage of 

45 mg O3 per minute supplied to the reactor. Air flow rates 

of 4, 6 and 8 L/min generated dosages of 90, 135 and 180 

mg O3 per minute. The unutilized ozone gas from the reactor 

was destroyed by passing through the KI solution [4]. The 

schematic diagram of the ozonolysis is given in Fig. 1. 

 
Fig. 1. Schematic representation of the ozone unit [7] 

 

The average oxidation state (AOS) of the WAS during 

ozonolysis was used to estimate the degree of oxidation of 

the substrate containing the oxidation by-products as well as 

the initial compounds. The AOS was calculated by [4]: 
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Where CODT and TOC are the total chemical oxygen 

demand and total organic carbon, respectively. The values 

for AOS vary from -4 (for CH4 the most reduced state for C) 

to +4 (for CO2 the most oxidized sate for C). In an oxidation 

process, however, the increment observed in AOS (∆AOS), 

can be calculated using Eq. (2). 
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Where i and f refer to initial and final values, respectively. 

The ∆AOS is of more importance as it indicates the degree 

of oxidation [11, 12]. 

The amount of ozone in the inlet and outlet gas streams was 

determined for the different flow rates by titrating the 

ozonated KI solutions with potassium thiosulphate solution. 

Ozone transfer, which is the amount of ozone used up in the 

reaction was determined as follow:  

100
3

3

3 =
SO

UO
TO                                                           (3) 

Where, O3T, O3S and O3U are the ozone transfer (%), 

supplied and utilized ozone (mg), respectively. The utilized 

ozone was determined from the difference obtained between 

the ozone supplied to the reactor and the ozone coming out 

the reactor (off gas). Aliquot samples were withdrawn and 

analyzed for pH, total organic carbon (TOC), COD, BOD, 

total suspended solids (TSS), total solids (TS), dissolved 

organic carbon (DOC) total volatile solids (VSS), nitrates, 

phosphates, proteins, carbohydrates and chlorides. The 

COD, BOD, TSS, TS and VSS were analyzed according to 

the standard methods of analysis [4].  

A. Neural network (NN) 

      Neural network is an information processing system 

that is inspired by the learning algorithm biological nervous 

systems. Neural networks are known for their ability of 

learning, simulation and prediction of data. NNs are 

nonlinear statistical techniques and very flexible [8]. The 

network consists of numerous individual processing units 

called neurons and commonly interconnected in a variety of 

structures. The strength of these interconnections is 

determined by the weight associated with neurons. The 

multilayer feed-forward net is a parallel interconnected 

structure consisting of input layer and includes independent 

variables, number of hidden layers and output layer [9, 13].  

In this study, a three-layered (3:10:1) backpropagation 

algorithm neural network with tangent sigmoid transfer 

function (tansig) at hidden layer and a linear transfer 

function (purelin) at output layer was used. Neural network 

Toolbox V4.0 of MATLAB mathematical software was used 

for TSS reduction percent prediction. Data (120 

experimental sets) were obtained from our previous study 

[4] and were divided into input matrix and target matrix. The 

input variables were ozone dosage, initial pH and ozone 

duration. The corresponding TSS reduction percent was 

used as a target. The data sets were divided into training, 

validation and test subsets, each of which contained 60, 30 

and 30 data, respectively. 
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III. RESULTS AND DISCUSSION 

A. Neural Network model 

      Three important aspects that must be determined in 

design procedure of NN are as follows [14]: 

• Data distribution in three subsets (training, validation 

and testing). 

• Selection of neurons’ transfer functions. 

• Selection of NN structure 

• Selection of training algorithm. 

A.1. Data distribution (training, validation and testing) 

     Neural network multilayer perceptron (MLP) feed 

forward model was used in this study. The total of 120 

experimental data were randomly divided into three subsets 

of training, validation and testing for developing NN model. 

Sixty training data were used to update the network weights 

and biases. In order to check the generality of network 

prediction and to prevent the data overfitting, 30 validation 

data were applied. In the first few epochs of training, errors 

of both training and validation data are reduced. After 

several epochs, the error of training data decreases while that 

of validation data increases. As a result, the network is 

overtrained and its generality decreases. Hence, the training 

process must be continued until the validation data error 

decreases. Testing data set are used to test the generality of 

trained network via unseen patterns (experimental data 

which are not used in training procedure). The network 

generalizes well when it sensibly interpolates these new 

patterns. Termination of training procedure at a proper time, 

when the minimum validation error is achieved, results in a 

generalized predictor network. The data set were used to 

feed the optimized network in order to test and validate the 

model.  

 
Fig. 2. Comparison between predicted and experimental values of the 

output 
Fig. 2 shows a comparison between experimental and 

predicted values for All (training, validation and testing) 

using NN model. The figure contains two lines, one is the 

perfect fit Y = T (predicted data = experimental data) and 

the other is the best fit indicated by a solid line with best 

liner equation Y = 0.99T + 0.0012, correlation coefficient 

(R) 0.9957. 

 

A.2. Training algorithm and transfer function 

       The MLP networks were created in the neural network 

toolbox of MATLAB with newff function. Performances of 

different training algorithms were studied for a specified 

network with three layers. Due to the convergence speed and 

the performance of network to find better solution, the 

Levenberg-Marquardt training method was selected as a 

proper training algorithm in agreement with the literature [8, 

10]. Another important factor in NN design is the type of 

transfer functions. NNs owe their nonlinear capability to the 

use of nonlinear transfer functions [14]. Different transfer 

functions can be used for neurons in the different layers. 

Different transfer functions were examined in each layer, 

separately and with respect to the mean squared error (MSE) 

of testing data, the proper transfer functions were chosen. 

MSE was calculated using Eq. (4): 

( )
N

DRDR
MSE N cal −

=

2

exp
                                     (4) 

Where DRcal and DRexp denote calculated and experimental 

values, respectively. N is the number of validation and 

training data. 

The most widely used criteria including MSE, correlation 

coefficient (R), and mean squared relative error (MSRE) for 

training, validation and testing data sets are presented in 

Table I.  
TABLE I 

STASTICAL CRITERIA FOR EVALUATION OF NN MODEL 

                Training data        Validation data       Testing data        Total NN 

___________________________________________________________ 

MSE              0.0170                        0.2580                        0.3490                   0.1050 

R                     0.9940                        0.9940                        0.9960                   0.9956                                                                               

MSRE           0.0030                        0.0010                        0.0120                   0.0040                                                    

 

In probability theory and statistics, R indicates the strength 

and direction of a linear relationship between two variables. 

In general statistical usage, R refers to the departure of two 

variables from independence. A number of different 

coefficients are used for different situations. The best known 

is the Pearson product-moment correlation coefficient as 

follows: 
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R2 can have only positive values ranging from R2 =+1.0 for 

a perfect correlation (positive or negative) down to R2 = 0.0 

for a complete absence of correlation. The advantage of R is 

that it provides ta measure of the strength of the correlation. 

It can be said that R2 represents the proportion of the data 

that is the closest to the line of best fit.  

Another measure of fit is MSRE which is calculated by the 

following Eq. (6). 
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According to data presented in Table 1, excellent fitness of 

NN predicted values with experimental data was confirmed. 

Among different transfer functions available in MATLAB. 

Log sigmoid function was selected for all neurons due to its 

better prediction performance than other transfer functions. 

The log sigmoid function is bounded between 0 and 1, so the 

input and output data should be normalized to the same 

range as the transfer function used. In other words, the 

logarithmic sigmoid transfer function gives scaled outputs 

(DR) in this range (0-1).  
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A.3. NN structure 

       Network structure has significant effects on the 

predicted results. The number of input and output nodes, as 

mentioned before, is equivalent to the number of input and 

output, respectively. However, the optimal number of hidden 

layers and the optimal number of nodes in each layer, are 

case dependent and there is no straightforward method for 

determination of them. Neural network feed forward with 

one hidden layer and sufficiently large neurons can map any 

input to each output to an arbitrary degree of accuracy. 

However, Flood and Kartam [15] reported that many 

functions are difficult to approximate well with one hidden 

layer. They revealed that use of more than one hidden layer 

provides greater flexibility and enables the approximation of 

complex functions with fewer neurons. Baughman and Liu 

[16] found out that adding a second hidden layer improves 

the network prediction capability significantly without 

having any detrimental effects on the generalization of the 

testing data set. However, adding a third hidden layer results 

in a prediction capability similar to that of two hidden layer 

network, but it requires longer training times due to its more 

complex structure. In this study, the configuration of the 

backpropagation neural network (NN) giving the smallest 

mean square error (MSE) was three-layer (3:10:1). Neural 

network with tangent sigmoid transfer function (tansig) at 

hidden layer with 10 neurons, linear transfer function 

(purelin) at output layer and Levenberg-Marquardt 

backpropagation training algorithm (LMA) was adopted (see 

Fig.3). 

 
Fig. 3. Optimized NN structure 

B. Characterization of waste activated sludge 

      The physical and chemical characteristics of the obtained 

waste activated sludge are given Table II. The WAS had a 

soluble COD (CODS) of 1400 mg/L which was 20% of the 

total COD (CODT) indicating that up to 80% of the COD 

was in the suspended solids. The DOC value of 122 mg/L 

also indicated a low concentration of the organic compounds 

in soluble form. With the DOC of 122 mg/L, a soluble COD 

value of 600 mg/L was expected. However, the higher 

soluble COD value of 1408 mg/L reported was partly 

contributed to by the oxidation of ammonia, soluble proteins 

(20 mg/L) and other soluble inorganic compounds present in 

the WAS. The BODS:COD ration of 0.1 confirmed the poor 

biodegradability of the WAS. The low biodegradability is 

attributed to the proteinaceous biomass cell wall which 

hinders the rate determining hydrolysis step of AD. 

Therefore, ozonolysis should be applied for the 

solubilization of the biorecalcitrant biomass cells. 

 

 

TABLE I 

PHYSICOCHEMICAL CHARACTERISTICS OF MUNICIPAL WASTE ACTIVATED 

SLUDGE [4] 

                Parameter                                                             Value 

___________________________________________________________ 

                   PH                                                                                           6.7        

                   TSS                                                                                      12.4 

                  CODT                                                                                 6860 

                  CODS                                                                                 1408 

                  DOC                                                                                      122 

                  BODS                                                                                    901 

                  TS                                                                                          65.3 

                  VSS                                                                                       42.1 

                  BOD5:COD                                                                          0.1 

                  SULPHATE                                                                              1.8 

                  PHOSPHATE                                                                            67 

                  CHLORIDE                                                                               55 

                  SOLUBLE PROTEINS                                                              20 

C. Effect of ozone dosage 

      Ozone dosage is very important in optimization the 

ozonolysis process [4]. The effect of ozone dosage is 

achieved at varying ozone flowrate. Low ozone dose would 

achieve low solubilization while an over-dose would lead to 

mineralization of already solubilized organics and a high 

concentration of ozone in the off-gas. As a result, the 

process will not be economical. After 60 min of ozonolysis, 

the highest TSS reduction of 53% (12.4-5.6 mg/L) was 

achieved at a flow rate of 90 mg/min, while the lowest flow 

rate of 45 mg/min removed 47% of TSS. A corresponding 

observation was made with the evolution of DOC with the 

highest increase of 25% (from 120 to 152 mg/L) attained at 

the 90mg/min flow rate. An increase in ozone flow rate from 

45 to 90 mg/min led to an increase in ozone concentration in 

the reactor which adequately dissolved the organic 

suspended solids leading to the reduced TSS.  

 
Fig. 4. Comparisons between NN outputs and experimental data for flow 

rate 45 mg/min 

 
Fig. 5. Comparisons between NN outputs and experimental data for flow 

rate 90 mg/min 
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Fig. 6. Comparisons between NN outputs and experimental data for flow 

rate 135 mg/min 

 

 

 
Fig. 7. Comparisons between NN outputs and experimental data for flow 

rate 180 mg/min 

 

However, as the flow rate increased further, the TSS 

reduction decreased despite the increasing amount of 

supplied O3 molecules.  At high ozone flow rates above the 

optimal dose, the supplied gas forms larger bubbles which 

significantly reduces gas hold-up resulting in reduced 

contact time between O3 and the suspended solids leading to 

reduced efficiency [17]. In terms of the relation between the 

experimentation data and the predicted values of TSS 

reduction by the NN model, Figs. 4, 5, 6 and 7. 

D. Effect of initial pH 

      The ozonolysis process is highly affected by the pH of 

the substrate [4]. Highest TSS reduction of 47% (12.4-6.5 

mg/L) was obtained at pH 11 as compared to 36% and 19% 

reductions at pHs of 7 and 3, respectively. Similarly, the 

highest increase in DOC evolution of 55% (122-190 mg/L) 

was achieved at pH 11 and the lowest value of 23% at pH 3. 

The reduction in TSS and increase in DOC are attributable 

to the solubilization of the suspended organic matter. Under 

acidic conditions, ozone selectively attacks parts of organic 

compounds containing C=C double bonds, aromatic rings, 

and negatively charged centers/sites containing atoms such 

as N, P, O, S [18]. The selective attack leads to partial 

solubilization hence the low increase in DOC [4]. The 

performance of ozone is superior under alkaline conditions 

because its half-life increases from 15 min, which it 

decomposes leading to the formation of the highly react with 

all the organic compounds hence the highest increase in 

DOC at occurred pH 11 [11]. In terms of the relation 

between the experimentation data and the predicted values 

of TSS reduction by the NN model, Figs. 8, 9 and 10. 

  

 
Fig. 8. Comparisons between NN outputs and experimental data for pH 3 
  

 
 Fig. 9. Comparisons between NN outputs and experimental data for pH 7 

 

 
Fig. 10. Comparisons between NN outputs and experimental data for pH 

11 

E. Change in COD, biodegradability, and ozone transfer 

      Ozonolysis of the WAS carried out at the optimal 

conditions of pH 11 and ozone flow rate of 90 mg/min. The 

work done by Otieno et al. [4] shown the changes in total 

COD (CODT) and soluble (CODS), pH, BOD5:COD ratio, 

AOS, and ozone transfer. The CODT decreased by 42% after 

2h of ozonolysis. Consequently, the CODS increased by 41% 

after 60 min of ozonolysis then reduced with additional 

ozonolysis time. The decrease in CODT and the subsequent 

increase in CODS was attributed to the solubilization of the 

suspended solids (sludge) present in the WAS. However, the 

extended ozonolysis period past the 60th minute could have 

led to mineralization of the already solubilized organic 

matter hence the observed decrease in CODS [4]. Also, the 

low reduction in CODT during the extended period from the 

80th minute indicates that most of the oxidizable organic 

solids had already been solubilized within the first 60 min. 
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Based on these findings, the duration of ozonolysis should 

be minimized to reduce excessive energy consumption and 

depletion of carbon if anaerobic digestion is to be applied 

down-stream to the ozonolysis process [20]. The ozone 

transfer efficiency decreased with increasing duration of 

ozonolysis after every 20 min interval. Improved 

biodegradability due to ozonolysis was confirmed by the 

increases in AOS from-1.5 to 0.9. The BOD5:COD ration 

increased from 0.1 to 0.21 while the pH decreased from 11 

to 9.68. The increase in oxidation state could be attributed to 

the solubilization of the organic solids by degradation of the 

aromatic groups and formation of aliphatic structures with 

functional groups such as-COOH, -OH and -CHO as 

indicated by the FTIR analysis done by Otieno et al [4] 

shown that aliphatic structures contain higher oxidation state 

carbons than aromatic carbons. Moreover, the decrease in 

basicity could be due to the formation of the easily 

biodegradable acidic intermediate compounds such as acetic 

acids and humic substances [21].   

IV. CONCLUSION 

     The developed neural network model successfully 

tracked the nonlinear behavior of the ozonolysis process for 

the pre-treatment of waste activated sludge (WAS) for 

sludge solubilization and to improve biodegradability. Based 

on batch experiment test results showed that optimal 

operating conditions were determined to be an initial pH 11, 

ozone dosage 90 mg/min and ozone duration of 60 min. The 

configuration of the backpropagation neural network (NN) 

was three-layer (3:10:1) with tangent sigmoid transfer 

function (tansig) at hidden layer with 10 neurons, linear 

transfer function (purelin) at output layer and Levenberg-

Marquardt backpropagation training algorithm (LMA). 

Neural network predicted results are very close to the 

experimental results with correlation coefficient (R) of 

0.9957, MSE 0.1050 and MSRE 0.0040. 
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