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Abstract—Binary Decision Diagram (BDD) has
been shown to be applicable in image coding. A tech-
nique presented in this paper extends the functional-
ity of BDD in image coding to cover major geometric
transformations of image such as translation, rota-
tions, scaling and shearing. By introducing the con-
cept of transition branch, nonuniform and uniform
translation of image by a given displacement could be
obtained using only exclusive-or operation. Based on
the translation, we show that image rotation, scaling
and shearing could be achieved.

Keywords: BDD, image coding, translation, rotation,
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1 Introduction

Binary decision diagram (BDD), which can be used for
representing Boolean function [1], is a rooted acyclic
graph that contains nonterminal and terminal nodes.
Each nonterminal node of BDD is associated with a
Boolean variable, and two terminal nodes are assigned
to constant 0 and 1. Each nonterminal node has two
outgoing edges, zero-edge and one-edge, that link to its
children. Either one of these edges is taken depending on
the value of the variable associating with the nonterminal
node. The represented Boolean function can be evaluated
by traversing through all nodes along the path from the
root to the terminal node. The interesting property of
the BDD is that it can be made a canonical representa-
tion of Boolean function by applying reduction rules pre-
sented in [2]. The results from applying reduction rules
are that the size of BDD is reduced and is uniquely rep-
resenting Boolean function. This becomes advantage for
image coding when consider a black-and-white image as
a Karnaugh map of ⌈log2M⌉ + ⌈log2N⌉ variables, where
M and N are width and height of image, respectively [3],
[6]. Detail of representing image using BDD is explained
in Section 2.

2 Image Representation

In this paper, a rectangular image of size W × H pixel
is considered as a Karnaugh map of w+h variables where
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w = ⌈log2 W ⌉, h = ⌈log2 H⌉ and the variable ordering is:
x0, x1, ..., xw−1, y0, y1, ..., yh−1. The h-bit and w-bit Gray
codes are used to represent the rows and columns of the
Karnaugh map, respectively as shown in Figure 1. We
will refer to the rows and columns of the Karnaugh map
as the Gray code coordinates throughout this paper.

2.1 Definitions of BDD Components

The definitions of term describing components of a BDD
used in our approach for image representation are as fol-
lows.

Definition 1 A BDD is a set of nodes V and edges E that
forms an undirected rooted tree. A nonterminal node vi

of BDD is associated with a Boolean variable i. The
evaluation of Boolean variable i yields outgoing edge ei

whose attribute is 0 when the variable is evaluated as 0,
and is 1 when the variable is evaluated as 1. There is
only one terminal node T which is assigned to constant
1.

Definition 2 A path of BDD is a set of nodes
and edges that appears in an alternating sequence
{v1, e1, v2, e2, ..., en−1, vn}, where n = w + h, with re-
striction that each node and each edge must appear only
once.

Definition 3 A branch Bi of BDD is a path whose
v1 is the root of BDD and vn, where n = w + h,
is the terminal node. Using our definitions, a branch
of BDD shown in Figure 1(b) can be written as B =
{x0, e1, x1, e2, ..., ew−1, xw−1, ew, y0, ew+1, y1, ..., ew+h−1,

yh−1, ew+h, T }.

A branch B of BDD encodes the coordinate (x, y) of a
pixel and can be decomposed into two parts, a subbranch
Bx which contains information of x coordinate and a
subbranch By contains information of y coordinate writ-
ten as Bx = {x0, e1, x1, e2, ..., ew−1, xw−1, ew, y0}, and
By = {y0, ew+1, y1, ew+2, ..., ew+h−1, yh−1, ew+h, T }.

2.2 Definitions of BDD Operations

Given branch Bi = {vi
1, e

i
1, ..., e

i
n−1, v

i
n} and branch Bj =

{vj
1, e

j
1, ..., e

j
n−1, v

j
n} where n = w + h.

Definition 4 An exclusive-or operation between branch
Bi and Bj yields a branch Bk if and only if sequence
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Figure 1: (a) Binary image. (b) BDD representation. (c)
Example of a binary image and its BDD representation.

of nodes from both branches are orderly identical, that
is vi

1 = v
j
1, v

i
2 = v

j
2, ..., v

i
n = vj

n and the branch Bk is

determined by Bk = {vi
1, e

i
1 ⊕ e

j
1, ..., e

i
n−1 ⊕ e

j
n−1, v

i
n}

Definition 5 Let p be the number of edges whose at-
tribute is one. The parity of a branch is even if p is even,
otherwise the parity is said to be odd.

Definition 6 Left shifting of a branch replaces the at-
tribute of edge ei by the attribute of edge ei+1 and assigns
the attribute of en−1 to 0.

Definition 7 Right shifting of a branch replaces the at-
tribute of edge ei+1 by the attribute of edge ei and assigns
the attribute of e1 to 0.

3 Transition Branch

Suppose that Bp is a branch of a BDD representing a
pixel p at its original location. Let p′ be the pixel p af-
ter translation and p′ is represented by branch B′

p. The
branch B′

p can be obtained by applying exclusive-or be-
tween branch Bp and a transition branch Bt.

3.1 Transition Branch of Unit Displacement

A transition branch Bt = {x0, e
t
1, x1, e

t
2, ..., e

t
w−1, xw−1,

et
w, y0, e

t
w+1, ..., e

t
w+h−1

, yh−1, e
t
w+h, T } can be decom-

posed into two parts, Btx and Bty where Btx = {x0, e
t
1,

x1, e
t
2, ..., e

t
w−1, xw−1, e

t
w, y0} and Bty = {y0, e

t
w+1, ...,

et
w+h−1

, yh−1, e
t
w+h, T }.

The transition branch Btx is constructed depending on
the parity of Bx as follows:

Case 1.1 Parity of Bx is even. Set the attribute of et
w

of Btx to 1. Set the attributes of other edges to 0.

Case 1.2 Parity of Bx is odd. Let e be an edge in Bx

and et be an edge in Btx. Locate the first edge ew−j, 0 ≤
j ≤ w − 1, such that ew−j = 1. Set attribute of et

w−j−1

to 1, and attribute of the remaining edges are set to 0.

Similarly, the transition branch Bty is constructed de-
pending on the parity of By as follows:

Case 2.1 Parity of By is even. Set the attribute of et
w+h

to 1. Set the attributes of other edges to 0.

Case 2.2 Parity of By is odd. Let e be an edge in By and
et be an edge in Bty. Locate the first edge ew+h−k, w +
1 ≤ k ≤ w + h − 1 such that ew+h−k = 1. Set attribute
of et

w+h−k−1
to 1, and attribute of the remaining edges

are set to 0.

After Btx and Bty are constructed, we merge them to
form Bt. A transition branch representing negative can
be constructed by simply exchanging the case of parity
from even to odd and vice versa.

An example of translation is shown in Figure 2. A given
displacement of translation is (1,-1). To clarify the steps
of the algorithm, we consider these branches individually
as shown in Figure 3. The algorithm starts by construct-
ing transition branch Bt1, Bt2 and Bt3 corresponding to
B1, B2 and B3, respectively. To construct Bt1, we con-
sider the parity of Bx

1 . Since the parity of Bx
1 is odd,

we follow the procedure as stated in case 1.1. Bt
y
1 is ob-

tained by considering the parity of B
y
1 . Since the parity

of B
y
1 is odd and the displacement is -1, we follow proce-

dures stated in case 2.2. But the parity condition has to
be switched. Merging Btx1 and Bt

y
1 yields Bt1 as shown

in Figure 3(d). We repeat the process to construct Bt2
and Bt3. The branches of BDD after the image is trans-
lated is obtained by B′

1 = B1 ⊕ Bt1, B′

2 = B2 ⊕ Bt2 and
B′

3 = B3 ⊕ Bt3.

3.2 Transition Branch of 2n Displacement

Given Bx = {x0, e1, x1, e2, ..., ew−1, xw−1, ew, y0} and a
displacement of translation d = 2n, n = 1, 2, 3, ...,

⌈log2 W ⌉ where W is the width of the image. The transi-
tion branch Btx of Bx can be constructed by the following
procedures:

step 1 Shift Bx to the right by n positions, then as-
sign to the temporary branch B′x, that is B′x =
{x0, 0, x1, ..., 0, xn, e1, ..., ew, y0}.

step 2 Using procedures described in Section 3.1 to de-
termine the transition branch Btx of B′x. Suppose
that Btx = {x0, e

t
1, x1, e

t
2, ..., e

t
w−1, xw−1, e

t
w, y0}.

step 3 Shift edges of the branch Btx from step 2 to
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Figure 2: (a) BDD representation of image at original
location. (b) BDD after translation.
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Figure 4: (a) BDD representation of image at original
location. (b) BDD and image after translation.

the left one position, then assign to the temporary
branch Bt′

x
.

step 4 Set the attribute of the rightmost edge of Bt′
x

to
1. The content of Bt′

x
becomes Bt′

x
= {x0, e

t
2, x1,

et
3, ..., e

t
w, xw−1, 1, y0}.

step 5 Continue shifting the edges of Bt′
x

to the left by
n - 1 positions. The content of Bt′

x
after shifting

becomes Bt′
x = {x0, e

t
n+1, x1, e

t
n+2, ..., e

t
w, xw−n−1,

1, 0, ..., 0, y0}.

After the process terminates, the content of Bt′
x

becomes
the desired transition branch Btx. Similarly, Bty could
be constructed by repeating step 1-5. After Btx and Bty

are obtained, we merge them to form Bt .

3.3 Arbitrary Translation

The general rules of translation by an arbitrary displace-
ment d , d ≤ 2m − 1 where m is the number of bits
of the Gray code coordinates, are as follows. First, di-
vide the translation of displacement d into k steps such
that d = ak−1 · 2

k−1 + ak−2 · 2
k−2 + ... + a1 · 2

1 + a0 · 2
0

where ak−1, ak−2, ..., a1, a0 ∈ {0, 1}. Then successively
apply the translation of nonzero displacement ai · 2

i for
k times. For example, translation of displacement d =
13 can be achieved by dividing translation into k = 3
steps since d = 8 + 4 + 1 = 23 + 22 + 20 which means
we translate the object by 8 pixels first then follow by 4
pixels and then 1 pixel.

We choose the branch B1 of the BDD from Figure 4 for
demonstration as shown in Figure 5. Note that we use the
prime (′) to indicate the temporary storage used in our
algorithm. In Figure 5, the algorithm is applied to the
subbranch Bx

1 and B
y
1 , separately. The branch B′

1

x
and

B′

1

y
, as shown in Figure 5(b), are the result from right

shifting of Bx
1 by two positions and B

y
1 by one position,
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respectively. Next, we determine the transition branch
Btx1 of B′

1

x
and Bt

y
1 of B′

1

y
using procedure described

in Section 3.1. The result is shown in Figure 5(c). By
shifting Btx1 and Bt

y
1 to the left by one position and then

setting the attribute of edge e3 and e6 to 1, we have Bt′
x
1

and Bt′
y
1 as shown in Figure 5(d). Since n = 2 for △x,

we continue shifting Bt′
x
1 further one position to the left.

The algorithm stops processing the Bt′
y
1 because n =

1. Therefore, we have the transition branch of B1 for
displacement (4, -2) as shown in Figure 5(e). Next, we
exclusive-or the branch B1 to the transition branch we
obtained. The result is branch B1 after translation by (4,-
2) as shown in Figure 5(f). We repeat the algorithm again
for the successive translation by (1, -1). The algorithm
starts with the branch B′

1, which is B1 after translation
by (-4, 2). The transition branch Bt′′′1 of B′

1 is shown
in Figure 5(g). The branch B′′

1, which is the complete
translation of B1, can be obtained from exclusive-or the
transition branch Bt′′′1 to the branch B′

1 as shown in
Figure 5(h).

4 Orthogonal Image Rotation

4.1 Image Flipping

Definition 8 Image flipping along an axis x = x0,

x0 > 0 is an operation that moves every pixel i of the
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image from (xi, yi) to the new coordinate (x′

i, y
′

i) defined
by x′

i = xi + 2 · di, di = xo − xi and y′

i = yi.

Definition 9 Image flipping along an axis y = y0,

y0 > 0 is an operation that moves every pixel i of the
image from (xi, yi) to the new coordinate (x′

i, y
′

j) defined
by y′

i = yi + 2 · di, di = y0 − yi and x′

i = xi.

Flipping operation is equivalent to translation of each
pixel by 2·di. Figure 6 shows the concept of image flipping
when considered as nonuniform translation.

4.2 Coordinate Swapping

Definition 10 Coordinate swapping is an operation that
moves every pixel i of the image from (xi, yi) to the new
coordinate (x′

i, y
′

j) defined by x′

i = yi and y′

i = xi.

Coordinate swapping is equivalent to exchanging of edges
from subbranch Bx and By of a branch B. Figure 7 shows
the concept of coordinate swapping.

Image rotation of 90o can be achieved by coordinate
swapping, and then follow by flipping along y = y0 axis.
The rotation of 180o is achieved by flipping along y = y0

axis, and then follow by flipping along x = x0 axis. The
rotation of 270o is achieved by flipping along y = y0 axis,
and then follow by coordinate swapping. Figure 8 shows
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process of rotation.

5 Arbitrary Rotation

Image rotation by an arbitrary angle α, 0 ≤ α ≤ 90o

about the point (xo, yo) can be considered as the trans-
lation as follows. Let (xi, yi) be the coordinate of the
pixel i at the original location and (x′

i, y
′

i) be the coor-
dinate of the pixel i after rotation. The coordinates x′

i

and y′

i are determined by x′

i = xi · cos(α) − yi · sin(α)
and y′

i = xi · sin(α) + yi · cos(α). Then, we calcu-
late the displacement for each pixel individually, that is
△xi = x′

i − xi and △yi = y′

i − yi. Given the original
location and the displacement, we apply the translation
procedures as described in Section 3.2 and 3.3.

6 Image Shearing

Shearing is a transformation of image that every pixel i

of the image is moved from the location (xi, yi) to the
new location (x′

i, y
′

i) defined by x′

i = xi + a · yi and
y′

i = yi+b·xi. The coefficients a and b are shearing factor
which control shape of the image after shearing. If a = 0,
the result is called shearing along y-axis. If b = 0, the
result is called shearing along x-axis. After the new lo-
cation (x′

i, y
′

i) is obtained, we calculate the displacement
of pixel i. Given the new location and the displacement,
the translation algorithm can be applied to perform the
image shearing.

7 Image Scaling

Image scaling enlarges or reduces the image by the given
scaling factor about the origin. Image scaling can be
considered as the translation that moves the pixel i from
(xi, yi) to the new location (x′

i, y
′

i) defined by x′

i = Sx ·xi

and y′

i = Sy · yi. Sx and Sy are called scaling factor. Af-
ter the new location (x′

i, y
′

i) is obtained, we calculate the

displacement of pixel i. Given the new location and the
displacement, the translation algorithm can be applied to
perform the image scaling.

8 Computational Requirements

Since the proposed algorithm is based on the construction
of transition branch which involves parity checking and
branch searching. The best case is when branch search-
ing is not required. In this case, the construction of the
transition branch can be done in O(1). If branch search-
ing takes place, the construction of the transition branch
can be done in time linearly to the height of the branch
or O(w + h). If the BDD contains n branches, then the
required time is O(n(w + h)). The transition branch for
an arbitrary translation displacement requires additional
time for edge shifting which is linear to the height of the
BDD or O(w + h). The running time also depends on
the value of translation displacement. The best case is
when the displacement of translation is power of 2 be-
cause only one transition branch has to be constructed.
In practice, the translation of displacement which is not
power of two is done by using the combination of decre-
mental and incremental translation. For example, given
d = 255. If only the incremental translation is used, then
the translation must be divided into 7 steps. The smaller
number of steps could be achieved by translating by d =
256 first, and, then by d = -1. For geometric transfor-
mations which rely on nonuniform translation, we need
to construct transition branches for each branch of the
BDD representation of the image independently.

9 Experimental Results

The performance of the proposed algorithm is compared
to the well-known standard lossless image coding algo-
rithms such as GIF, JPEG-LS, JBIG and PNG. The per-
formance of algorithms under test are measured in term of
execution time when performing transformations of the
test images encoded in their native format. The algo-
rithms under test are implemented using C language and
compiled with GNU gcc compiler running on 1.8 GHz
Pentium4 PC with 256MB of memory under Linux op-
erating system. We use the standard test image Lena,
which is converted to bi-level 256x256 and 64x64 pixels
in our measurement. Figure 9-13 and 14-18 show the
transformation performance of 64x64 and 256x256 pixels
images, respectively. Sample of images obtained from the
experiment are shown in Figure 19-24.

10 Conclusion

We have shown that the geometric transformations of
an image represented by a BDD can be expressed using
only BDD manipulation process. From the experimen-
tal results, the performance of our proposed algorithm
is comparable to those standard lossless image coding



Figure 9: Performance comparison of image translation
(64x64 pixels).

Figure 10: Performance comparison of image orthogonal
rotation (64x64 pixels).

Figure 11: Performance comparison of image arbitrary
rotation (64x64 pixels).

Figure 12: Performance comparison of image shearing
(64x64 pixels).



Figure 13: Performance comparison of image scaling
(64x64 pixels).

Figure 14: Performance comparison of image translation
(256x256 pixels).

Figure 15: Performance comparison of image orthogonal
rotation (256x256 pixels).

Figure 16: Performance comparison of image arbitrary
rotation (256x256 pixels).



Figure 17: Performance comparison of image shearing
(256x256 pixels).

Figure 18: Performance comparison of image scaling
(256x256 pixels).

Figure 19: Original Lena image (64x64 pixels).

Figure 20: Image Translation by (37, 23) pixels.



Figure 21: Image Orthogonal Rotation by 180 degrees.

Figure 22: Image Arbitrary Rotation by 12 degrees.

Figure 23: Image Scaling by Factor (1.5, 1.5).

Figure 24: Image Shearing by Factor (0.2, 0.1).



algorithms in term of execution time. In transforma-
tions of small image (64x64 pixels), our proposed algo-
rithm outperforms all other standard lossless coding al-
gorithms. Normally, standard lossless image coding algo-
rithms do not support geometric transformations, hence
images encoded using these algorithms have to be con-
verted to raster or bitmap representation before trans-
formations can be applied. Contrasting to our proposed
algorithm, the transformations can be performed directly
on the BDD representation of the image which eliminates
time for conversion back and forth between bitmap and
their native representation. As we have analyzed, the
proposed algorithm runs slower as the size of the image
increased. By increasing the test image from 64x64 pixels
to 256x256 pixels which is 16 times enlarging of area, the
execution time of the proposed algorithm increases by the
factor of 3.4, 2.7, 3.9, 3.0 and 2.8 for image translation,
orthogonal, arbitrary rotation, shearing and scaling, re-
spectively. However, the performance is still comparable
to the other standard lossless coding algorithms.
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