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Abstract

Efficient execution of numerical algorithms requires
adapting the code to the underlying execution plat-
form. In this paper we show the process of fine tun-
ing our sparse Hypermatrix Cholesky factorization in
order to exploit efficiently two important machine re-
sources: processor and memory. Using the techniques
we presented in previous papers we tune our code on
a different platform. Then, we extend our work in
two directions: first, we experiment with a variation
of the ordering algorithm, and second, we reduce the
data submatrix storage to be able to use larger sub-
matrix sizes.

Keywords: Sparse Cholesky factorization, hyperma-

trix structure, small matrix library

1 Introduction

1.1 Hypermatrix representation of a
sparse matrix

Sparse matrices are mostly composed of zeros but of-
ten have small dense blocks which have traditionally
been exploited in order to improve performance [1].
Our approach uses a data structure based on a hyper-
matrix (HM) scheme [2, 3]. The matrix is partitioned
recursively into blocks of different sizes. The HM
structure consists of N levels of submatrices, where
N is an arbitrary number. The top N-1 levels hold
pointer matrices which point to the next lower level
submatrices. Only the last (bottom) level holds data
matrices. Data matrices are stored as dense matri-
ces and operated on as such. Null pointers in pointer
matrices indicate that the corresponding submatrix
does not have any non-zero elements and is therefore
unnecessary. Figure 1 shows a sparse matrix and a
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simple example of corresponding hypermatrix with 2
levels of pointers.

Figure 1: A sparse matrix and a corresponding hy-
permatrix.

The main potential advantage of a HM structure over
other sparse data structures, such as the Compressed
Sparse Column format, is the ease of use of multilevel
blocks to adapt the computation to the underlying
memory hierarchy. However, the hypermatrix struc-
ture has an important disadvantage which can intro-
duce a large overhead: the storage of and computation
on zeros within data submatrices. This problem can
arise either when a fixed partitioning is used or when
supernodes are amalgamated. A commercial pack-
age known as PERMAS uses the hypermatrix struc-
ture [4]. It can solve very large systems out-of-core
and can work in parallel. In [5] the authors reported
that a variable size blocking was introduced to save
storage and to speed the parallel execution. The re-
sults presented in this paper, however, correspond to
a static partitioning of the matrix into blocks of fixed
sizes.

1.2 Previous work

Our previous work on sparse Cholesky factorization
of a symmetric positive definite matrix into a lower
triangular factor L using the hypermatrix data struc-
ture was focused on the reduction of the overhead
caused by the unnecessary operation on zeros which
occurs when a hypermatrix is used. Approximately
90% of the sparse Cholesky factorization time comes
from matrix multiplications. Thus, a large effort has
been devoted to perform such operations efficiently.
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We developed a set of routines which can operate very
efficiently on small matrices [6]. In this way, we can
reduce the data submatrix size, reducing unnecessary
operation on zeros, while keeping good performance.
Using rectangular data matrices we adapt the storage
to the intrinsic structure of sparse matrices.

A study of other techniques aimed at reducing the
operation on zeros can be found in [7]. and [8]. We
showed that the use of windows within data subma-
trices and a 2D layout of data is necessary to improve
performance. Figure 2 shows a dense window within
a data submatrix.
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Figure 2: A rectangular data submatrix and a window
within it.

We have 4 codes specialized in the multiplication
of two matrices. The operation performed is C =
C − A × Bt. The appropriate routine is chosen at
execution time depending on the windows involved in
the operation. Their efficiency is different. These rou-
tines (from more to less efficient) are named: FULL,
which uses the entire matrices; WIN 1DC, that uses
windows along the columns; WIN 1DR, which uses
windows along the rows; and WIN 2D, that uses win-
dows in both dimensions and is the slowest amongst
all 4 codes.

In [9] we presented Intra-Block Amalgamation: we al-
low for zeros outside of windows but within data sub-
matrices, i.e. we extend the windows if that means
that a faster routine can be used. Figure 3 shows how
we can extend a window both row and/or column-
wise. In case a window is expanded in both directions,
the resulting window matches the whole data subma-
trix. This action can reduce the number of times a
slow matrix multiplication routine is used.

All our previous work was tested on a machine with
a MIPS R10000 processor. In this paper we use a dif-
ferent machine which has an Intel Itanium2 processor.
A preliminary version of this work appeared in [10].
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Figure 3: Data submatrix after applying both row and
column-wise intra-block amalgamation.

1.3 Matrix characteristics

We have used several test matrices. All of them are
sparse matrices corresponding to linear programming
problems. QAP matrices come from Netlib [11] while
others come from a variety of linear multicommodity
network flow generators: A Patient Distribution Sys-
tem (PDS) [12], with instances taken from [13]; RM-
FGEN [14]; GRIDGEN [15]; TRIPARTITE [16]. Ta-
ble 1 shows the characteristics of several matrices ob-
tained from such linear programming problems. Ma-
trices were ordered with METIS [17] and renumbered
by an elimination tree postorder [18].

1.4 Contribution

In this paper we present an extension to our previ-
ous work on the optimization of a sparse Hyperma-
trix Cholesky factorization. We will first summarize
the work we have done to adapt our code to a new
platform with an Intel Itanium2 processor. Later, we
study the effect of a different ordering of the sparse
matrices which is more suitable for application on ma-
trices arising from linear programming problems. Fi-
nally, we present a way to reduce the data submatrix
storage, which allows us to try larger matrix sizes.
We will present the performance obtained using four
different data submatrix sizes.

2 Porting efficiency to a new platform

In this section we summarize the port of our appli-
cation from a machine based on a MIPS R10000 pro-
cessor to a platform with an Intel Itanium2 processor.
We address the optimization of the sparse Cholesky
factorization based on a hypermatrix structure follow-
ing several steps.

First we create our Small Matrix Library (SML) auto-
matically as explained in [19]. The code is automati-
cally optimized fixing as many parameters as possible



Table 1: Matrix characteristics: matrices ordered using METIS

Matrix Dimension NZs NZs in L Density of L MFlops to factor

GRIDGEN1 330430 3162757 130586943 0.002 278891
QAP8 912 14864 193228 0.463 63
QAP12 3192 77784 2091706 0.410 2228
QAP15 6330 192405 8755465 0.436 20454

RMFGEN1 28077 151557 6469394 0.016 6323
TRIPART1 4238 80846 1147857 0.127 511
TRIPART2 19781 400229 5917820 0.030 2926
TRIPART3 38881 973881 17806642 0.023 14058
TRIPART4 56869 2407504 76805463 0.047 187168

pds1 1561 12165 37339 0.030 1
pds10 18612 148038 3384640 0.019 2519
pds20 38726 319041 10739539 0.014 13128
pds30 57193 463732 18216426 0.011 26262
pds40 76771 629851 27672127 0.009 43807
pds50 95936 791087 36321636 0.007 61180
pds60 115312 956906 46377926 0.006 81447
pds70 133326 1100254 54795729 0.006 100023
pds80 149558 1216223 64148298 0.005 125002
pds90 164944 1320298 70140993 0.005 138765

at compilation time. We use the best compiler at hand
to compile several variants of code. Then, we execute
them, and select the one providing best performance.
This allows us to create efficient routines which work
on small matrices of fixed size. These matrices fit in
the lowest level cache. In this way we obtain efficient
inner kernels which can exploit efficiently the proces-
sor resources. The use of small matrices allows for the
reduction of the number of zeros stored within data
submatrices.

We have used 4 × 32 as data submatrix dimensions
since these were the ones providing best performance
on the R10000. Later in this paper we will present the
results obtained with other matrix dimensions. As
we mentioned in section 1.2 we use windows within
data submatrices since they have proved effective in
reducing both the storage of and operation on zero
elements.

Afterwards, we experiment with different intra-block
amalgamation values. As an example, figure 4
shows the performance obtained using several val-
ues of intra-block amalgamation on the hyperma-
trix Cholesky factorization of matrix pds20 on an
Itanium2. Each curve corresponds to one value of
amalgamation along the rows. The curve at the
top (amr=3) corresponds to the largest amalgama-
tion threshold along the rows: three, for submatrices
consisting of four rows. The one at the bottom corre-
sponds to the case where this type of amalgamation
is disabled (amr=0). We must note that we report
Effective Mflops. They refer to the number of useful

floating point operations (#flops) performed per sec-
ond. Although the time includes the operations per-
formed on zeros, this metrics excludes nonproductive
operations on zeros performed by the HM Cholesky
algorithm when data submatrices contain such zeros.
Thus,

Effective Mflops =

#flops(excluding operations on zeros) · 10−6

T ime (including operations on zeros)

On the Itanium2 and using our matrix test suite, the
worst performance is obtained when no amalgamation
is done along the rows (amr=0). As we allow increas-
ing values of the intra-block amalgamation along the
rows the overall performance increases. The best per-
formance for this matrix dimensions is obtained when
amalgamation along the rows is three. This means
that, for data submatrices of size 4×32, we will use no
windows along the rows. This suggests that a larger
number of rows could provide improved performance.
We will analyze this issue in section 4. As we move
right on the curves, we observe the performance ob-
tained with increasing values of amalgamation thresh-
old along the columns. The difference is often low, but
the best results are obtained with values ranging from
six to ten.

The threshold values providing best performance on
the R10000 were different: one on the rows and five
on the columns. The reason for this is the different
relative performance of the matrix multiplication rou-
tines. The ability of one compiler to generate efficient
code for routines which take windows into account



Figure 4: Sparse HM Cholesky on an Intel Itanium2:

Performance obtained with different values of intra-

block amalgamation on submatrices of size 4 × 32 on

matrix pds20.

can be different from its aptitudes when dealing with
routines which do not use windows at all. And these
capabilities can be different from those of the compiler
found on another platform. As a consequence we get
different optimal values for the intra-block amalgama-
tion thresholds on each platform.

3 Sparse matrix reordering

A sparse matrix can be reordered to reduce the
amount of fill-in produced during the factorization.
Also it can be reordered aiming to improve paral-
lelism. In all previous work presented so far we have
been using METIS [20] as the reorder algorithm. This
algorithm is considered a good algorithm when a par-
allel Cholesky factorization has to be done. Also,
when matrices are relatively large, graph partitioning
algorithms such as METIS usually work much better
than MMD, the traditional Minimum Degree order-
ing algorithm [21]. METIS implements a Multilevel
Nested Dissection algorithm. This sort of algorithms
keep a global view of the graph and partition it recur-
sively using the Nested Dissection approach [22] split-
ting the graph in smaller disconnected graphs. When
these subgraphs are considered small, a local ordering
algorithm is used. METIS changes to the local order-
ing strategy when the number of nodes is less than
200. It uses the MMD algorithm for the local phase.

Although our current implementation is sequential,
we have tried to improve the sparse hypermatrix
Cholesky for the matrix orders produced by METIS.
In this way, the improvements we get are potentially

useful when we go parallel. However, we have also ex-
perimented with other classical algorithms. On small
matrices in our matrix test suite, when the Multiple
Minimum Degree (MMD) [23] algorithm was used the
hypermatrix Cholesky factorization took considerably
less time. However, as we use larger matrices (RM-
FGEN1, pds50, pds60, . . . ) the time taken to factor
the resulting matrices became several orders of mag-
nitude larger than that of METIS. We have also tried
older methods [24] such as the Reverse Cuthill-McKee
(RCM) and the Refined Quotient Tree (RQT). RCM
tries to keep values in a band as close as possible to the
diagonal. RQT tries to obtain a tree partitioning of a
graph. These methods produce matrices with denser
blocks. However the amount of fill-in is so large that
the factorization time gets very large even for medium
sized matrices.

3.1 Ordering for Linear Programming

problems

Working with matrices which arise in linear program-
ming problems we may use sparse matrix ordering al-
gorithms specially targeted for these problems. The
METIS sparse matrix ordering package offers some
options which the user can specify to change the de-
fault ordering parameters. Following the suggestions
found in its manual we have experimented with val-
ues which can potentially provide improved orderings
for sparse matrices coming from linear programming
problems. There are eight possible parameters. We
skip the details of these parameters for brevity. How-
ever, for the sake of completeness, we include the val-
ues we have used: 1, 3, 1, 1, 0, 3, 60, and 5.

Using this configuration usually produces better
sparse matrix orderings than the default configuration
for the type of problems we are dealing with. This or-
dering results in faster sparse Cholesky numerical fac-
torization. However, this comes at the expense of a
larger ordering process which incurs in a larger order-
ing time. We have measured both the ordering and
numerical factorization time obtained using the two
configurations of METIS discussed above. We must
take into account that Interior Point Methods (IPM),
i.e. the methods which use the sparse Cholesky fac-
torization on linear programming problems have an
iterative nature. In each iteration a sparse Cholesky
factorization is performed on matrices with different
data but the very same structure. Thus, the ordering
process can be performed only once, while the nu-
merical factorization is repeated many times on dif-
ferent data. Until now, we have been using METIS



default configuration. To evaluate the potential for
the new ordering parameters we have measured the
number of iterations necessary to amortize the cost
of the improved matrix reordering. Figure 5 presents
the number of iterations after which the specific or-
dering starts to be advantageous. We can see that in
many cases the benefits are almost immediate. Conse-
quently, in the rest of this work we will present results
using the modified ordering process specific for matri-
ces arising in linear programming problems.

Figure 5: Number of iterations necessary to amortize

cost of improved ordering.

4 Data submatrix size

In section 2 we showed that on an Intel Itanium2
and using data submatrices of size 4 × 32 the op-
timal threshold for amalgamation in the rows was
three. This suggests that using data submatrices with
a larger number of rows should be tried. However, the
larger the blocks, the more likely it is that they con-
tain zeros. As we have commented in the introduction
and have discussed in previous papers, the presence
of zero values within data submatrices causes some
drawbacks. Obviously, the computation on such null
elements is completely unproductive. However, we al-
low them as long as operating on extra elements allows
us to do such operations faster. On the other hand,
a different aspect is the increase in memory space re-
quirements with respect to any storage scheme which
keeps only the nonzero values. Next, we present the
way in which we can avoid some of this additional
storage.

4.1 Data submatrix storage

As we mentioned in section 1.2, we use windows to
reduce the effect of zeros in the computations. How-
ever, we still keep the zeros outside of the window.
Figure 6 shows two data submatrices stored contigu-
ously. Even when each submatrix has a window we
store the whole data submatrix as a dense matrix.

d1
m1

� � �
� � �
� � �
� � �

� � �
� � �
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� � �

m2
d2

Figure 6: Data submatrices before compression.

However, we could avoid storing zeros outside of the
window, i.e. just keep the window as a reduced dense
matrix. This approach would reduce storage but has
a drawback: by the time we need to perform the op-
erations we need to either uncompress the data sub-
matrix or reckon the adequate indices for a given op-
eration. This could have a performance penalty for
the numerical factorization. To avoid such overhead
we store data submatrices as shown in figure 7.

d1
m1

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

m2
d2

Figure 7: Data submatrices after compression.

We do not store zeros in the columns to the left and
right of the window. However, we do keep zeros
above and/or underneath such window. We do this
for two reasons: first, to be able to use our routines
in the SML which have all leading dimensions fixed
at compilation time (we use Fortran, which implies
column-wise storage of data submatrices); second, to
avoid extra calculations of the row indices. In order
to avoid any extra calculations of column indices, we
keep pointers to an address which would be the initial
address of the data submatrix if we were keeping zero
columns on the left part of the data submatrix. Thus,
if the distance from the initial address of a submatrix
and its window is dx we keep a pointer to the initial
address of the window with dx subtracted from it.
This pointers are kept in the last level of pointers in
the hypermatrix. Thus, when the numerical factoriza-
tion takes place, we can take advantage of performing
dense operations on data submatrices, i.e. use our ef-
ficient routines working on small matrices and avoid
complex calculation of indices. Note that in the pres-
ence of windows, we will never access the zero columns



to the left or right of a window, regardless of having
them stored or not.

Figure 8 presents the savings in memory space ob-
tained by this method compared to storing the whole
data submatrices of size 4× 32. We can observe that
the reduction in memory space is substantial for all
matrices.

Figure 8: HM structure: reduction in space after sub-

matrix compression.

4.2 Larger data submatrices: perfor-

mance

The reduction in memory space allows us to experi-
ment with larger matrix sizes (except on the largest
matrix in our test suite: GRIDGEN1). Figure 9
presents the variation in execution time on an Intel
Itanium2 processor when the number of rows per data
submatrix was increased to 8, 16 and 32. In almost
all cases the execution time increased. Only matrices
of the TRIPARTITE family benefited from the use of
larger submatrices.

Figure 9: Sparse HM Cholesky: variation in execution

time for each submatrix size relative to size 4 × 32.

We must note that the performance obtained with

matrices of size 8 × 32 is worse that that obtained
with submatrices of size 16 × 32. The reason for
this is the relative performance of the routines which
work on each matrix size. The one with larger im-
pact on the overall performance of the sparse hyper-
matrix Cholesky factorization is the one with fixed
matrix dimensions and loop trip counts. The cor-
responding routine for each matrix size obtains the
peak performance shown in table 2. We can observe
that the efficiency of the routine working on matrices
with four rows is similar to the one which works on
matrices with eight rows. However, the overhead, in
terms of additional zeros, is much larger for the latter.
This explains their relative performance. However,
the improved performance of the matrix multiplica-
tion routine when matrices have 16 rows can pay off.
Similarly to the comparison between codes with eight
rows and four, using matrices with 32 rows produces
a performance drop with respect to the usage of data
submatrices with 16 rows.

Table 2: Performance of the C = C −A×BT matrix

multiplication routine for each submatrix size.

4 × 32 8 × 32 16× 32 32× 32

4005 4080 4488 4401

5 Conclusions and Future Work

The efficient execution of a program requires the con-
figuration of the software to adapt it to the problem
being solved and the machine used for finding a solu-
tion. We have shown the way in which we can tune
our sparse hypermatrix Cholesky factorization code
for high performance on a new platform. We have
seen that the optimal parameters can be different for
each problem type and platform. Thus, we need to
adapt the code in search for performance.

We want to improve the performance of our code fur-
ther. We believe that some directions for further im-
provement can be: modify our sparse hypermatrix
Cholesky factorization to have data submatrices ac-
cessed with stride one by operating on an upper trian-
gular matrix (U) rather than the lower triangle (L);
allow for a new data storage within hypermatrices:
use supernodes to store data submatrices in order to
reduce the number of non productive operations per-
formed on zeros. We also want to partition the ma-
trix dynamically taking into account the information



of the elimination tree. This will prepare the result-
ing hypermatrix for parallel Cholesky factorization,
which we plan to implement in the future.
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