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Introduction. The study of subdifferentiability
of marginal functions is of great interest not only be-
cause it is related to the Lagrange multipliers but also
because it is connected to the study of the sensitivity
of some problems in optimization and optimal control.
Generally, the infimum defining the marginal function
is required to be attained near the point of interest.
The present paper studies, with the help of some re-
cent results by Mordukhovich and Shao [10], the lim-
iting Fréchet subdifferential of the optimal value func-
tion without assuming that the infimum is attained.
The limiting Fréchet subdifferential is the extension,
by Kruger and Mordukhovich [8] to Banach spaces
admitting equivalent Fréchet differentiable norms, of
the subdifferential introduced by Mordukhovich [9] in
finite dimensions. After recalling some notions in the
first section, the second one is devoted to the study
of functions of the form

m(x) := inf{g(y) : y ∈ G(x)},
where g is a real-valued locally Lipschitz function
from an Asplund space X into <, and G is a mul-
tivalued mapping from X into an Asplund space Y .
The result obtained is strong enough to allow to
describe the subdifferential of the partial distance
function x −→ d(ȳ; G(x)) at any point x̄ satisfying
(x̄, ȳ) ∈ gph G, whenever the multivalued mapping G
is pseudo-Lipschitz at the point (x̄, ȳ). In fact, this de-
scription was the main motivation of our study here.
The third section deals with the study of non neces-
sarily Lipschitz marginal function of the more general
form

m(x) := inf{f(x, y) : y ∈ G(x)},
where f is a real-valued function defined on X × Y .

1. Preliminaries. In all this paper X and Y
denote two Asplund spaces, X∗ the topological dual
of X and BX the closed unit ball of X. (We refer the
reader to [11] for properties of Asplund spaces). Let
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f be an extended real-valued function
f : X −→ <⋃{−∞, +∞}. We will use the important
notion of Fréchet ε-subgradient in the sequel (see [7],
[8], [15], and [16]). An element x∗ in X∗ is said to be a
Fε−subgradient to f at a point x̄ where | f(x̄) |< +∞
if there exists a neighbourhood V of x̄ such that

〈x∗, x− x̄〉 ≤ f(x)− f(x̄) + ε ‖ x− x̄ ‖

for every x ∈ V . Note that this inequality means that
x̄ is a local minimum of the function

x −→ f(x)− 〈x∗, x− x̄〉+ ε ‖ x− x̄ ‖ .

We will denote by ∂F,εf(x̄) the set of all Fε-
subgradients to f at x̄. The limiting Fréchet-
subdifferential in the sense of Kruger-Mordukhovich
[8] is the set ∂F f(x̄) of all x∗ ∈ X∗ for which there ex-
ist sequences (εn) ↓ 0, (xn) → x̄ with (f(xn)) → f(x̄),
x∗n ∈ ∂F,εnf(xn) with (x∗n) →w∗ x∗. One of the main
calculus rules in Asplund spaces of the limiting
Fréchet subdifferential is given by the following
theorem established by Mordukhovich and Shao [10]
(in a more general setting).

1.1 Theorem([10]). Let f1 : X −→
<⋃{−∞, +∞} be lower semicontinuous near x̄
with | f1(x̄) |< ∞ and let f2 : X −→ < be locally
Lipschitz near x̄. Then

∂F (f1 + f2)(x̄) ⊂ ∂F f1(x̄) + ∂F f2(x̄).

2. Subdifferentials of marginal functions
defined by Lipschitz parametric functions.

In this section we consider the marginal function

m(x) := inf{g(y) : y ∈ G(x)},

where g : Y −→ < is a real-valued function and G is
a multivalued mapping from X into Y . We will de-
note the graph of G by gph G := {(x, y) ∈ X × Y :
y ∈ G(x)}. It is known that a lot of apparently differ-
ent types of marginal functions can be reduced to this
form. In Clarke [2], Hiriart-Urruty [4], Rockafellar
[12], Thibault [14] and references therein (for exam-
ples) one can find some reductions and several appli-
cations to the study of optimization problems. Recall
that for ȳ ∈ G(x̄) the limiting Fréchet coderivative
D∗

F G(x̄, ȳ) is the multivalued mapping from Y ∗ into
X∗ defined by

x∗ ∈ D∗
F G(x̄, ȳ)(y∗) ⇐⇒

(x∗,−y∗) ∈ <+∂F d(.; gph G)(x̄, ȳ).

We will write ∂F d(x̄, ȳ; gph G) in place of
∂F d(.; gph G)(x̄, ȳ). Here d(.;S) denotes the distance
function to a set S. Note that for x̄ ∈ S ⊂ X and
S3r := S ∩ (x̄ + 3rBX) with r > 0 it is not difficult to
see that for x ∈ x̄ + rBX

d(x, S) = d(x, S3r)

and hence

∂F d(x̄, S) = ∂F d(x̄, S3r). (2.1)

The following theorems are the main results of this
section.

2.1 Theorem. Suppose that g is locally Lipschitz
and m is finite and lower semicontinuous at x̄ with
| m(x̄) |< ∞. Then for every x∗ ∈ ∂F m(x̄), there
exist sequences ((xn, yn)) −→ (x̄, ȳ) with yn ∈ G(xn)
and (g(yn)) −→ m(x̄), (εn) ↓ 0,
y∗n ∈ ∂F g(yn) + εnBY ∗ , x∗n ∈ D∗

F G(xn, yn)(y∗n) such
that x∗ = lim x∗n, with respect to the weak-star
topology.

Proof. Fix x∗ ∈ ∂F m(x̄). By definition of the
subdifferential in the sense of Kruger-Mordukhovich,
[7], [8] there exist (un) −→ x̄, with m(un) −→ m(x̄),
εn ↓ 0 and u∗n ∈ ∂F,εnm(un) with u∗n −→w∗ x∗.
By definition of Fréchet ε-subgradients, the point un

is a local minimum over some ball un + rnBX of the
function

x −→ m(x)− 〈u∗n, x− un〉+ εn ‖ x− un ‖ . (2.2)

Set ε̄n := min( rn

6 , εn) and choose vn ∈ G(un) such
that

g(vn) ≤ m(un) + ε̄2n (2.3).

If we set

f(x, y) := g(y)− 〈u∗n, x− un〉+ εn ‖ x− un ‖, (2.4)

and En := gph G ∩ [(un, vn) + rnBX×Y ]. We deduce
from (2.2) and (2.3)

f(un, vn) ≤ inf
(x,y)∈En

f(x, y) + ε̄2n.

Applying the Ekeland variational principle [3] to f on
En we get the existence of (xn, yn) ∈ En satisfying for
all (x, y) ∈ En

‖ xn−un ‖ + ‖ yn− vn ‖≤ ε̄n, f(xn, yn) ≤ f(un, vn)
(2.5)



and

f(xn, yn) ≤ f(x, y) + ε̄n(‖ xn − x ‖ + ‖ yn − y ‖).

Note that f admits a Lipschitz constant λ′n around
(xn, yn) and hence, for λn := λ′n + ε̄n, by Proposi-
tion 2.4.3 in Clarke [2] (xn, yn) is a local minimum
(without constraint) of the function

(x, y) −→ f(x, y) + ε̄n(‖ xn − x ‖ + ‖ yn − y ‖)+

λnd(x, y;En). (2.6)

Note also that

‖ xn − un ‖ + ‖ yn − vn ‖) ≤ ε̄n ≤ 1
3
rn

and hence by (2.1) we have

∂F d(xn, yn; gph G) = ∂F d(xn, yn; E).

Therefore, by (2.6) and subdifferential calculus rules
in Asplund spaces for the limiting Fréchet subdiffer-
ential (see Theorem 1.1 and [10]) we get the following
relation

(u∗n, 0) ∈ {0} × ∂F g(yn) + λn∂F d(xn, yn; gph G)+

2εn(BX∗ ×BY ∗). (2.7)

Since the second inequality in (2.5) means

g(yn)− 〈u∗n, xn − un〉+ εn ‖ xn − un ‖≤ g(vn)

it follows from (2.3) that

m(xn) ≤ g(yn) ≤

〈u∗n, xn − un〉 − εn ‖ xn − un ‖ +m(un) + ε̄2n

and hence (since (u∗n)n is bounded and m is lower
semicontinuous at x̄)
(g(yn)) −→ m(x̄). By (2.7) we may choose a∗n ∈
BX∗ , b∗n ∈ BY ∗ , (x∗n,−y∗n) ∈ λn∂F d(xn, yn; gph G)
and w∗n ∈ ∂F g(yn) such that

u∗n = x∗n + 2εna∗n (2.8)

and
0 = w∗n − y∗n + 2εnb∗n. (2.9)

Hence (xn)n weak-star converges to x∗ and
x∗n ∈ D∗

F G(xn, yn)(y∗n). As y∗n ∈ ∂F g(yn) + 2εnBY ∗

the proof of the theorem is complete.

Before stating the next theorem recall that for a
multivalued mapping M from a topological space T
into X∗ and for S ⊂ T the sequential limit superior
lim supt→t̄,t∈S M(t) is defined by x∗ ∈
lim supt→t̄,t∈S M(t) iff there exist sequences (tn) → t̄

with tn ∈ S and (x∗n) →w∗ x∗ with x∗n ∈ M(tn) for
all n.

2.2 Theorem. Suppose that m is lower semi-
continuous at x̄ with | m(x̄) |< ∞ and there exists
some neighborhood V of x̄ such that g is β-Lipschitz
over some neighborhood of G(V ). Then

∂F m(x̄) ⊂
⋃
{ lim sup

x→x̄,g(y)→m(x̄),y∈G(x)

D∗
F G(x, y)(y∗) :

y∗ ∈ lim sup
g(y)→m(x̄)

∂F g(y)}.

Proof. We follow the proof of Theorem 2.1 and
we fix some real number γ with ‖ u∗n ‖≤ γ for
all n. Then we obtain that the Lipschitz constant
λn of f around (xn, yn) may be chosen equal to
λn := max(β, γ) + ε̄n which is bounded with respect
to n. Moreover, since ∂F g(yn) ⊂ βBY ∗ and since
the closed unit ball of Y ∗ is weak star sequentially
compact, we may suppose that (y∗n)n weak-star
converges to some y∗. Then we conclude by (2.8)
and (2.9) (x∗n,−y∗n) ∈ λn∂F d(xn, yn; gph G) and
(x∗n) →w∗ x∗.

Before prooving the next corollary, we recall that G is
pseudo-Lipschitz at (x̄, ȳ) ∈ gph G if (see Aubin [1])
there exist r > 0, s > 0 such that for any
x1, x2 ∈ x̄ + sBX

G(x1) ∩ (ȳ + sBY ) ⊂ G(x2) + r ‖ x1 − x2 ‖ BX

Rockafellar [13] showed that G is pseudo-Lipschitz
at (x̄, ȳ) ∈ gph G iff d(.; G(.)) is Lipschitz over a
neighborhood of (x̄, ȳ). We can now state the second
corollary which is in the line of some results in
Thibault [14] and Jourani and Thibault [6].

2.3 Corollary Let G be a multivalued map-
ping between X and Y which is pseudo-Lipschitz at
(x̄, ȳ) ∈ gph G. Then



∂F d(ȳ, G(.))(x̄) ⊂
⋃

y∗∈BY ∗

{x∗ ∈ X∗ :

(x∗,−y∗) ∈ ∂F d(.; gph G)(x̄, ȳ)}.
Proof. Put g(y) =‖ y − ȳ ‖ and m(x) :=
d(ȳ, G(x)). Then m is Lipschitz around x̄ and one
may suppose that the constants λn in the proof of
Theorem 2.2 satisfy λn −→ 1 as n −→ ∞. Moreover,
g(y) −→ m(x̄) means here that y −→ ȳ, which implies

lim sup
g(y)→m(x̄)

∂F g(y) = lim sup
y→ȳ

∂F g(y) = ∂F g(ȳ) = BY ∗

and

lim sup
x→x̄,g(y)→m(x̄),y∈G(x)

∂F d(.; gph G)(x, y) =

∂F d(.; gph G)(x̄, ȳ).

So the corollary follows from Theorem 2.2 .

3. Subdifferentials of general marginal func-
tion.
We consider in this section the marginal value func-
tion m given by

m(x) := inf{f(x, y) : y ∈ G(x)},

where f : X × Y −→ < is supposed to be lower
semicontinuous, G to be a multivalued mapping from
X into Y with closed graph. We assume that m is
lower semicontinuous around a given point x̄ with
| m(x̄) |< ∞. In order to state our main theorem we
need for C1 := epif and C2 := (gph G)×<, the follow-
ing hypothesis (H): ∃k > 0,∀(ηn) → 0+, ∀(xn) → x̄
with (m(xn)) → m(x̄), ∃yn ∈ G(xn),∃α > 0 such that
for n large enough one has

f(xn, yn) ≤ m(xn) + ηn

and

d(x, y, r; [C1 ∩ C2]) ≤ k [d(x, y, r; C1) + d(x, y, r; C2)]
(3.0)

for all x ∈ xn + αBX , y ∈ yn + αBY and
r ∈ [m(x̄)− α, m(x̄) + α].

The hypothesis (H) is obviously satisfied whenever
there exists some s > 0 such that (3.0) holds for
all x ∈ x̄ + sBX , r ∈ [m(x̄)− s,m(x̄) + s] and

y ∈ G(x̄ + sBX) + sBY . This last condition corre-
sponds to the metric regularity between C1 and C2

near (x̄,m(x̄)) and uniformly with respect to y in a
neighborhood of the image by G of a neighborhood
of x̄.

3.1. Lemma. Assume the above hypothesis is
fulfilled. Then, for every
u∗ ∈ ∂F m(x̄) there exist λ > 0, b ≥ 0, and sequences
εn ↓ 0, (x∗n,−λn) → λ(u∗,−1),
xn → x̄, (x̃n, ỹn, s̃n) ∈ C1 ∩ C2 with ‖ ỹn − yn ‖<√

ηn, x̃n → x̄, f(x̃n, ỹn) → m(x̄),
s̃n → m(x̄) such that

(x∗n, 0,−λn) ∈ kb∂F d(x̃n, ỹn, s̃n; epif) +
kb∂F d(x̃n, ỹn; gph G)× {0}+

((1 + λ)
√

ηn + εn)BX∗ ×BY ∗ ×B<.

Proof. If we set g(x, r) := d(x, r; epi m), then,
for P =]0, +∞[, we have the following equivalences

u∗ ∈ ∂F m(x̄) ⇐⇒ (u∗,−1) ∈ P∂F g(x̄,m(x̄))

⇐⇒ ∃λ > 0; (λu∗,−λ) ∈ ∂F g(x̄,m(x̄)).

Let x∗ := λu∗. Then, by [14], there exist sequences
(xn, rn) −→ (x̄,m(x̄), with (xn, rn) ∈ epi m, εn →
0+(εn < 1) and (x∗n,−λn) → (x∗,−λ) such that

(x∗n,−λn) ∈ ∂F,εng(xn, rn). (3.1)

By definition of the ε -Fréchet subdifferential, (xn, rn)
is a local minimum of the function

(x, r) −→ g(x, r)− 〈x∗n, x− xn〉+ λn(r − rn)+

εn(‖ x− xn ‖ + | r − rn |)
and hence there exists αn > 0 such that

−〈x∗n, x−xn〉+λn(r−rn)+εn(‖ x−xn ‖ + | r−rn |) ≥ 0
(3.2)

for all (x, r) ∈ epim∩ (BX(xn, αn)×B<(rn, αn)). Let
ηn → 0+. By the hypothesis (H) there exists yn ∈
G(xn) such that f(xn, yn) ≤ m(xn)+ηn. As m(xn) ≤
rn, then f(xn, yn) ≤ rn + ηn. Set sn := rn + ηn and
observe that (xn, yn, sn) ∈ C1 ∩ C2. Using (3.2) we
obtain

−〈x∗n, x− xn〉+ λn(r − sn)− λn(rn − sn)+



εn(‖ x− xn ‖ + | r − sn | + | sn − rn |) ≥ 0

and hence for n large enough

−〈x∗n, x−xn〉+λn(r−sn)+εn(‖ x−xn ‖ + | r−sn |)+

(1 + λ)ηn ≥ 0

Let

h(x, y, r) := −〈x∗n, x− xn〉+ λn(r − sn)+

εn(‖ x− xn ‖ + | r − sn |)
and

E := C1∩C2∩(BX(xn, αn)×BY (yn, αn)×BR(rn, αn)).

Then we have

0 ≤ h(x, y, r) + (1 + λ)ηn

for all (x, y, r) ∈ E. Applying the Ekeland variational
principle to h on E we have the existence of a sequence
(x̃n, ỹn, s̃n) ∈ E satisfying

‖ x̃n − xn ‖ + ‖ ỹn − yn ‖ + | s̃n − sn |≤ √
ηn

and
h(x̃n, ỹn, s̃n) ≤ h(x, y, r)+

(1 + λ)
√

ηn(‖ x̃n − x ‖ + ‖ ỹn − y ‖ + | s̃n − r |)
for all (x, y, r) ∈ E. Then by Proposition 2.4.3 in
Clarke there exist γn ∈

]
0,min( 1

n , αn

3

[
and b > 0 such

that
h(x̃n, ỹn, s̃n) ≤ h(x, y, r)+

(1 + λ)
√

ηn(‖ x̃n − x ‖ + ‖ ỹn − y ‖ + | s̃n − r |)+

bd(x, y, r; E),

for all (x, y, r) ∈ BX(x̃n, γn) × BY (ỹn, γn) ×
BR(s̃n, γn)). But for (x, y, r) ∈ BX(x̃n, γn) ×
BY (ỹn, γn)×BR(s̃n, γn)) one has

d(x, y, r; E) = d(x, y, r;C1 ∩ C2)

and for n large enough

‖ x− x̃n ‖≤ α

2
, ‖ y− ỹn ‖≤ α

2
and | r−m(x̄) |≤ α

2
.

Therefore, we can use the hypothesis (H) to get that
(x̃n, ỹn, s̃n) is a local minimum of the function

(x, y, r) −→ h(x, y, r) + (1 + λ)
√

ηn(‖ x̃n − x ‖ + ‖
ỹn − y ‖ + | s̃n − r |) +

kb [d(x, y, r;C1) + d(x, y, r; C2)] .
So by subdifferential calculus rules we have
(x∗n, 0,−λn) ∈ kb∂F d(x̃n, ỹn, s̃n; epif) +
kb∂F d(x̃n, ỹn; gph G)× {0}+

((1 + λ)
√

ηn + εn)BX∗ ×BY ∗ ×B<.

Using the lower semicontinuity of m we get

m(x̄) ≤ lim inf
n

m(x̃n) ≤ lim inf
n

f(x̃n, ỹn) ≤
lim sup

n
f(x̃n, ỹn) ≤ lim

n
s̃n = m(x̄).

and hence limn f(x̃n, ỹn) = m(x̄).

3.2 Theorem. Under the assumptions of Theo-
rem 3.1 one has the following inclusion

∂F m(x̄) ⊂
⋃

(x∗,y∗)∈∂̂F f(x̄)

{x∗ + D̂∗
F G(x̄)y∗},

where (with P :=]0,+∞[)

∂̂F f(x̄) := {(x∗, y∗) ∈ X∗ × Y ∗ :
(x∗, y∗,−1) ∈

P lim sup
x→x̄,f(x,y)→m(x̄),r→m(x̄),(x,y,r)∈C1∩C2

∂F d(x, y, r; epi f)}

and
D̂∗

F G(x̄)y∗ :=

{x∗ ∈ X∗ : (x∗,−y∗) ∈ P lim sup
x→x̄,f(x,y)→m(x̄),y∈G(x)

∂F d(x, y; gph G)

Proof. Fix u∗ ∈ ∂F m(x̄) and apply the conclu-
sion of Lemma 3.1. We get
(x∗n, 0,−λn) ∈ kb∂F d(x̃n, ỹn, s̃n; epi f) +
kb∂F d(x̃n, ỹn; gph G)× {0}+

((1 + λ)
√

ηn + εn)BX∗ ×BY ∗ ×B<.

Since ∂F d(x̃n, ỹn; gph G) ⊂ BX∗ × BY ∗ and since
the closed balls of the dual of any Asplund space are
weak-star sequentially compact, see [?], we obtain
(after extraction of subsequences)

λ(u∗, 0,−1) ∈
kb lim supx→x̄,f(x,y)→m(x̄),r→m(x̄),(x,y,r)∈C1∩C2

∂F d(x, y, r; epi f)+



kb lim sup
x→x̄,f(x,y)→m(x̄),y∈G(x)

∂F d(x, y; gph G)× {0}.

Thus, there exist
(z∗, y∗,−1) ∈
<+ lim supx→x̄,f(x,y)→m(x̄),r→m(x̄),(x,y,r)∈C1∩C2

∂F d(x, y, r; epi f)
and
(v∗, w∗) ∈ <+ lim supx→x̄,f(x,y)→m(x̄),y∈G(x)

∂F d(x, y; gph G)
such that

(u∗, 0,−1) = (z∗, y∗,−1) + (v∗, w∗, 0).

So we may conclude that u∗ ∈ z∗ + D̂F G(x̄)y∗

with (z∗, y∗) ∈ ∂̂F f(x̄).
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