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Abstract

Hassan et al. proposed a 4-point ternary interpola-
tory scheme with smaller sizes of the templates for the
local averaging rules and with higher order smooth-
ness property compared to most of the existing bi-
nary ones. It can be C2-continuous when the subdi-
vision parameter is chosen in a certain range. In this
paper, we further investigate its differentiable prop-
erties to extend its application in the generating of
smooth curves and surfaces with different continu-
ity. Some important results about this scheme such as
the conditions of C0, C1-continuous, Hölder exponent
and the derivatives of the limit function are obtained
and applied. A modified 4-point ternary interpolatory
scheme for end points is also proposed to ameliorate
the modelling ability of this scheme.

Keywords: ternary subdivision, interpolation, subdivi-
sion matrix, Ck-continuity

1 Introduction

Subdivision started as a tool for efficient computa-
tion of spline functions, and is now an important and
independent subject with many applications in fields
including Computer Aided Geometric Design, Com-
puter Graphics, computer animation, surgical simu-
lation and medical image processing. Especially it is
used for developing new methods for curve and surface
design.

A subdivision curve or surface is defined as the limit
of a finer and finer control polygon or mesh by sub-
dividing the polygon or mesh according to some re-
fining rules recursively. In application, we always use
a subdivided polygon or mesh at a certain refinement
level to replace the limit curve or surface within the
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permitted accuracy. Subdivision schemes provide an
efficient way to describe curves and surfaces for their
convenience and flexibility.

Some binary interpolatory subdivision algorithms [1]-
[7] were designed for the generation of interpolatory
curves and surfaces, where the ratio of similarity be-
tween the edge of the initial regular mesh and the
edge of the mesh after one subdivision step is 2 [8].
Recently ternary interpolatory subdivision algorithms
received a lot of attention [9]-[15]. In [9] Hassan et al.
proposed a 4-point ternary interpolatory subdivision
scheme. It uses the following subdivision rules to re-
fine the control polygon recursively:
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where the weights ai are given by a0 = − 1
18− 1

6µ, a1 =
13
18 + 1

2µ, a2 = 7
18 − 1

2µ, a3 = − 1
18 + 1

6µ, and µ is the
parameter of the scheme.

It has been proved that the 4-point ternary interpo-
latory subdivision scheme has a support of 5, which
has the advantage over the 4-point binary one hav-
ing a support of 6 [9]. Furthermore, for 1

15 < µ < 1
9 ,

the limit curve of the 4-point ternary scheme is C2-
continuous. Since it is desirable to have subdivision
methods which have small sizes of templates for the
local averaging rules, smooth limit curves and param-
eters to control its shape, the 4-point ternary scheme
compares favourably with most of the existing binary
interpolatory subdivision schemes, which either have
C1-continuity, such as the 4-point binary scheme [1],
or have a bigger template width, such as the 6-point
binary scheme [2].

Furthermore, applying the 4-point ternary interpola-
tory subdivision scheme one can model interpolatory
curves with different smoothness. To do this one must
know more differentiable properties about the scheme.

In this paper we first perform a further differentia-
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bility analysis on it, including its C0, C1-continuous
conditions, Hölder exponent against µ and the ex-
pressions of the derivatives of the limit curve. Then
we discuss its application in the modelling of smooth
curves. Finally, we propose a modified 4-point ternary
interpolatory scheme to deal with the problem of end
points in the case of open polygon.

2 Further convergence analysis of Has-
san’s scheme

2.1 C0 and C1 convergence analysis—
necessary conditions

Hassan et al. has obtained the necessary condition for
this scheme to be C2 based on the eigenvalues of the
mid-point and vertex subdivision matrices. Now we
continue the analysis of this scheme to be C0 and C1.

The eigenvalues of the mid-point subdivision matrix
[9] are

1,
1
3
,
1
9
, µ,− 1

18
+

1
6
µ,− 1

18
+

1
6
µ.

The eigenvalues of the vertex subdivision matrix are

1,
1
3
,
1
9
,

1
18
− 1

2
µ,

1
6
− 5

6
µ.

From [16], we can know that the necessary condition
for this scheme to be C0 is

|µ| < 1, |− 1
18

+
1
6
µ| < 1, | 1

18
− 1

2
µ| < 1, |1

6
− 5

6
µ| < 1,

namely
−1 < µ < 1.

Similarly the necessary condition to be C1 is
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3
, |− 1

18
+

1
6
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3
, | 1

18
−1

2
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3
, |1

6
−5

6
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3
,

namely

−1
5

< µ <
1
3
.

2.2 C0 and C1 convergence analysis—
sufficient conditions

In this subsection we derive the sufficient conditions
for the scheme to be C0 and C1.

Let S be the 4-point ternary interpolatory subdivision
scheme and Si, i = 1, 2, 3 be its divided difference sub-
division schemes, then by applying Dyn’s method [17]
to the case of ternary subdivision we obtain

‖(1
3
S1)2‖∞ =

1
324

max{72|µ+3µ2|+36|1+2µ+6µ2|,

2| − 1− 18µ + 27µ2|+ 36| − 1− 2µ + 3µ2|
+2|1− 18µ + 27µ2|,

|3µ− 1|2 + 6|5µ− 9µ2|+ |41− 42µ + 81µ2|
+6| − 1 + 3µ− 6µ2|,

6|µ− 3µ2|+ 6|1− µ + 18µ2|+ 6| − 6 + µ + 27µ2|
+6| − 1 + µ + 12µ2|,

|−1+9µ2|+6|−2−5µ+9µ2|+ |31−60µ+81µ2|
+6|1− 5µ + 6µ2|},

and

‖(1
3
S2)2‖∞ =

1
36

max{2|1− 81µ2|+ 2|1 + 81µ2|,

6|1 + 6µ− 27µ2|+ 12| − 2µ + 9µ2|,
10|1− 6µ + 9µ2|+ 2|7− 30µ + 45µ2|,

| − 1 + 12µ− 27µ2|+ |5− 24µ + 135µ2|+ 12|µ− 9µ2|,
2|2−27µ+45µ2|+ |−1+60µ−99µ2|+ |1−6µ+9µ2|}.
Since for −1 < µ < 2

3 , ‖( 1
3S1)2‖∞ < 1, we know that

for this improved range, the scheme is C0. Similarly
for 1

3 − 2
15

√
10 < µ < 1

3 , ‖( 1
3S2)2‖∞ < 1, the scheme

is C1.

In conclusion, we have the following theorem.

Theorem 1. Given initial control points {P 0
j }, let

P k
j defined by (1) be the values corresponding to j

3k ,
and let p(t) be the limit function of this process, then,
p(t) is C0 only if −1 < µ < 1, and p(t) is C1 only if
− 1

5 < µ < 1
3 . On the other hand, for −1 < µ < 2

3 ,
p(t) is C0 , and for 1

3 − 2
15

√
10 < µ < 1

3 , p(t) is C1.
p(t) is C2 if and only if 1

15 < µ < 1
9 .

2.3 Hölder exponent of the 4-point
ternary scheme scheme

From the above two subsections it is easily to see that
the 4-point ternary scheme has different continuity
depending on the subdivision parameter µ. Further-
more, we can derive its highest smoothness by using
Rioul’s method for the ternary case [18, 11].

It is easily known that the 4-point ternary scheme
scheme S and its divided difference subdivision
schemes Si, i = 1, 2 satisfy the necessary condition
of a convergent subdivision scheme. Considering this
and the fact that for 1

15 < µ < 1
9 , ‖ 1

3S3‖∞ < 1, we
know that the 4-point ternary scheme fulfil Rioul’s
conditions for the ternary case. Based on generalized
Rioul’s method [11] we can conclude that the scheme



has Hölder regularity RH = 2+νk for all k ≥ 1, where
νk is given by

3−kνk

= ‖(1
3
S3)k‖∞.

For the convenience of computation, we set k = 1.
Since

‖1
3
S3‖∞ =

{
3
2 − 15

2 µ, 1
15 < µ ≤ 1

11 ,
9µ, 1

11 < µ < 1
9 ,

we obtain that Hölder regularity against µ of the 4-
point ternary scheme scheme is

R(µ) =
{

2− log3(
3
2 − 15

2 µ), 1
15 < µ ≤ 1

11 ,
2− log3(9µ), 1

11 < µ < 1
9 .

Therefore the highest smoothness of the 4-point
ternary scheme is achieved at µ = 1

11 , and its Hölder
exponent is

RH = R(
1
11

) = 2.1827.

3 The derivatives of the limit function

In this section we derive the exact expressions of the
first and the second derivatives of the limit function
of the 4-point ternary scheme scheme. Since the dif-
ferentiability of p(t) in Theorem 1 can be reduced to
that of its components, for simpleness we only need
to present the results in the case of initial data being
a sequence of real numbers.

Theorem 2. Given initial real numbers {f0
i }, let fk

i

defined by the 4-point ternary interpolatory subdivi-
sion scheme be the values corresponding to i

3k (i, k ∈
Z, k ≥ 0) and f ∈ C2 be the corresponding limit
function with 1

15 < µ < 1
9 , then for arbitrarily fixed

m,n0 ∈ Z, m ≥ 0, the derivatives of the limit function
f are

f ′(
n0

3m
) =

3m+k

2(5 + 9µ)
[(−1 + 3µ)(fm+k

3kn0+2
− fm+k

3kn0−2
)

+(7 + 3µ)(fm+k
3kn0+1

− fm+k
3kn0−1

)], (2)

f ′′(
n0

3m
) =

32(m+k)

−1 + 15µ
[(−1 + 3µ)(fm+k

3kn0+2
+ fm+k

3kn0−2
)

−4(1+3µ)fm+k
3kn0

+3(1+µ)(fm+k
3kn0+1

+fm+k
3kn0−1

)]. (3)

Proof . Let us denote by

Fk = (fm+k
3kn0−2

, fm+k
3kn0−1

, fm+k
3kn0

, fm+k
3kn0+1

, fm+k
3kn0+2

)T ,

we get fm+k
3kn0

= fm
n0

and Fk+1 = AFk, where

A =




a0 a1 a2 a3 0
a3 a2 a1 a0 0
0 0 1 0 0
0 a0 a1 a2 a3

0 a3 a2 a1 a0




is the vertex subdivision matrix. For 1
15 < µ < 1

9 ,
A has five different eigenvalues λ1 = 1, λ2 = 1

3 , λ3 =
1
9 , λ4 = 1

8 − 1
2µ, λ5 = 1

6 − 5
6µ, and has five orthog-

onal eigenvectors. Let ri, li be the right and left
eigenvectors of A corresponding to the eigenvalues
λi, i = 1, ..., 5, then direct computation leads to

r1 =




1
1
1
1
1




, r2 =




−2
−1
0
1
2




, r3 =




4
1
0
1
4




,

r4 =




−1
−1+3µ
7+3µ

0
−−1+3µ

7+3µ

1




, r5 =




1
−−1+3µ

3(1+µ)

0
−−1+3µ

3(1+µ)

1




,

l2 = (− −1 + 3µ

2(5 + 9µ)
,− 7 + 3µ

2(5 + 9µ)
, 0,

7 + 3µ

2(5 + 9µ)
,

−1 + 3µ

2(5 + 9µ)
),

l3 = (
−1 + 3µ

2(−1 + 15µ)
,

3(1 + µ)
2(−1 + 15µ)

,−2(1 + 3µ)
−1 + 15µ

,

3(1 + µ)
2(−1 + 15µ)

,
−1 + 3µ

2(−1 + 15µ)
).

If the values generated by the 4-point ternary inter-
polatory subdivision process define a C2-continuous
function f for 1

15 < µ < 1
9 , then necessarily

lim
k→∞

Fk = fm
n0

r1 = f(
n0

3m
)r1, (4)

lim
k→∞

fm+k
3kn0+j

− fm
n0

j
3m+k

= lim
k→∞

f( 3kn0+j
3m+k )− f( n0

3m )
j

3m+k

= f ′(
n0

3m
), j = ±1,±2, (5)

lim
k→∞

fm+k
3kn0+j

+ fm+k
3kn0−j

− 2fm
n0

( j
3m+k )2



= lim
k→∞

f( 3kn0+j
3m+k ) + f( 3kn0−j

3m+k )− 2f( n0
3m )

( j
3m+k )2

= f ′′(
n0

3m
), j = ±1,±2. (6)

Let ê = (1, 1, 0, 1, 1)T , D = diag (− 1
2 ,−1, 1, 1, 1

2 ) and

J =




0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0




,

then by (4)-(6), we derive

lim
k→∞

3m+kD(Fk − fm
n0

r1) = f ′(
n0

3m
)ê, (7)

lim
k→∞

32(m+k)D2(Fk +JFk−2fm
n0

r1) = f ′′(
n0

3m
)ê. (8)

Since A has five linear independent eigenvectors, there
exist α1, α2, ..., α5 such that F0 can be written as

F0 =
5∑

i=1

αiri.

From the expressions of ri, i = 1, ..., 5, we get α1 =
fm

n0
. Therefore Fk can be written as

Fk = AkF0 =
5∑

i=1

αiλ
k
i ri = fm

n0
r1 + α2(

1
3
)kr2

+α3(
1
9
)kr3 +

5∑

i=4

αiλ
k
i ri. (9)

By (7),(8) and (9), in view of

Jri =
{

ri, i = 1, 3, 5,
−ri, i = 2, 4,

we can show

lim
k→∞

3m[α2Dr2 + (
1
3
)kα3Dr3 +

5∑

i=4

αi(3λi)kDri]

= f ′(
n0

3m
)ê,

lim
k→∞

32m[2α3D2r3 + 2α5(9λ5)kD2r5] = f ′′(
n0

3m
)ê.

It is easily seen that for 1
15 < µ < 1

9 , the eigenvalues
of matrix A satisfy

|λi| < 1
9

<
1
3
, i = 4, 5,

Figure 1: Open curves produced by the 4-point
ternary interpolatory scheme. The thin solid line is
produced by setting µ = 1

11 and the bold solid line is
produced by setting µ = 1

4 .

therefore by using Dr2 = D2r3 = ê, we can get

f ′(
n0

3m
) = 3mα2, f

′′(
n0

3m
) = 32m2α3. (10)

In order to derive the explicit formulae of f ′( n0
3m ) and

f ′′( n0
3m ), we multiply (9) by the left eigenvector l2

corresponding to the eigenvalue λ2 = 1
3 and the left

eigenvector l3 corresponding to the eigenvalue λ3 = 1
9

respectively, in view of

ljri =
{

1, i = j,
0, i 6= j,

we have

l2Fk = α2(
1
3
)k, l3Fk = α3(

1
9
)k,

Hence
α2 = 3kl2Fk, α3 = 9kl3Fk. (11)

From (10), (11) and the expressions of l2, l3, we obtain
(2) and (3).

4 The application of the Ck-continuity
of the 4-point ternary interpolatory
subdivision scheme

The subdivision scheme (1) can be used to de-
fine a curve interpolating initial control points
P0, P1, ..., Pm. In the case of an open curve, we
need to supply four extra and assistant control points
P−2, P−1, Pm+1 and Pm+2, which affect the behav-
ior of the curve near its end points P0 and Pm.
In the case of a closed curve, we only need to let
P−2 = Pm−1, P−1 = Pm, Pm+1 = P0, Pm+2 = P1.



Figure 2: Closed curves produced by the 4-point
ternary interpolatory scheme. The thin solid line is
produced by setting µ = 1

10 and the bold solid line is
produced by setting µ = 1

5 .

Fig. 1 and Fig. 2 show the results applied (1) to the
common initial control polygon after four subdivision
steps respectively. In this two figures the control poly-
gons are drawn by dotted lines, and the subdivision
curves drawn by solid lines. Fig. 1 shows examples of
open curves. In Fig. 1 the thin solid line is produced
by setting µ = 1

11 (the limit curve is C2) and the
bold solid line is produced by setting µ = 1

4 (the limit
curve is C1). Fig. 2 shows examples of closed curves.
In Fig. 2 the thin solid line is produced by setting
µ = 1

10 (the limit curve is C2) and the bold solid line
is produced by setting µ = 1

5 (the limit curve is C1).

From the above two examples we conclude that we can
model interpolatory curves with different smoothness
fast by using the 4-point ternary scheme and Theorem
1 and can adjust the shape of the subdivision curves
to a certain extend by choosing the subdivision pa-
rameter µ appropriately.

But the 4-point ternary scheme still has the disadvan-
tage that it can not handles the situation of end points
conveniently in the case of open polygon. In view of
this, we propose an ameliorated 4-point ternary inter-
polatory subdivision scheme interpolating end points
directly in the next section.

5 A modified 4-point ternary interpo-
latory subdivision scheme

In this section we present a modified edition of the
4-point ternary scheme which interpolate every ini-
tial control points without supplying any extra control
points in the case of open polygon as follows:

Algorithm 1. Given initial control points
P 0

j , j = 0, ..., m, let P k
j be the values corresponding

to j
3k (0 ≤ j ≤ 3kn, k ≥ 0), P k

j are defined recursively
by

P k+1
3j = P k

j , 0 ≤ j ≤ 3km,

P k+1
3j+1 = a0P

k
j−1 + a1P

k
j + a2P

k
j+1 + a3P

k
j+2,

1 ≤ j ≤ 3km− 2,

P k+1
3j+2 = a3P

k
j−1 + a2P

k
j + a1P

k
j+1 + a0P

k
j+2,

1 ≤ j ≤ 3km− 2,

P k+1
1 = ( 1

3 − 5a0 + 3a3)P k
0 + ( 10

3 − 5a1 + 3a2)P k
1

+(− 2
3 − 5a2 + 3a1)P k

2 + (−5a3 + 3a0)P k
3 ,

P k+1
2 = ( 1

15 − 3a0 + 8
5a3)P k

0 + ( 8
3 − 3a1 + 8

5a2)P k
1

+(− 1
3 − 3a2 + 8

5a1)P k
2 + (−3a3 + 8

5a0)P k
3 ,

P k+1
3k+1n−2

= (−3a3 + 8
5a0)P k

3kn−3

+(− 1
3 − 3a2 + 8

5a1)P k
3kn−2

+( 8
3 − 3a1 + 8

5a2)P k
3kn−1

+( 1
15 − 3a0 + 8

5a3)P k
3kn,

P k+1
3k+1n−1

= (−5a3 + 3a0)P k
3kn−3

+(− 2
3 − 5a2 + 3a1)P k

3kn−2

+( 10
3 − 5a1 + 3a2)P k

3kn−1

+( 1
3 − 5a0 + 3a3)P k

3kn.

Remark. Pk+1
1 , P k+1

2 (k ≥ 0) are derived such
that P k+1

0 , P k+1
1 , P k+1

2 , P k+1
3 , P k+1

4 , P k+1
5 , P k+1

6 are
on one quartic curve. So do P k+1

3k+1n−2
, P k+1

3k+1n−1
(k ≥

0). Thus the C1-continuity of the modified 4-point
ternary interpolatory subdivision scheme for 1

3 −
2
15

√
10 < µ < 1

3 and the C2-continuity for 1
15 < µ < 1

9
can be guaranteed. Here we will not give the details
owing to the limitation of space.

Fig. 3 depicts the difference between the results ob-
tained by applying the modified scheme and the orig-
inal scheme with the same µ = 1

11 (the limit curves
are all C2) after four subdivision steps given the same
initial control points. In Fig. 3 the bold solid line
is produced by applying the modified scheme and the
thin solid line is produced by applying the original
scheme with the same control polygon as in Fig. 1.

6 Conclusion

Further convergence analysis on the C0 and C1 conti-
nuity of the 4-point ternary scheme is presented. The
expressions of the first and the second derivatives of
the limit function are derived. A modified 4-point
ternary interpolatory subdivision scheme is proposed
which interpolates the endpoints of the initial control
polygon directly in the case of open polygon. The re-
sults obtained in this paper can be extended to the
case of the surface. By using the obtained results one
can model smooth curves and surfaces with different
smoothness efficiently.



Figure 3: The examples of C2 interpolatory curves by
setting µ = 1

11 . The bold solid line is produced by
applying the modified scheme and the thin solid line
is produced by applying the original scheme with the
same control polygon as in Fig. 1.
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