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Abstract. Dynamic data redistribution is used to 
enhance the performance of an algorithm and to 
achieve data locality in parallel programs on 
distributed memory multi-computers. The data 
redistribution problem has been extensively 
studied. Previous results focus on reducing index 
computational cost, schedule computational cost, 
and message packing/unpacking cost. However, 
irregular data redistribution is more flexible than 
regular data redistribution; it can distribute 
different sizes of data segments of each processor 
to those processors according to their own 
computation capability. High Performance Fortran 
2 (HPF-2), the current version of HPF, provides an 
irregular distribution functionality, such as 
GEN_BLOCK which addresses some requirements 
of irregular applications for the distribution of data 
in an irregular manner and explicit control of load 
balancing. In this paper, we present a 
degree-reduction-and-coloring (DRC) algorithm 
for scheduling HPF2 irregular array redistribution. 
We devoted to obtain the minimal number of 
transmission steps as well as to reduce the overall 
redistribution time. In the proposed algorithm, we 
try to reduce the number of maximum transmission 
messages in the first phase and then apply 
graph-coloring mechanism to obtain the final 
schedule. The proposed method not only avoids 
node contention, but also shortens the overall 
redistribution time. To evaluate the performance of 
DRC algorithm, we have implemented DRC 
algorithms along with the Divide-and-Conquer 
algorithm. The simulation results show that DRC 
algorithm has significant improvement on 
communication costs compared with the 
Divide-and-Conquer algorithm. 
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1. Introduction 

Parallel computing systems have been widely 
adopted to solve complex scientific and engineering 
problems. To efficiently execute a data-parallel 
program on distributed memory multi-computers, an 
appropriate data distribution is critical to the 
performance.  Appropriate distribution can balance 
the computational load, increase data locality, and 
reduce inter-processor communication. Array 
redistribution is crucial for system performance 
because a specific array distribution may be 
appropriate for the current phase, but incompatible for 

the subsequent one. Many parallel programming 
languages thus support run-time primitives for 
rearranging the array distribution of a program. The 
data redistribution problem has been widely studied in 
the literature. In general, data redistribution can be 
classified into two categories: the regular data 
redistribution [1,5,6,7,9,11,13,15,18] and the irregular 
data redistribution [4,8,22-24]. The regular data 
redistribution decomposes data of equal sizes into 
processors. There are three types of this data 
redistribution, called BLOCK, CYCLIC, and 
BLOCK-CYCLIC(n). The irregular data distribution 
employs user-defined functions to specify data 
distribution unevenly. High Performance FORTRAN 
2 (HPF-2) provides GEN_BLOCK functionality and 
makes it possible to handle different processors 
dealing with appropriate data size according to their 
computation capability. Previous works emphasized 
the minimal steps of data redistribution and scheduled 
the ordering of messages with minimal total 
transmission size. In the regular array redistribution, 
[15] proposed an Optimal Processor Mapping (OPM) 
scheme to minimize the data transmission cost for 
general BLOCK-CYCLIC regular data realignment. 
Optimal Processor Mapping (OPM) utilized the 
maximum matching of realignment logical processors 
to achieve the maximum data hits for reducing the 
amount of data exchange transmission cost. In the 
irregular array redistribution problem, [22, 23] 
proposed a greedy algorithm to utilize the 
Divide-and-Conquer technique to obtain near optimal 
scheduling while attempting to minimize the size of 
total communication messages as well as the number 
of steps. 

In this paper, we bring up the 
Degree-Reduction-and-Coloring (DRC) algorithm to 
efficiently perform GEN_BLOCK array redistribution. 
In section 2, we define the data communication model 
of irregular data redistribution and give an example of 
GEN_BLOCK data redistribution as the preliminary. 
Section 3 describes the DRC algorithm for the 
irregular redistribution problem. The performance 
analysis, simulation results and practical transmission 
with MPI on SMP/Linux cluster are presented in 
section 4. Finally, the conclusions are given in section 
5. 
 
2. Data communication models 
 In this section, we present some properties of 
irregular data redistribution with GEN_BLOCK 
functionality. There are no repetitive communication 
patterns in the irregular GEN_BLOCK array 

IAENG International Journal of Applied Mathematics, 36:1, IJAM_36_1_6 
______________________________________________________________________________________

(Advance online publication: 1 February 2007)



redistribution. A data redistribution can be represented 
by a bipartite graph, called a redistribution graph. To 
simplify the presentation, notations and terminologies 
used in this paper are defined in the following. 

Definition 1: Given an irregular GEN_BLOCK 
redistribution on array A[SPi] and A[DPi] over P 
processors, the source processors of array data 
elements A[SPi] are denoted as SPi; the destination 
processors of array elements A[DPi] are denoted as 
DPi where 1 ≤ i ≤ P. 

Definition 2: A bipartite graph G = (V, E) is 
used to represent the communications of an irregular 
data redistribution between source and destination 
processors.  Vertices of G are used to represent the 
processors.  Edge eij in G denotes the message sent 
from SPi to DPj, where eij ∈ E.  |Eij| denotes the 
transmission message size through the redistribution. 

Definition 3: Every message transmission link 
in irregular data redistribution is not overlapped. 
Hence, the total number of message transmission link 
E is P ≤ E ≤ 2 × P - 1.  

Definition 4: Each processor has more than one 
eij to send data to destination processors or receive 
data from other source processors. The number D of 
eij owned by one processor is denoted as D-degree and 
the maximum D-degree of all processors is denoted as 
Max-degree. We denote that the processors have the 
Max-degree number of messages as Pmax. 

Definition 5: If SPi sends messages to DPj-1 
and DPj+1, the transmission between SPi and DPj 
must exist, where 1 ≤ i, j ≤ P.  This result was 
mentioned as the consecutive communication property 
[12]. 

Fig.1 shows an example of redistributing two 
GEN_BLOCK distributions on A[SPi] and A[DPi].  
Table 1(a) shows mapped communication message 
size to source processors and destination processors, 
respectively.  The communications between source 
and destination processor sets are depicted in Fig 1.  
There are 13 transmission messages, e11, e21, e22, …e77 
among the processors involved in the redistribution. 
Due to the considerable influence of node contention, 
a processor can only send at most one message to 
another processor in each communication step and the 
same is true for the receiving message. The messages, 
which cannot be scheduled in the same 
communication step, are called conflict tuple. For 
instance, {e11,e21} is a conflict tuple since they have a 
common destination processor DP1; {e21,e22} is also a 
conflict tuple because of the common source 
processor SP2.  Table 1(b) shows a simple schedule 
result for this example.  

 

 Figure 1. An example of data redistribution  

Table 1(a). The total message size of redistribution 
data for each processor in Fig. 1. 

SP1 SP2 SP3 SP4 SP5 SP6 SP7

7 27 32 15 15 7 14 

DP1 DP2 DP3 DP4 DP5 DP6 DP7

16 12 14 17 27 23 8 

Table 1(b). A simple schedule 

Schedule Table 

Step1: e34, e45, e22, e77, e11, e66 

Step2: e56, e23, e35 

Step3: e21, e33, e55, e76  

 

3. Proposed Algorithm 
 The performance of a data redistribution 
procedure is determined by four costs: index 
computational cost Ti, schedule computational cost Ts, 
message packing/unpacking cost Tp, and data transfer 
cost. The data transfer cost for each communication 
step consists of start-up cost Tsu and transmission cost 
Tt. Let the unit transmission time τ denote the cost of 
transferring a message of unit length. In general, the 
message startup cost is directly proportional to the 
number of communication steps. The total number of 
communication steps is denoted by N. The total 
redistribution time equals Ti+Ts+  
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e3, .., ek} and ej represents the size of message 
scheduled in the ith communication step for j = 1 to k. 
In irregular redistribution, messages of varying sizes 
are scheduled in the same communication step. 
Therefore, the largest size of message in the same 
communication step dominates the data transfer time 
required for this communication step.  

The main idea of the 
Degree-Reduction-and-Coloring (DRC) algorithm is 
to diminish the degree of Pmax repeatedly by 
scheduling the message in the first step of data 
redistribution process until Max-degree is equal to 2. 
The remaining messages are then scheduled into the 
communication steps by utilizing the concept of 



bipartite graph coloring mechanism. The details of the 
steps will be described in the following subsections. 
3.1 Degree-Reduction Step 
  The goal in this step is to reduce Max-degree 
repeatedly in each iteration, until Max-degree is equal 
to 2. An example of 4-degree communication 
redistribution has taken as shown in Fig 2. In the first 
phase (phase-1) of degree-reduction step, the 
messages are sorted by the non-increasing order of 
|Eij|, and the result is shown in Table 2. Then, DRC 
selects the messages into step1 of the schedule 
according to non-increasing order of message size 
except those messages causing the conflict. After 
phase-1, the Max-degree will be decreased by 1 (from 
4 to 3). Fig 3(a) and Table 3(b) show this scenario. 
DRC repeat the procedure until the Max-degree 
reaches 2, which is depicted in Fig 4. 

 
Figure 2. A data redistribution example with 

Max-degree = 4  
Table 2. The messages are sorted by non-increasing 

order of message size 

Msg no. e34 e45 e22 e65 e21 e33 e77 e11 e35 e66 e32 e76 e55

Msg size 17 15 12 10 9 8 8 7 7 7 6 6 5

 
(a) 

 

(b) 

Figure 3. The messages communication (a) before 
phase-1 of the degree-reduction step; (b) after phase-1 

of the degree-reduction step. 
Table 4. The schedule after phase-1 

Message no. e34 e45 e22 e65 e21 e33 e77 e11 e35 e66 e32 e76 e55

Message size 17 15 12 10 9 8 8 7 7 7 6 6 5

 

Schedule Table 

Step1: e34, e45, e22, e77, e11, e66 

Step2:  

Step3:  

Step4:  

 

(a) 

 

(b) 

Figure 4. The messages communication (a) before 
phase-2 of the degree-reduction step; (b) after phase-2 
of the degree-reduction step. 
 
Table 5. The schedule after the procedure of phase-2 

Message no. e34 e45 e22 e65 e21 e33 e77 e11 e35 e66 e32 e76 e55

Message size 17 15 12 10 9 8 8 7 7 7 6 6 5

 

Schedule Table 

Step1: e34, e45, e22, e77, e11, e66 

Step2: e65, e21, e33, e76 

Step3:  

Step4:  



 

3.2 Message-Coloring Step 
 After completing the degree-reduction step, we 
can obtain a redistribution graph with Max-degree of 
2 and the resulting redistribution graph is 2-edge 
colorable [2], since it is a bipartite graph and its 
maximum degree is equal to 2. In the 
Message-Coloring Step, DRC schedules the left 
messages into the same step in a non-increasing order 
to accomplish an optimal scheduling unless a conflict 
occurs. Figure 5 shows the outcome of 
message-coloring and Table 6 shows the final 
schedule obtained from DRC algorithm. 

 

Figure 5. The outcome of redistribution graph after 
applying the message coloring mechanism 

 

Table 6. The final schedule obtained from DRC 

Msg no. e34 e45 e22 e65 e21 e33 e77 e11 e35 e66 e32 e76 e55

Msg size 17 15 12 10 9 8 8 7 7 7 6 6 5

 

Schedule Table 

Step1: e34, e45, e22, e77, e11, e66 

Step2: e65, e21, e33, e76 

Step3: e35 

Step4: e32, e55  

 
The algorithm of the Degree-Reduction-Coloring is 
given as follows. 
====================================== 
Algorithm DRC 
generating messages; 
// generate messages from AS[Pi] to AD[Pi] 
step = maximum degree; 
sort_msgSize(); 
// sorting in decreasing order by message size 
while (step > 2 ) 
   { 
      choose_msg(step); 
      // selecting message without conflict tuple, set 

into (maximal degree - step + 1) schedule 
step 

      step-- 
   }  // degree-reduction iteration 
while ( remaining_messages != null ) 
   { 
      selecting_msg(maximal degree-1); 
      // selecting message set into maximal degree-1 
schedule step 
      check_msg_continue_set(); 
      // check remaining message set 
      coloring_maximal_msg(maximal degree); 
      // color the maximal message with degree 

maximal degree -1 and the neighbor 
message with maximal degree    

   }  // message coloring mechanism 
end of  DRCM 
====================================== 
 
4. Performance Evaluation 
 To evaluate the performance of the proposed 
methods, we have implemented the DRC along with 
the Divide-and-Conquer algorithm [23]. The 
performance simulation is discussed in two categories, 
even GEN_BLOCK and uneven GEN_BLOCK 
distributions. In even GEN_BLOCK distribution, each 
processor owns similar size of data. In contrast to 
even distribution, few processors might be allocated 
by grand volumes of data with uneven distribution. 
Since data elements could be centralized to some 
specific processors, it is also possible for those 
processors to have the maximum degree of 
communications.  
 The simulation program generates a set of 
random integer number and the size of message as 
A[SPi] and A[DPi]. Moreover, the total message size 
sending from SPi equals to the total size receiving to 
DPi keeping the balance between source processors 
and destination processors. 
 We assume that the data computation 
(communication) time in the simulation is represented 
by the transmission size |Eij|. In the following figures, 
the percentage of events is plotted as a function of the 
message size and the number of processors. Also, in 
the figures, “DRC Better” represents the percentage of 
the number of events that the DRC algorithm has 
lower total computation (communication) time than 
the Divide-and-Conquer algorithm, while “DC Better” 
gives the reverse situation. If both algorithms have the 
same total computation (communication) time, “The 
Same Results” represents the number of that event.  
 In the uneven distribution, the size of message’s 
up-bound is set to be B*1.7 and that of low-bound is 
set to be B*0.3, where B is equal to the sum of total 
transmission message size / total number of 
processors. In the even distribution, the size of 
message’s up-bound is set to be B*1.3 and that of 
low-bound is set to be B*0.7. The total message-size 
is 10M.  
 Fig 6(a) and 6(b) show the simulation results of 



both the DRC and the Divide-and-Conquer algorithm 
with different number of processors and total message 
size. The number of processors is from 8 to 24. We 
can observe that the DRC algorithm has better 
performance in the uneven data redistribution 
compared with Divide-and-Conquer algorithm. Since 

the data is concentrated in the even case, from Fig 7(a) 
and 7(b), we can observe that DRC has better 
performance compared with the uneven case. In both 
even and uneven cases, DRC performs better than the 
Divide-and-Conquer algorithm.  

Figure 6. The events percentage of computing time is plotted (a) with different number of processors and (b) with 
different number of total message sizes in 24 processors, on the uneven data set. 

Figure 7. The events percentage of computing time is plotted (a) with different number of processors and (b) with 
different number of total message sizes in 24 processors, on the even data set. 
 
5.Conclusion 
 In this paper, we have presented a 
Degree-Reduction-Coloring (DRC) scheduling 
algorithm to efficiently perform HPF2 irregular array 
redistribution on a distributed memory multi-computer. 
The DRC algorithm is a simple method with low 
algorithmic complexity to perform GEN_BLOCK 
array redistribution. The DRC algorithm is an optimal 
algorithm in terms of minimal number of steps. In the 
same time, DRC algorithm is also a near optimal 
algorithm satisfying the condition of minimal message 
size of total steps. Effectiveness of the proposed 
methods not only avoids node contention, but also 
shortens the overall communication length.  
 For verifying the performance of our proposed 
algorithm, we have implemented DRC as well as the 
Divide-and-Conquer redistribution algorithm. The 
experimental results show improvement in 
communication costs and high practicability on 
different processor hierarchies. Also, the experimental 

results indicate that both of them have good 
performance on GEN_BLOCK redistribution. In 
many situations, DRC is better than the 
Divide-and-Conquer redistribution algorithm. 
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